1
|
Souza IDL, Saez V, Mansur CRE. Lipid nanoparticles containing coenzyme Q10 for topical applications: An overview of their characterization. Colloids Surf B Biointerfaces 2023; 230:113491. [PMID: 37574615 DOI: 10.1016/j.colsurfb.2023.113491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
The coenzyme Q10 is a compound widely used in pharmaceutical and cosmetic formulations because it is a potent eliminator of free radicals, giving it antioxidant and anti-aging properties. It is naturally synthesized by the human body, but its production wanes with age, leading to the formation of wrinkles. The efficacy of topical application of the coenzyme to counteract this process is subject to several difficulties, due to its instability in the presence of light, low solubility in water and high lipophilicity. Because of these drawbacks, many studies have been conducted of release systems. Lipid nanoparticles stand out in this sense due to the advantages of skin compatibility, protection of the active ingredient against degradation in the external medium, capacity to increase penetration of that ingredient in the skin, and its controlled and prolonged release. In this context, this article presents a review of the main studies of the coenzyme Q10 encapsulated in lipid nanoparticles for topical use, focusing on the analytic methods used to characterize the systems regarding morphology, zeta potential, release profile, Q10 content, encapsulation efficiency, crystalline organization and structure of the lipid matrix, rheology, antioxidant activity, skin penetration and efficacy, among other aspects. We also describe the main results of the different studies and discuss the critical aspects - the simplest, most reproducible, best, and most relevant - that characterize lipid nanoparticles with encapsulated Q10 for topical use.
Collapse
Affiliation(s)
- Ingrid D L Souza
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas/Laboratório de Macromoleculas e Coloides na Indústria de Petróleo, Cidade Universitária, Rua Moniz Aragão, 360. Bloco 8G-CT2, CEP 21941-594 Rio de Janeiro, RJ, Brazil
| | - Vivian Saez
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Química Analítica, Cidade Universitária, CEP 21941-909 Rio de Janeiro, RJ, Brazil.
| | - Claudia R E Mansur
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas/Laboratório de Macromoleculas e Coloides na Indústria de Petróleo, Cidade Universitária, Rua Moniz Aragão, 360. Bloco 8G-CT2, CEP 21941-594 Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais-PEMM/COPPE, Brazil
| |
Collapse
|
2
|
Hou S, Tian Z, Zhao D, Liang Y, Dai S, Ji Q, Fan Z, Liu Z, Liu M, Yang Y. Efficacy and Optimal Dose of Coenzyme Q10 Supplementation on Inflammation-Related Biomarkers: A GRADE-Assessed Systematic Review and Updated Meta-Analysis of Randomized Controlled Trials. Mol Nutr Food Res 2023; 67:e2200800. [PMID: 37118903 DOI: 10.1002/mnfr.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/23/2023] [Indexed: 04/30/2023]
Abstract
SCOPE Coenzyme Q10 (CoQ10) has become a popular nutritional supplement due to its wide range of beneficial biological effects. Previous meta-analyses show that the attenuation of CoQ10 on inflammatory biomarkers remains controversial. This meta-analysis aims to assess the efficacy and optimal dose of CoQ10 supplementation on inflammatory indicators in the general population. METHODS AND RESULTS Databases are searched up to December 2022 resulting in 6713 articles, of which 31 are retrieved for full-text assessment and included 1517 subjects. Double-blind randomized controlled trials (RCTs) of CoQ10 supplementation are eligible if they contain C reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). CoQ10 supplementation can significantly reduce the levels of circulating CRP (SMD: -0.40, 95% CI: [-0.67 to -0.13], p = 0.003), IL-6 (SMD: -0.67, 95% CI: [-1.01 to -0.33], p < 0.001), and TNF-α (SMD: -1.06, 95% CI: [-1.59 to -0.52], p < 0.001) and increase the concentration of circulating CoQ10. CONCLUSION This meta-analysis provides evidence for CoQ10 supplementation to reduce the level of inflammatory mediators in the general population and proposes that daily supplementation of 300-400 mg CoQ10 show superior inhibition of inflammatory factors.
Collapse
Affiliation(s)
- Shanshan Hou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Dan Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Ying Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Suming Dai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Qiuhua Ji
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Zhiying Fan
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, 014040, P. R. China
| | - Zhihao Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Meitong Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, 510000, P. R. China
- China-DRIs Expert Committee, Beijing, P. R. China
| |
Collapse
|
3
|
Yang HL, Lin PY, Vadivalagan C, Lin YA, Lin KY, Hseu YC. Coenzyme Q 0 defeats NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects by inhibiting HIF-1α expression in human triple-negative breast cancer cells. Arch Toxicol 2023; 97:1047-1068. [PMID: 36847822 DOI: 10.1007/s00204-023-03456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Coenzyme Q0 (CoQ0) is a derivative quinone from Antrodia camphorata (AC) that exerts anticancer activities. This study examined the anticancer attributes of CoQ0 (0-4 µM) on inhibited anti-EMT/metastasis and NLRP3 inflammasome, and altered Warburg effects via HIF-1α inhibition in triple-negative breast cancer (MDA-MB-231 and 468) cells. MTT assay, cell migration/invasion assays, Western blotting, immunofluorescence, metabolic reprogramming, and LC-ESI-MS were carried out to assess the therapy potential of CoQ0. CoQ0 inhibited HIF-1α expression and suppressed the NLRP3 inflammasome and ASC/caspase-1 expression, followed by downregulation of IL-1β and IL-18 expression in MDA-MB-231 and 468 cells. CoQ0 ameliorated cancer stem-like markers by decreasing CD44 and increasing CD24 expression. Notably, CoQ0 modulated EMT by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal marker N-cadherin. CoQ0 inhibited glucose uptake and lactate accumulation. CoQ0 also inhibited HIF-1α downstream genes involved in glycolysis, such as HK-2, LDH-A, PDK-1, and PKM-2 enzymes. CoQ0 decreased extracellular acidification rate (ECAR), glycolysis, glycolytic capacity, and glycolytic reserve in MDA-MB-231 and 468 cells under normoxic and hypoxic (CoCl2) conditions. CoQ0 inhibited the glycolytic intermediates lactate, FBP, and 2/3-PG, and PEP levels. CoQ0 increased oxygen consumption rate (OCR), basal respiration, ATP production, maximal respiration, and spare capacity under normoxic and hypoxic (CoCl2) conditions. CoQ0 increased TCA cycle metabolites, such as citrate, isocitrate, and succinate. CoQ0 inhibited aerobic glycolysis and enhanced mitochondrial oxidative phosphorylation in TNBC cells. Under hypoxic conditions, CoQ0 also mitigated HIF-1α, GLUT1, glycolytic-related (HK-2, LDH-A, and PFK-1), and metastasis-related (E-cadherin, N-cadherin, and MMP-9) protein or mRNA expression in MDA-MB-231 and/or 468 cells. Under LPS/ATP stimulation, CoQ0 inhibited NLRP3 inflammasome/procaspase-1/IL-18 activation and NFκB/iNOS expression. CoQ0 also hindered LPS/ATP-stimulated tumor migration and downregulated LPS/ATP-stimulated N-cadherin and MMP-2/-9 expression. The present study revealed that suppression of HIF-1α expression caused by CoQ0 may contribute to inhibition of NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects of triple-negative breast cancers.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Ping-Yu Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Yi-An Lin
- Institute of Nutrition, College of Health Care, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, 710, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, No. 100, Section 1, Jingmao Road, Beitun, Taichung, 406040, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan.
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
4
|
Kashio A, Yamada C, Yasuhara K, Kamogashira T, Someya S, Yamasoba T. Taurine, Coenzyme Q 10, and Hydrogen Water Prevents Germanium Dioxide-Induced Mitochondrial Dysfunction and Associated Sensorineural Hearing Loss in mouse. Hear Res 2023; 428:108678. [PMID: 36577362 DOI: 10.1016/j.heares.2022.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction has been implicated in numerous common diseases as well as aging and plays an important role in the pathogenesis of sensorineural hearing loss (SNHL). In the current study, we showed that supplementation with germanium dioxide (GeO2) in CBA/J mice resulted in SNHL due to the degeneration of the stria vascularis and spiral ganglion, which were associated with down-regulation of mitochondrial respiratory chain associated genes and up-regulation in apoptosis associated genes in the cochlea. Supplementation with taurine, coenzyme Q10, or hydrogen-rich water, attenuated the cochlear degeneration and associated SNHL induced by GeO2. These results suggest that daily supplements or consumption of antioxidants, such as taurine, coenzyme Q10, and hydrogen-rich water, may be a promising intervention to slow SNHL associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Akinori Kashio
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Chikako Yamada
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuo Yasuhara
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, United States of America
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Ye W, Wen C, Zeng A, Hu X. Increased levels of circulating oxidized mitochondrial DNA contribute to chronic inflammation in metabolic syndrome, and MitoQ-based antioxidant therapy alleviates this DNA-induced inflammation. Mol Cell Endocrinol 2023; 560:111812. [PMID: 36334615 DOI: 10.1016/j.mce.2022.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Here, the aim was to investigate the role of circulating oxidized mitochondrial DNA (ox-mtDNA) in metabolic syndrome (MetS)-associated chronic inflammation and evaluate the effect of Mito-Quinone (MitoQ)-based antioxidant therapy on inflammation. A total of 112 MetS patients and 111 healthy control individuals (HCs) were recruited. Peripheral blood was collected, and mononuclear cells (PBMCs) were separated. In a preclinical study, MitoQ, a mitochondrial-targeted antioxidant, was administered to Sprague-Dawley (SD) rats fed a high-fat diet (HFD). In vitro, H2O2- or MitoQ-treated HUVECs served as the oxidative or antioxidative cell models to detect the cell-free ox-mtDNA level. Plasma or cell-free ox-mtDNA levels were measured by qPCR. Additionally, THP-1 cells were incubated with plasma cell-free DNA (cfDNA) from MetS patients and HCs or cell-free ox-mtDNA to detect TLR9-NF-κB pathway activation. Plasma ox-mtDNA levels and TLR9 expression levels in PBMCs were increased in MetS patients. In vivo, HFD-fed rats showed elevated plasma ox-mtDNA and TLR9 expression levels in cardiac-residing immune cells, but MitoQ administration attenuated these increases. In vitro, a significant lower level of cell-free ox-mtDNA was detected in MitoQ-treated cells, compared with H2O2-treated cells. Coincubation of plasma cfDNA from MetS patients or cell-free ox-mtDNA and THP-1 cells increased TLR9-NF-κB p65 expression, and promoted IL-1β, IL-6 and IL-8 secretion in THP-1 cells. In conclusion, increased circulating ox-mtDNA contributes to chronic inflammation in MetS by activating the TLR9-NF-κB pathway. MitoQ-based antioxidant therapy effectively alleviates inflammation by reducing ox-mtDNA release.
Collapse
|