1
|
de le Roi M, Gerhards H, Fayyad A, Boelke M, Becker SC, Volz A, Gerhauser I, Baumgärtner W, Puff C. Evaluating the potential of anti-dsRNA antibodies as an alternative viral sensing tool in encephalitides of different species. Front Vet Sci 2025; 12:1540437. [PMID: 40191085 PMCID: PMC11969456 DOI: 10.3389/fvets.2025.1540437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Although laboratory methods have advanced, the cause of many encephalitides is still unknown. Molecular methods like multiplex PCR and microarrays are considered to be often less sensitive than Next Generation Sequencing, whereas the latter is time-consuming and costly. These analyses require appropriate tissue preparations and are more difficult to perform on formalin-fixed, paraffin-embedded (FFPE) tissues. Anti-double-stranded RNA (dsRNA) antibodies could potentially identify virus infections independently of the viral genome and can be applied to FFPE material. This study examined the applicability of monoclonal anti-dsRNA antibodies by immunohistochemistry to confirm encephalitides caused by different RNA viruses and comparing the findings with those obtained using monoclonal and polyclonal virus-specific antibodies. The viruses studied included negative-sense (Borna disease virus 1, BoDV-1; canine distemper virus, CDV; Rift Valley fever virus, RVFV) and positive-sense single stranded RNA viruses (severe acute respiratory disease syndrome coronavirus 2, SARS-CoV-2; tick-borne encephalitis virus, TBEV; Theiler's murine encephalomyelitis virus, TMEV). Interestingly, dsRNA was detected in both infected and non-infected animals and inconsistently co-localized to BoDV-1, TBEV, and TMEV antigen. Strict co-localization was lacking in CDV, SARS-CoV-2 and RVFV. Despite the co-localization of dsRNA with virus antigen for some RNA viruses, anti-dsRNA antibodies were unreliable as markers for unknown virus infections. Future studies should explore the upstream components of the immune response, including the interferon signaling cascade to assess their potential as effective virus-sensing tool.
Collapse
Affiliation(s)
- Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hannah Gerhards
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Adnan Fayyad
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine
| | - Mathias Boelke
- Institute of Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Travis AM, Luff J, Womble M, Garner MM, LaDouceur EEB. Viral and squamous papillomas in captive polar bears ( Ursus maritimus). Vet Pathol 2025:3009858251317478. [PMID: 39968768 DOI: 10.1177/03009858251317478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Papillomas, many of which are virally induced, are common proliferative cutaneous and mucocutaneous lesions in multiple species, exhibiting characteristic histologic cytopathic changes that distinguish them from nonviral squamous papillomas. A single case report of a novel papillomavirus, Ursus maritimus papillomavirus-type 1, in a polar bear has been reported without investigation into any association between this virus and papilloma formation. We identified papillomas in 3 polar bears. All 3 cases had pedunculated masses consistent with papillomas (i.e., proliferative epithelium forming papillary projections on a fibrovascular stalk); case 1 also exhibited koilocytosis (cytopathic change), consistent with a viral papilloma. Polymerase chain reaction (PCR) using primers that can amplify a diversity of papillomaviruses followed by amplicon sequencing yielded a novel papillomavirus sequence in case 1, which shared <70% nucleotide identity to any known papillomavirus type, indicative of a putatively novel papillomavirus. In situ hybridization (ISH) of case 1 demonstrated viral nucleic acid within proliferative cells and not within the adjacent normal skin, suggesting the virus was the causative agent of this papilloma. The squamous papillomas in cases 2 and 3 were negative for papillomavirus by both PCR and ISH. These findings support our hypothesis that cytopathic effect is associated with the presence of papillomavirus in polar bears, while the lack of histologic cytopathic change may predict nonviral pathogenesis. Further sequencing of the putatively novel viral genome will benefit research and conservation efforts of polar bears.
Collapse
Affiliation(s)
| | - Jennifer Luff
- NC State College of Veterinary Medicine, Raleigh, USA
| | - Mandy Womble
- NC State College of Veterinary Medicine, Raleigh, USA
- University of Illinois Urbana-Champaign, Brookfield, USA
| | | | - Elise E B LaDouceur
- Joint Pathology Center, Silver Spring, MD, USA
- Northwest ZooPath, Monroe, WA, USA
| |
Collapse
|
3
|
Elfimov KA, Baboshko DA, Gashnikova NM. Imaging Flow Cytometry in HIV Infection Research: Advantages and Opportunities. Methods Protoc 2025; 8:14. [PMID: 39997638 PMCID: PMC11858172 DOI: 10.3390/mps8010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The human immunodeficiency virus (HIV) is a type of retrovirus that infects humans and belongs to the Lentivirus group. Despite the availability of effective treatments, HIV infections are still increasing in some parts of the world, according to the World Health Organization (WHO). Another major challenge is the growing problem of HIV becoming resistant to drugs. This highlights the importance of ongoing research to better understand HIV and find new ways to stop the virus from spreading in the body. Scientists use a variety of methods to study HIV, including techniques from molecular and cellular biology. Many of these methods rely on fluorescent dyes to help visualize specific parts of the virus or infected cells. This article focuses on a technique called imaging flow cytometry, which is particularly useful for studying HIV. Imaging flow cytometry is unique because it not only measures fluorescence (light emitted by the dyes) but also captures images of each cell being analyzed. This allows researchers to see where the fluorescence is located within the cell and to study the cell's shape and structure in detail. Additionally, this method can be combined with machine learning to analyze large amounts of data more efficiently.
Collapse
Affiliation(s)
- Kirill. A. Elfimov
- State Research Center of Virology and Biotechnology “Vector”, Retrovirus Department, Koltsovo 630559, Russia; (D.A.B.); (N.M.G.)
| | | | | |
Collapse
|
4
|
Mirolo M, Kühl B, Roji MD, Rubio-García A, Lima VA, Puff C, Martina B, Beineke A, Wohlsein P, Baumgärtner W, Ludlow M, Osterhaus A. Hepatovirus infections in juvenile seals from the North Sea. NPJ VIRUSES 2025; 3:1. [PMID: 40295823 PMCID: PMC11721073 DOI: 10.1038/s44298-024-00084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 04/30/2025]
Abstract
The discovery of several novel hepatovirus species in marine and terrestrial mammals has expanded the recognised members of the genus Hepatovirus and has provided better understanding on the evolutionary origins of human hepatovirus A (HAV). Using high throughput sequencing we detected a seal hepatovirus (SealHAV_NL/PV/21), in liver tissue of a deceased harbor seal (Phoca vitulina) originating from the Dutch North Sea coast. RT-PCR screening of liver samples of 88 harbor seals and 12 grey seals (Halichoerus grypus) from the same region identified seal hepatovirus in nine juvenile harbor seals in which minor sequence variation was observed in the VP1 gene. Whole-genome sequence analysis showed that SealHAV_NL/PV/21 displayed 95.6% nucleotide indentity to New England seal hepatovirus but had a 5'-UTR which contained additional 51 bp. Phylogenetic analysis showed that seal hepatoviruses clustered in a monophyletic group separate from other hepatovirus species that have been identified in terrestrial mammals. Assessment of seal hepatovirus RNA loads in organs of all infected animals showed that the liver had the highest number of RNA copies with up to 107 RNA copies per mg of tissue. Seal hepatovirus RNA was readily detected by in situ hybridization in hepatocytes in the liver but was not associated with pathological lesions. Serological screening of 90 contemporary seal sera using a HAV-based ELISA showed the presence of hepatovirus antibodies in 14 harbor seals and one juvenile grey seal. These findings collectively show that seal hepatovirus is enzootic among seals of the North Sea, causing quiescent infections in young animals.
Collapse
Affiliation(s)
- Monica Mirolo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bianca Kühl
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melvin Daniel Roji
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Valéria Andrade Lima
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
5
|
Beythien G, de le Roi M, Stanelle-Bertram S, Armando F, Heydemann L, Rosiak M, Becker S, Lamers MM, Kaiser FK, Haagmans BL, Ciurkiewicz M, Gabriel G, Osterhaus ADME, Baumgärtner W. Detection of Double-Stranded RNA Intermediates During SARS-CoV-2 Infections of Syrian Golden Hamsters with Monoclonal Antibodies and Its Implications for Histopathological Evaluation of In Vivo Studies. Int J Mol Sci 2024; 25:11425. [PMID: 39518980 PMCID: PMC11546166 DOI: 10.3390/ijms252111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the challenges posed by the emergence and rapid global spread of previously unknown viruses. Early investigations on the pathogenesis of newly identified viruses are often hampered by a lack of appropriate sample material and conventional detection methods. In this study, viral replication within the lungs of SARS-CoV-2-infected Syrian golden hamsters was assessed by immunolabeling dsRNA intermediates with three different monoclonal antibodies in formalin-fixed, paraffin-embedded tissue samples. The presence of dsRNA was compared to viral antigen levels, viral titers, and genomic RNA replicates using three different variants of concern and an ancestral virus strain at a single time point and during the course of infection with an ancestral variant, and then validated using fluorescent 2-plex in situ hybridization. The results indicate that the detection of viral infection using anti-dsRNA antibodies is restricted to an early phase of infection with high viral replication activity. Additionally, the combined detection of dsRNA intermediates and viral antigens may help to bridge the interpretation gaps between viral antigen levels and viral titers at a single time point. Further testing in other viral infections or species is needed to assess the potential of dsRNA as an early marker for viral infections.
Collapse
Affiliation(s)
- Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | | | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Pathology Unit, Department of Veterinary Science, University of Parma, 43121 Parma, Italy
| | - Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Svenja Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Mart M. Lamers
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Franziska K. Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Gülşah Gabriel
- Leibniz Institute of Virology, 20251 Hamburg, Germany; (S.S.-B.); (G.G.)
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
6
|
Doulidis PG, Reisner R, Auer A, Dimmel K, Lammer T, Künzel F. Prevalence and significance of a canine bocavirus-2 outbreak in a cohort of military dogs in Austria. Front Vet Sci 2024; 11:1461136. [PMID: 39301279 PMCID: PMC11410759 DOI: 10.3389/fvets.2024.1461136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Bocaviruses are single-stranded DNA viruses from the Parvoviridae family, which have been minimally discussed in veterinary literature and are considered potentially pathogenic. Due to the recurring illness among young dogs in a closed cohort of military dogs in Austria, we assessed the prevalence, possible disease manifestation and outcome of CBoV-2 infection in this cohort. Materials and methods This led to a comprehensive study that not only analyzed past cases but also performed prospective screening PCR tests to identify CBoV-2 positive dogs within this specific dog population. Pharyngeal and rectal swabs were taken. In addition, a control group (n = 20) of clinically healthy client-owned dogs was sampled. A total of 190 samples were taken and tested for the presence of CBoV-2 specific nucleic acid using screening PCR. In addition to the primers used for routine diagnostics, two other primer pairs were used to verify questionable results. The retrospective part of the study includes a total of 13 military dogs that had previously shown suspected clinical signs. Results At the time of the first examination within the prospective part of the study, CBoV-2 was detected in 31% (12/39) of the dogs. During the second examination, 2% (1/47) tested positive, while all PCR testing in the control group (n = 20) was negative in all cases. The retrospective evaluation of the 13 cases revealed a total of six animals tested positive for CBoV-2 via screening PCR. All puppies suffered from skin lesions (papules, vesicles, or pustules). Other clinical signs included diarrhea (83%), vomiting (77%), respiratory (15%), and neurological (8%) signs. Discussion According to the study there are certain indications that CBoV-2 shares similarities with CPV-2 infection but also exhibits critical differences, making their differentiation essential for patient management, outcomes, and prevention strategies.
Collapse
Affiliation(s)
- P G Doulidis
- Clinical Unit of Internal Medicine Small Animals, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - R Reisner
- Clinical Unit of Internal Medicine Small Animals, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - A Auer
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Katharina Dimmel
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Lammer
- Militärhundezentrum Kaisersteinbruch, Kaisersteinbruch, Austria
| | - F Künzel
- Clinical Unit of Internal Medicine Small Animals, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Jager MC, Choi E, Tomlinson JE, Van de Walle G. Naturally acquired equine parvovirus-hepatitis is associated with a wide range of hepatic lesions in horses. Vet Pathol 2024; 61:442-452. [PMID: 38018088 PMCID: PMC11068485 DOI: 10.1177/03009858231214024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Equine parvovirus-hepatitis (EqPV-H) is the causative agent of Theiler's disease, or severe acute hepatic necrosis, in horses. However, it is poorly understood whether EqPV-H is associated with other histologic findings in horses with clinical liver disease. The objective of this study was to examine the prevalence and severity of EqPV-H infections in diagnostic liver samples. Archived formalin-fixed, paraffin-embedded (FFPE) liver samples (n = 98) from Cornell University and University of California, Davis, collected between 2007 and 2022 were evaluated for 15 individual histologic features and by EqPV-H in situ hybridization. EqPV-H was detected in 48% (n = 47) of samples. The most common histologic features of EqPV-H-positive samples included individual hepatocyte death (n = 40, 85%), lobular infiltrates (n = 38, 80%), portal infiltrates (n = 35, 74%), and ductular reaction (n = 33, 70%). Centrilobular necrosis, portal infiltrate, and individual hepatocyte death were positively associated with high viral load. Neutrophil infiltrates, bridging fibrosis, and portal edema were negatively associated with a high viral load. Only 4 of 49 tested samples were positive for equine hepacivirus by polymerase chain reaction (PCR), but the PCR assay was unreliable for FFPE tissues. In summary, this study demonstrates that EqPV-H is common in a variety of liver pathologies and should be considered as a differential diagnosis in cases of hepatitis other than Theiler's disease.
Collapse
Affiliation(s)
| | - Eunju Choi
- University of California, Davis, Davis, CA
| | | | | |
Collapse
|
8
|
Basso CR, Cruz TF, Vieira LB, Pedrosa VDA, Possebon FS, Araujo Junior JP. Development of a Gold Nanoparticle-Based ELISA for Detection of PCV2. Pathogens 2024; 13:108. [PMID: 38392846 PMCID: PMC10893201 DOI: 10.3390/pathogens13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
In this new methodology, plasmonic ELISA (pELISA) was used to detect Circovirus porcine2 (PCV2) in serum samples without the need for plate reading equipment. This process occurs by adapting the conventional ELISA test with gold nanoparticles (AuNPs) to promote a color change on the plate and quickly identify this difference with the naked eye, generating a dark purple-gray hue when the samples are positive and red when the samples are negative. The technique demonstrated high efficiency in detecting samples with a viral load ≥ 5 log10 copies/mL. Plasmonic ELISA offers user-friendly, cost-effective, and reliable characteristics, making it a valuable tool for PCV2 diagnosis and potentially adaptable for other pathogen detection applications.
Collapse
Affiliation(s)
- Caroline Rodrigues Basso
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - Taís Fukuta Cruz
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Larissa Baldo Vieira
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - Valber de Albuquerque Pedrosa
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Fábio Sossai Possebon
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
| | - João Pessoa Araujo Junior
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (T.F.C.); (F.S.P.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| |
Collapse
|
9
|
de le Roi M, Puff C, Wohlsein P, Pfaff F, Beer M, Baumgärtner W, Rubbenstroth D. Rustrela Virus as Putative Cause of Nonsuppurative Meningoencephalitis in Lions. Emerg Infect Dis 2023; 29:1042-1045. [PMID: 37081716 PMCID: PMC10124629 DOI: 10.3201/eid2905.230172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Retrospective investigation of archived tissue samples from 3 lions displaying nonsuppurative meningoencephalitis and vasculitis led to the detection of rustrela virus (RusV). We confirmed RusV antigen and RNA in cortical neurons, axons, astrocytes and Purkinje cells by reverse transcription quantitative PCR, immunohistochemistry, and in situ hybridization.
Collapse
|
10
|
Monné Rodríguez JM, Frisk AL, Kreutzer R, Lemarchand T, Lezmi S, Saravanan C, Stierstorfer B, Thuilliez C, Vezzali E, Wieczorek G, Yun SW, Schaudien D. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of In Situ Hybridization Techniques for Drug Research and Development. Toxicol Pathol 2023; 51:92-111. [PMID: 37449403 PMCID: PMC10467011 DOI: 10.1177/01926233231178282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
11
|
Volpe E, Errani F, Mandrioli L, Ciulli S. Advances in Viral Aquatic Animal Disease Knowledge: The Molecular Methods' Contribution. BIOLOGY 2023; 12:biology12030466. [PMID: 36979158 PMCID: PMC10045235 DOI: 10.3390/biology12030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aquaculture is the fastest-growing food-producing sector, with a global production of 122.6 million tonnes in 2020. Nonetheless, aquatic animal production can be hampered by the occurrence of viral diseases. Furthermore, intensive farming conditions and an increasing number of reared fish species have boosted the number of aquatic animals' pathogens that researchers have to deal with, requiring the quick development of new detection and study methods for novel unknown pathogens. In this respect, the molecular tools have significantly contributed to investigating thoroughly the structural constituents of fish viruses and providing efficient detection methods. For instance, next-generation sequencing has been crucial in reassignment to the correct taxonomic family, the sturgeon nucleo-cytoplasmic large DNA viruses, a group of viruses historically known, but mistakenly considered as iridoviruses. Further methods such as in situ hybridisation allowed objectifying the role played by the pathogen in the determinism of disease, as the cyprinid herpesvirus 2, ostreid herpesvirus 1 and betanodaviruses. Often, a combination of molecular techniques is crucial to understanding the viral role, especially when the virus is detected in a new aquatic animal species. With this paper, the authors would critically revise the scientific literature, dealing with the molecular techniques employed hitherto to study the most relevant finfish and shellfish viral pathogens.
Collapse
Affiliation(s)
- Enrico Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| |
Collapse
|
12
|
Evidence for a Novel Gammaherpesvirus as the Putative Agent of Malignant Catarrhal Fever Disease in Roan Antelopes (Hippotragus equinus). Viruses 2023; 15:v15030649. [PMID: 36992358 PMCID: PMC10051647 DOI: 10.3390/v15030649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Upon the sudden death of two captive roan antelopes (Hippotragus equinus) that had suffered from clinical signs reminiscent of malignant catarrhal fever (MCF) in a German zoo, next generation sequencing of organ samples provided evidence of the presence of a novel gammaherpesvirus species. It shares 82.40% nucleotide identity with its so far closest relative Alcelaphine herpesvirus 1 (AlHV-1) at the polymerase gene level. The main histopathological finding consisted of lympho-histiocytic vasculitis of the pituitary rete mirabile. The MCF-like clinical presentation and pathology, combined with the detection of a nucleotide sequence related to that of AlHV-1, indicates a spillover event of a novel member of the genus Macavirus of the Gammaherpesvirinae, probably from a contact species within the zoo. We propose the name Alcelaphine herpesvirus 3 (AlHV-3) for this newly identified virus.
Collapse
|
13
|
Leitzen E, Peters M, Merbach S, Wohlsein P, Baumgärtner W. Suttonella ornithocola detected within lesions of tit birds (Paridae) from epidemic death episodes in Germany, 2018–2020. Front Vet Sci 2022; 9:977570. [PMID: 36157175 PMCID: PMC9493112 DOI: 10.3389/fvets.2022.977570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Several episodes of increased mortality in wild birds of the families Paridae and Aegithalidae have been documented in recent decades. The majority of affected animals exhibited necrotizing pneumonia with intralesional bacteria. Suttonella (S.) ornithocola, a gram-negative bacterium in the Cardiobacteriaceae family, has been regularly cultured bacteriologically from affected birds and has long been suspected as a potentially fatal cause of respiratory disease in birds. However, a direct causal relationship between this specific bacterium and the observed lesions within birds has not yet been established. Therefore, postmortem tissue from six tits was used in the present study, including three blue tits (Cyanistes caeruleus) and three great tits (Parus major). Five of the six tits tested positive for S. ornithocola in bacteriological examination and originated from two incidents of increased mortality in Paridae in Germany. Animals found dead in the administrative district of Arnsberg (North Rhine Westphalia) in 2018 and 2020 were investigated for genomic fragments of S. ornithocola by chromogenic in situ hybridization using a newly developed DNA probe based on publicly assessable DNA sequences of the 16S rRNA gene of S. ornithocola. Positive hybridization signals were detected in five out of five animals and were predominantly detected within necrotizing lesions in lung and occasionally in lesions affecting liver and trachea. Interestingly, the lung of one animal without obvious necrotizing pulmonary lesions revealed positive hybridization results in the lumen of one pulmonary blood vessel. Two negative controls, including one bacteriologically S. ornithocola-negative great tit and a cattle egret (Bubulcus ibis) suffering from salmonellosis, did not yield positive signals, indicating high sensitivity and specificity of the probe used. This is the first time that S. ornithocola has been clearly identified within necrotizing lesions in deceased tits. Although Koch's postulates have yet to be fulfilled, positive hybridization signals in association with detectable lesions are considered as further and strong evidence of the significant contribution of S. ornithocola to the several episodes of tit mortality recorded in Germany.
Collapse
Affiliation(s)
- Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Martin Peters
- Chemical and Veterinary Investigation Office Westphalia, Arnsberg, Germany
| | - Sabine Merbach
- Chemical and Veterinary Investigation Office Westphalia, Arnsberg, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- *Correspondence: Wolfgang Baumgärtner
| |
Collapse
|
14
|
Bühler M, Runft S, Li D, Götting J, Detje CN, Nippold V, Stoff M, Beineke A, Schulz T, Kalinke U, Baumgärtner W, Gerhauser I. IFN-β Deficiency Results in Fatal or Demyelinating Disease in C57BL/6 Mice Infected With Theiler's Murine Encephalomyelitis Viruses. Front Immunol 2022; 13:786940. [PMID: 35222374 PMCID: PMC8864290 DOI: 10.3389/fimmu.2022.786940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type I Interferons (IFN-I) are important inducers of the antiviral immune response and immune modulators. IFN-β is the most highly expressed IFN-I in the central nervous system (CNS). The infection of SJL mice with the BeAn or the DA strain of Theiler's murine encephalomyelitis virus (TMEV) results in a progressive demyelinating disease. C57BL/6 mice are usually resistant to TMEV-induced demyelination and eliminate these strains from the CNS within several weeks. Using C57BL/6 IFN-β knockout (IFN-β-/-) mice infected with TMEV, we evaluated the role of IFN-β in neuroinfection. Despite the resistance of C57BL/6 wild type (WT) mice to TMEV infection, DA-infected IFN-β-/- mice had to be killed at 7 to 8 days post infection (dpi) due to severe clinical disease. In contrast, BeAn-infected IFN-β-/- mice survived until 98 dpi. Nevertheless at 14 dpi, BeAn-infected IFN-β-/- mice showed a stronger encephalitis and astrogliosis, higher viral load as well as higher mRNA levels of Isg15, Eif2ak2 (PKR), Tnfa, Il1b, Il10, Il12 and Ifng in the cerebrum than BeAn-infected WT mice. Moreover, the majority of IFN-β-/- mice did not clear the virus from the CNS and developed mild demyelination in the spinal cord at 98 dpi, whereas virus and lesions were absent in the spinal cord of WT mice. Persistently infected IFN-β-/- mice also had higher Isg15, Eif2ak1, Tnfa, Il1a, Il1b and Ifng mRNA levels in the spinal cord at 98 dpi than their virus-negative counterparts indicating an activation of IFN-I signaling and ongoing inflammation. Most importantly, BeAn-infected NesCre+/- IFN-βfl/fl mice, which do not express IFN-β in neurons, astrocytes and oligodendrocytes, only developed mild brain lesions similar to WT mice. Consequently, IFN-β produced by neuroectodermal cells does not seem to play a critical role in the resistance of C57BL/6 mice against fatal and demyelinating disease induced by TMEV strains.
Collapse
Affiliation(s)
- Melanie Bühler
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasper Götting
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Vanessa Nippold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Stoff
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Andreas Beineke
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Ingo Gerhauser
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
15
|
Ravn Warncke S, Rohde Knudsen C. Detection methods targeting the positive- and negative-sense RNA transcripts from plus-stranded RNA viruses. APMIS 2021; 130:284-292. [PMID: 34939239 PMCID: PMC9306919 DOI: 10.1111/apm.13202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The largest group of viruses in the Baltimore classification system comprises viruses with a positive-sense, single-stranded RNA genome. Once the viral genome is released into the cytoplasm of a specific host cell following virus entry, it functions directly as a mRNA and the virus-encoded proteins that are essential for genome replication, are produced by the translation apparatus of the host cell. The positive-sense genome is replicated in two stages, initially the positive strand is copied to make a negative-sense RNA, which then functions as the template for transcription of many new positive-sense genomes. Virus infections can be detected at different stages throughout the infection cycle for diagnostic and scientific purposes. Here, the advantages and disadvantages of some of the relevant methods for genome detection will be briefly reviewed with special emphasis on techniques allowing strand-specific RNA detection. Furthermore, tools of the future are considered.
Collapse
Affiliation(s)
- Signe Ravn Warncke
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000, Aarhus C, Denmark
| | - Charlotte Rohde Knudsen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000, Aarhus C, Denmark
| |
Collapse
|
16
|
Störk T, de le Roi M, Haverkamp AK, Jesse ST, Peters M, Fast C, Gregor KM, Könenkamp L, Steffen I, Ludlow M, Beineke A, Hansmann F, Wohlsein P, Osterhaus ADME, Baumgärtner W. Analysis of avian Usutu virus infections in Germany from 2011 to 2018 with focus on dsRNA detection to demonstrate viral infections. Sci Rep 2021; 11:24191. [PMID: 34921222 PMCID: PMC8683490 DOI: 10.1038/s41598-021-03638-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.
Collapse
|
17
|
Corchuelo S, Gómez CY, Rosales AA, Santamaria G, Rivera JA, Saad EP, Torres-Fernández O, Rengifo AC. CISH and IHC for the Simultaneous Detection of ZIKV RNA and Antigens in Formalin-Fixed Paraffin-Embedded Cell Blocks and Tissues. Curr Protoc 2021; 1:e319. [PMID: 34936226 DOI: 10.1002/cpz1.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zika virus is an arthropod-borne virus that has recently emerged as a significant public health emergency due to its association with congenital malformations. Serological and molecular tests are typically used to confirm Zika virus infection. These methods, however, have limitations when the interest is in localizing the virus within the tissue and identifying the specific cell types involved in viral dissemination. Chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) are common histological techniques used for intracellular localization of RNA and protein expression, respectively. The combined use of CISH and IHC is important to obtain information about RNA replication and the location of infected target cells involved in Zika virus neuropathogenesis. There are no reports, however, of detailed procedures for the simultaneous detection of Zika virus RNA and proteins in formalin-fixed paraffin-embedded (FFPE) samples. Furthermore, the chromogenic detection methods for Zika virus RNA published thus far use expensive commercial kits, limiting their widespread use. As an alternative, we describe here a detailed and cost-effective step-by-step procedure for the simultaneous detection of Zika virus RNA and proteins in FFPE samples. First, we describe how to synthesize and purify homemade RNA probes conjugated with digoxygenin. Then, we outline the steps to perform the chromogenic detection of Zika virus RNA using these probes, and how to combine this technique with the immunodetection of viral antigens. To illustrate the entire workflow, we use FFPE samples derived from infected Vero cells as well as from human and mouse brain tissues. These methods are highly adaptable and can be used to study Zika virus or even other viruses of public health relevance, providing an optimal and economical alternative for laboratories with limited resources. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of RNA probes conjugated with digoxigenin (DIG) Basic Protocol 2: Simultaneous detection of ZIKV RNA and proteins in FFPE cell blocks and tissues.
Collapse
Affiliation(s)
- Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Claudia Y Gómez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Alicia A Rosales
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Gerardo Santamaria
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Jorge Alonso Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Edgar Parra Saad
- Grupo de Patología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, DC, Colombia
- Doctorado en Ciencias Biomédicas, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| |
Collapse
|
18
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
19
|
Runft S, Mischke R, Hoppe S, Hewicker-Trautwein M. [Acute liver failure in a dog after mushroom intake, presumably of the genus Amanita]. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:382-389. [PMID: 34670314 DOI: 10.1055/a-1584-6098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A 4-year-old, neutered male Husky-mix dog weighing 29.4 kg that reportedly ingested a mushroom most likely of the genus Amanita one day prior to presentation exhibited signs of diarrhea, vomitus, inappetence and progressively worsening lethargy. Clinical chemistry revealed hypoglycemia, hyperbilirubinemia, decreased prothrombin and thromboplastin time, as well as increased liver enzyme activities. Despite hospitalization and supportive therapy over a period of 3 days the dog's general condition worsened leading to euthanasia. The pathomorphological findings were characterized by hemorrhage in several organs, hemorrhagic ingesta, icterus, and marked hepatic cellular necrosis.
Collapse
Affiliation(s)
- Sandra Runft
- Institut für Pathologie, Stiftung Tierärztliche Hochschule Hannover
| | - Reinhard Mischke
- Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
| | - Sonja Hoppe
- Klinik für Kleintiere, Stiftung Tierärztliche Hochschule Hannover
| | | |
Collapse
|
20
|
Piewbang C, Tattiyapong P, Techangamsuwan S, Surachetpong W. Tilapia lake virus immunoglobulin G (TiLV IgG) antibody: Immunohistochemistry application reveals cellular tropism of TiLV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 116:115-123. [PMID: 34186182 DOI: 10.1016/j.fsi.2021.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Tilapia lake virus (TiLV) is a notable contagious agent that causes massive economic losses in the tilapia industry globally. Evaluations of the histological changes associated with TiLV infection are not only crucial for diagnosis, but also to gain an understanding of the disease. We therefore synthesized a rabbit polyclonal immunoglobulin G antibody against TiLV and developed an immunohistochemical (IHC) procedure to detect TiLV localization in the tissues of infected fish for comparison with in situ hybridization (ISH) testing. A total of four different sample cohorts derived from TiLV-infected fish was used to validate the IHC procedure. The TiLV IHC application was successfully developed and facilitated nuclear and cytoplasmic immunolabelling in the intestines, gills, brain, liver, pancreas, spleen, and kidneys that corresponded with the ISH results. Apart from the ISH results, TiLV-IHC signals were clearly evident in the endothelial cells of various organs, the circulating leukocytes in the blood vessels, and the areas of tissue inflammation. Among the tested sample cohorts, the intestines, gills, and brain had IHC-positive signals, highlighting the possibility of these organs as common TiLV targets. Immunological staining pattern and distribution corresponded with the TiLV viral load but not the inoculation route. The TiLV IHC was also capable of detecting TiLV infection in the experimentally challenged ornamental cichlids, Mozambique tilapia, giant gourami, and naturally infected tilapia, indicating the dynamic range of IHC for TiLV detection. Overall, our study delivers the first IHC platform to detect TiLV infection and provides novel evidence of cellular tropism during TiLV infection. Our findings also reveal the TiLV distribution pattern of infected fish and propose the endotheliotropism and lymphotropism of this virus, which requires further elaboration. Importantly, this new IHC procedure could be applied to study the pathogenesis and interaction of TiLV in future research.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
21
|
Abstract
Mass spectrometry imaging (MSI) is a label-free molecular imaging technique allowing an untargeted detection of a broad range of biomolecules and xenobiotics. MSI enables imaging of the spatial distribution of proteins, peptides, lipids and metabolites from a wide range of samples. To date, this technique is commonly applied to tissue sections in cancer diagnostics and biomarker development, but also molecular histology in general. Advances in the methodology and bioinformatics improved the resolution of MS images below the single cell level and increased the flexibility of the workflow. However, MSI-based research in virology is just starting to gain momentum and its full potential has not been exploited yet. In this review, we discuss the main applications of MSI in virology. We review important aspects of matrix-assisted laser desorption/ionization (MALDI) MSI, the most widely used MSI technique in virology. In addition, we summarize relevant literature on MSI studies that aim to unravel virus-host interactions and virus pathogenesis, to elucidate antiviral drug kinetics and to improve current viral disease diagnostics. Collectively, these studies strongly improve our general understanding of virus-induced changes in the proteome, metabolome and metabolite distribution in host tissues of humans, animals and plants upon infection. Furthermore, latest MSI research provided important insights into the drug distribution and distribution kinetics, especially in antiretroviral research. Finally, MSI-based investigations of oncogenic viruses greatly increased our knowledge on tumor mass signatures and facilitated the identification of cancer biomarkers.
Collapse
Affiliation(s)
- Luca D Bertzbach
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | | | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
22
|
Hülskötter K, Pfankuche VM, van Dyck L, Höltershinken M, Springer A, Lienhart F, Ermel S, Rehage J, Hoedemarker M, Strube C, Hirzmann J, Bauer C, Baumgärtner W, Lehmbecker A, Wohlsein P. Bovine Babesiosis Diagnosed in Formalin-Fixed, Paraffin-Embedded Tissues by Using In Situ Hybridization. Vet Pathol 2020; 57:812-820. [PMID: 32841102 DOI: 10.1177/0300985820948816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bovine babesiosis, caused by Babesia divergens, is in general a rare disease in Europe. Nonetheless, local outbreaks can cause severe economic damage, and postmortem identification represents a diagnostic challenge. During a recent outbreak in May 2018 in northern Germany, 21 animals of a herd of 150 cattle died within 40 days having had clinical signs of fever and hemoglobinuria. Gross examination of 4 of the 21 deceased animals revealed a tick infestation, jaundice, and dark brown staining of urine and kidneys. Histologically, there were iron-positive deposits, hyperplasia of the red pulp of the spleen, and centrilobular necrosis of hepatocytes. In several locations, small basophilic granules suggestive of intraerythrocytic parasites were visible in hematoxylin-eosin- and Giemsa-stained sections. Peripheral blood smears from a living cow from the herd and polymerase chain reaction (PCR) of feeding ticks revealed B. divergens infection. In situ hybridization (ISH) was applied on formalin-fixed, paraffin-embedded (FFPE) tissue of the necropsied cattle to confirm babesiosis in these animals postmortem. Digoxigenin-labeled DNA probes were generated based on a specific nucleotide sequence for B. divergens, obtained by PCR and sequencing of DNA isolates from infected Ixodes ricinus ticks from deceased cattle. ISH using these probes allowed postmortem diagnosis of B. divergens infection in routinely fixed FFPE tissues.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa M Pfankuche
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Lydia van Dyck
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | | | - Andrea Springer
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sandra Ermel
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jürgen Rehage
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Christina Strube
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jörg Hirzmann
- 221226Justus Liebig University Giessen, Giessen, Germany
| | | | - Wolfgang Baumgärtner
- 26556University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | | | - Peter Wohlsein
- 26556University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
23
|
Dall Agnol AM, Alfieri AF, Alfieri AA. Pestivirus K (Atypical Porcine Pestivirus): Update on the Virus, Viral Infection, and the Association with Congenital Tremor in Newborn Piglets. Viruses 2020; 12:v12080903. [PMID: 32824845 PMCID: PMC7472392 DOI: 10.3390/v12080903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
The atypical porcine pestivirus (APPV) belongs to the species Pestivirus K of the genus Pestivirus and the family Flaviviridae, and it has been associated with congenital tremor (CT) type A-II in newborn piglets. Although APPV was discovered in 2015, evidence shows that APPV has circulated in pig herds for many years, at least since 1986. Due to the frequently reported outbreaks of CT on different continents, the importance of this virus for global pig production is notable. Since 2015, several studies have been conducted to clarify the association between APPV and CT. However, some findings regarding APPV infection and the measures taken to control and prevent the spread of this virus need to be contextualized to understand the infection better. This review attempts to highlight advances in the understanding of APPV associated with type A-II CT, such as etiology, epidemiology, diagnosis, and control and prevention measures, and also describes the pathophysiology of the infection and its consequences for pig production. Further research still needs to be conducted to elucidate the host's immune response to APPV infection, the control and prevention of this infection, and the possible development of vaccines.
Collapse
Affiliation(s)
- Alais M. Dall Agnol
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, CEP 86057-970 Paraná, Brazil; (A.M.D.A.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, CEP 86057-970 Paraná, Brazil
- Rodovia Celso Garcia Cid Road-Campus Universitário, Londrina, PO Box 10011, CEP 86057-970 Paraná, Brazil
| | - Alice F. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, CEP 86057-970 Paraná, Brazil; (A.M.D.A.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, CEP 86057-970 Paraná, Brazil
- Rodovia Celso Garcia Cid Road-Campus Universitário, Londrina, PO Box 10011, CEP 86057-970 Paraná, Brazil
| | - Amauri A. Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, CEP 86057-970 Paraná, Brazil; (A.M.D.A.); (A.F.A.)
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, CEP 86057-970 Paraná, Brazil
- Rodovia Celso Garcia Cid Road-Campus Universitário, Londrina, PO Box 10011, CEP 86057-970 Paraná, Brazil
- Correspondence: ; Tel.: +55-43-3371-5876; Fax: +55-43-3371-4485
| |
Collapse
|
24
|
Zhu H, Fohlerová Z, Pekárek J, Basova E, Neužil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron 2020; 153:112041. [PMID: 31999560 PMCID: PMC7126858 DOI: 10.1016/j.bios.2020.112041] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The global risk of viral disease outbreaks emphasizes the need for rapid, accurate, and sensitive detection techniques to speed up diagnostics allowing early intervention. An emerging field of microfluidics also known as the lab-on-a-chip (LOC) or micro total analysis system includes a wide range of diagnostic devices. This review briefly covers both conventional and microfluidics-based techniques for rapid viral detection. We first describe conventional detection methods such as cell culturing, immunofluorescence or enzyme-linked immunosorbent assay (ELISA), or reverse transcription polymerase chain reaction (RT-PCR). These methods often have limited speed, sensitivity, or specificity and are performed with typically bulky equipment. Here, we discuss some of the LOC technologies that can overcome these demerits, highlighting the latest advances in LOC devices for viral disease diagnosis. We also discuss the fabrication of LOC systems to produce devices for performing either individual steps or virus detection in samples with the sample to answer method. The complete system consists of sample preparation, and ELISA and RT-PCR for viral-antibody and nucleic acid detection, respectively. Finally, we formulate our opinions on these areas for the future development of LOC systems for viral diagnostics.
Collapse
Affiliation(s)
- Hanliang Zhu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
| | - Zdenka Fohlerová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Jan Pekárek
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Evgenia Basova
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Pavel Neužil
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Vengust M, Jager MC, Zalig V, Cociancich V, Laverack M, Renshaw RW, Dubovi E, Tomlinson JE, Van de Walle GR, Divers TJ. First report of equine parvovirus-hepatitis-associated Theiler's disease in Europe. Equine Vet J 2020; 52:841-847. [PMID: 32145096 DOI: 10.1111/evj.13254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/28/2020] [Accepted: 02/29/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Equine parvovirus-hepatitis (EqPV-H) has been proposed as the aetiological cause of Theiler's disease, also known as serum hepatitis. EqPV-H-associated Theiler's disease has not been previously reported in Europe. OBJECTIVES To determine whether EqPV-H infection was associated with a 2018-2019 outbreak of Theiler's disease in four horses on a studfarm. STUDY DESIGN Descriptive case series. METHODS The medical records of four horses from the same farm diagnosed with fatal Theiler's disease were examined retrospectively. Information collected included a clinical history, physical examination findings, tetanus antitoxin exposure, serum biochemistry and necropsy reports. Liver tissue from all four horses was tested for EqPV-H using PCR and in situ hybridisation (ISH) assays. RESULTS Three of the horses had a history of recent (7-11 weeks) tetanus antitoxin administration. Liver tissue from all four horses tested positive for EqPV-H with PCR. In situ hybridisation revealed a widespread distribution of viral nucleic acid in hepatocytes in one case, and a more sporadic distribution in the remaining three cases. MAIN LIMITATIONS Case controls were not available from the farm in question given the retrospective nature of analysis. CONCLUSIONS This case series documents the first reported EqPV-H-associated Theiler's disease in Europe and the first use of ISH to visualise the viral nucleic acid in liver tissues of horses with Theiler's disease.
Collapse
Affiliation(s)
- Modest Vengust
- University of Ljubljana, Veterinary Faculty, Ljubljana, Slovenia
| | - Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Valentina Zalig
- University of Ljubljana, Veterinary Faculty, Ljubljana, Slovenia.,Marc Veterinary Services, Sezana, Slovenia
| | | | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Randall W Renshaw
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Edward Dubovi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas J Divers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Qadiri SSN, Kim SJ, Krishnan R, Kim JO, Kim WS, Oh MJ. Development of an in-situ hybridization assay using riboprobes for detection of viral haemorrhagic septicemia virus (VHSV) mRNAs in a cell culture model. J Virol Methods 2018; 264:1-10. [PMID: 30414796 DOI: 10.1016/j.jviromet.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
An in situ hybridization (RNA-ISH) assay has been developed and optimized to detect viral haemorrhagic septicemia virus (VHSV), an OIE listed piscine rhabdovirus, in infected fish cells using fathead minnow (FHM) as a model cell line. Two antisense riboprobes (RNA probes) targeting viral transcripts from a fragment of nucleoprotein (N) and glycoprotein (G) genes were generated by reverse transcription polymerase chain reaction (RT-PCR) using VHSV specific primers followed by a transcription reaction in the presence of digoxigenin dUTP. The synthesized RNA probes were able to detect viral mRNAs in formalin fixed VHSV infected FHM cells at different time points post inoculation (pi). To correlate the signal intensity, a time dependent quantitation of the viral mRNA transcript and infectivity titer was done by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and 50% tissue culture infectivity dose (TCID50), respectively, from the infected cells and culture supernatants. Further, we compared the diagnostic sensitivity of ISH assay with immunocytochemistry (ICC). Both the riboprobes used in the ISH assay detected VHSV as early as 6 hpi in the FHM cells inoculated with a multiplicity of infection (moi) of 2. Also, the signal detection in ISH was at an early stage in comparison to ICC, wherein, signal was first detected at 12 hpi. Our results clearly highlight that current ISH assay can be of value as a diagnostic tool to localize and detect VHSV in conjunction with conventional virus isolation in cell culture.
Collapse
Affiliation(s)
- Syed Shariq Nazir Qadiri
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Soo-Jin Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Rahul Krishnan
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Jae-Ok Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Wi-Sik Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|