1
|
Okagawa Y, Sumiyoshi T, Hanada K, Hirokawa S, Tomita Y, Yoshida M, Minagawa T, Morita K, Yane K, Ihara H, Hirayama M, Kondo H. Is annual screening by fecal immunochemical test necessary after a recent colonoscopy? DEN OPEN 2025; 5:e385. [PMID: 38770399 PMCID: PMC11103454 DOI: 10.1002/deo2.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Objective The population-based colorectal cancer screening guidelines in Japan recommend an annual fecal immunochemical test (FIT). However, there is no consensus on the need for annual FIT screening for patients who recently performed a total colonoscopy (TCS). Therefore, we evaluated the repeated TCS results for patients with positive FIT after a recent TCS to assess the necessity of an annual FIT. Methods We reviewed patients with positive FIT in opportunistic screening from April 2017 to March 2022. The patients were divided into two groups: those who had undergone TCS within the previous 5 years (previous TCS group) and those who had not (non-previous TCS group). We compared the detection rates of advanced neoplasia and colorectal cancer between the two groups. Results Of 671 patients, 151 had received TCS within 5 years and 520 had not. The detection rates of advanced neoplasia in the previous TCS and non-previous TCS groups were 4.6% and 12.1%, respectively (p < 0.01), and the colorectal cancer detection rates were 0.7% and 1.5%, respectively (no significant difference). The adenoma detection rates were 33.8% in the previous TCS group and 40.0% in the non-previous TCS group (no significant difference). Conclusions Only a few patients were diagnosed with advanced neoplasia among the patients with FIT positive after a recent TCS. For patients with adenomatous lesions on previous TCS, repeated TCS should be performed according to the surveillance program without an annual FIT. The need for an annual FIT for patients without adenomatous lesions on previous TCS should be prospectively assessed in the future.
Collapse
Affiliation(s)
- Yutaka Okagawa
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| | | | - Kota Hanada
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| | - Sota Hirokawa
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| | - Yusuke Tomita
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| | | | | | - Kohtaro Morita
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| | - Kei Yane
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| | - Hideyuki Ihara
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| | | | - Hitoshi Kondo
- Department of GastroenterologyTonan HospitalHokkaidoJapan
| |
Collapse
|
2
|
Yuan S, Xu N, Yang J, Yuan B. Emerging role of PES1 in disease: A promising therapeutic target? Gene 2025; 932:148896. [PMID: 39209183 DOI: 10.1016/j.gene.2024.148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Nuo Xu
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Zhang J, Deng YT, Liu J, Gan L, Jiang Y. Role of transforming growth factor-β1 pathway in angiogenesis induced by chronic stress in colorectal cancer. Cancer Biol Ther 2024; 25:2366451. [PMID: 38857055 PMCID: PMC11168221 DOI: 10.1080/15384047.2024.2366451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Chronic stress can induce stress-related hormones; norepinephrine (NE) is considered to have the highest potential in cancer. NE can stimulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is associated with vascular endothelial growth factor (VEGF) secretion and tumor angiogenesis. However, the underlying mechanisms are poorly understood. METHODS Tumor-bearing mice were subjected to chronic restraint stress and treated with normal saline, human monoclonal VEGF-A neutralizing antibody bevacizumab, or β-adrenergic receptor (β-AR) antagonist (propranolol). Tumor growth and vessel density were also evaluated. Human colorectal adenocarcinoma cells were treated with NE, propranolol, or the inhibitor of transforming growth factor-β (TGF-β) receptor Type I kinase (Ly2157299) in vitro. TGF-β1 in mouse serum and cell culture supernatants was quantified using ELISA. The expression of HIF-1α was measured using Real time-PCR and western blotting. Cell migration and invasion were tested. RESULTS Chronic restraint stress attenuated the efficacy of bevacizumab and promoted tumor growth and angiogenesis in a colorectal tumor model. Propranolol blocked this effect and inhibited TGF-β1 elevation caused by chronic restraint stress or NE. NE upregulated HIF-1α expression, which was reversed by propranolol or Ly2157299. Propranolol and Ly2157199 blocked NE-stimulated cancer cell migration and invasion. CONCLUSIONS Our results demonstrate the effect of NE on tumor angiogenesis and the critical role of TGF-β1 signaling during this process. In addition, β-AR/TGF-β1 signaling/HIF-1α/VEGF is a potential signaling pathway. This study also indicates that psychosocial stress might be a risk factor which weakens the efficacy of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Lu Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Ye C, Liu X, Liu Z, Pan C, Zhang X, Zhao Z, Sun H. Fusobacterium nucleatum in tumors: from tumorigenesis to tumor metastasis and tumor resistance. Cancer Biol Ther 2024; 25:2306676. [PMID: 38289287 PMCID: PMC10829845 DOI: 10.1080/15384047.2024.2306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.
Collapse
Affiliation(s)
- Chun Ye
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zilun Liu
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chuxuan Pan
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanyi Zhao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Central People’s Hospital of Ji’an, Shanghai East Hospital of Ji’an, Ji’an, China
| |
Collapse
|
5
|
Lai HC, Weng JC, Huang HC, Ho JX, Kuo CL, Cheng JC, Huang ST. Solanum torvum induces ferroptosis to suppress hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118670. [PMID: 39117020 DOI: 10.1016/j.jep.2024.118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum torvum Sw. (ST) is used to clear heat toxins, promote blood circulation, and alleviate blood stasis. Therefore, this plant has traditionally been used as an ethnomedicine for common cold, chronic gastritis, and tumors. AIM OF THE STUDY This study aimed to elucidate the mechanism by which ST induces ferroptosis in hepatocellular carcinoma (HCC), the combination effect with lenvatinib, and the impact on lenvatinib-resistant cells. MATERIALS AND METHODS Cell viability assays were performed using different hepatoma cell lines treated with ST. Lipid peroxidation and iron assays were performed using flow cytometry. Molecules involved in the ferroptosis pathway were detected by Western blotting. Finally, a lenvatinib-resistant cell line was established to evaluate the antiproliferative effects of ST. RESULTS ST ethanol extract inhibited the growth of various hepatoma cell lines. A significant reduction in glutathione peroxidase 4 (GPX4) expression was observed following ST treatment, which was accompanied by increased lipid peroxidation and Fe2+ accumulation. ST induced ferroptosis mainly through heme oxygenase-1 (HO-1) expression. HO-1 knockdown reduced ST-induced lipid peroxidation and reversed GPX4 suppression. Acyl-CoA synthetase long-chain family member 4 (ACSL4) also participated in ST-induced ferroptosis. ST and lenvatinib combination showed an additive effect, and ST retained its potential anti-HCC efficacy in a lenvatinib-resistant cell line. CONCLUSION This study demonstrated that the ethanol extract of ST inhibits hepatoma cell growth by inducing ferroptosis. ST displayed an additive effect with lenvatinib in Hep 3B cells and showed remarkable anti-HCC activity in lenvatinib-resistant Hep 3B cells. Collectively, the study shows that ST might have the potential to reduce lenvatinib use in clinical practice and salvage cases of lenvatinib resistance.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jui-Chun Weng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jin-Xuan Ho
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| | - Sheng-Teng Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
6
|
Khaja UM, Jabeen F, Ahmed M, Rafiq A, Ansar R, Javaid K, Chopra C, Singh R, Ganie SA. Studies on the ameliorative potential of Rheum webbianum rhizome extracts on 1,2-dimethylhydrazine (DMH) induced colorectal cancer and associated hepatic and haematological abnormalities in swiss albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118652. [PMID: 39097213 DOI: 10.1016/j.jep.2024.118652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheum webbianum Royle (RW) holds significant ethnopharmacological importance owing to its 5000-year history of cultivation for medicinal and culinary purposes. Demonstrating therapeutic advantages in traditional and contemporary medical practices, RW exhibits key pharmacological effects including anticancer activity, gastrointestinal control, anti-inflammatory properties, and suppression of fibrosis. Despite its recognized vast bioactivities in ethnopharmacology, its efficacy against the colorectal cancer (CRC) remains incompletely understood. AIM OF THE STUDY This study for the first time aims to investigate the chemo-preventive capabilities of various extracts derived from RW rhizomes against CRC development. MATERIALS AND METHODS Four types of RW extracts were prepared by using different solvents viz: Hexane, Ethy-acetate, Ethanol and Methanol. All the four extracts were evaluated for cytotoxicity on HCT-116 human CRC cells. Promising extracts were further investigated in-vivo at varying doses using 1,2-dimethylhydrazine (DMH) induced rat CRC model to assess the anti-oxidant and anticancer properties as well as their effects on the associated hepatic deterioration and hematological alterations. RESULTS Cell viability: In-vitro assessments demonstrated a dose and time-dependent reduction in HCT-116 cell viability following treatment with methanolic and ethanolic extracts of RW, reducing viability by up to 85% and 90%, respectively, at 200 μg/ml. HISTOPATHOLOGY Histopathological analyses revealed significant improvements in colon tissue morphology in RW extract-treated groups compared to DMH-only treated animals. RW-treated groups showed reduced structural abnormalities, congestion, inflammatory cell infiltration, crypt abscess formation, and dysplasia. In contrast, the DMH-only group exhibited irregular glandular structure, mucosal destruction, extensive inflammatory cell infiltration, crypt abscess formation, and dysplasia. These results highlight the potential of RW methanolic and ethanolic extracts in mitigating colon cancer-related histopathological alterations. Haematological, and hepatic parameters: In the DMH-induced colorectal cancer rat model, significant hematological imbalances were evident, including a 49.13% decrease in erythrocytes, 32.18% in hemoglobin, and 26.79% in hematocrit, along with a 79.62% increase in white blood cells and 68.96% rise in platelets. Administration of RW rhizome extracts effectively restored these hematological parameters to levels comparable to those in the control group. Furthermore, RW treatment significantly reduced serum ALT and AST levels, which had increased by 36.78% and 33.12%, respectively, due to DMH exposure. RW intervention also mitigated the onset of atherosclerosis, evidenced by notable reductions in serum total cholesterol and triglyceride levels. Comparative analysis indicated that RW-treated DMH groups effectively restored lipid profiles, contrasting with the DMH-only group which exhibited markers indicative of colon cancer. Oxidative stress: The DMH-treated group showed a significant increase in MDA levels by 195.59%, indicative of heightened free radical production, coupled with decreased levels of SOD (33%), CAT (48%), GSH (58%), and GR activity (49%), signifying oxidative stress. Treatment with RW extracts in DMH-treated rats markedly reduced MDA levels and enhanced SOD, CAT, GSH, and GR activities. These results underscore the antioxidant efficacy of RW extracts. CONCLUSION This study underscores the significant potential of RW rhizome extracts in inhibiting colorectal cancer development. Further investigations are warranted to identify the active constituents responsible for these promising outcomes, positioning RW as a natural and potential agent in combating colon cancer.
Collapse
Affiliation(s)
- Umer Majeed Khaja
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India; Department of Clinical Biochemistry, University of Kashmir, J&K, India
| | - Farhat Jabeen
- Department of Clinical Biochemistry, University of Kashmir, J&K, India
| | - Maroof Ahmed
- Department of Clinical Biochemistry, University of Kashmir, J&K, India
| | - Asma Rafiq
- Department of Nanotechnology, University of Kashmir, J&K, India
| | - Ruhban Ansar
- Department of Clinical Biochemistry, University of Kashmir, J&K, India
| | - Khushboo Javaid
- Department of Clinical Biochemistry, University of Kashmir, J&K, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | | |
Collapse
|
7
|
Bu C, Wang Z, Lv X, Zhao Y. A dual-gene panel of two fragments of methylated IRF4 and one of ZEB2 in plasma cell-free DNA for gastric cancer detection. Epigenetics 2024; 19:2374988. [PMID: 39003776 PMCID: PMC11249030 DOI: 10.1080/15592294.2024.2374988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2-ΔΔCt values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.
Collapse
Affiliation(s)
- Chunxiao Bu
- Department of Magnetic Resonance Imaging,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhilong Wang
- Henan Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Xianping Lv
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Tiwari S, Pandey R, Kumar V, Das S, Gupta V, Nema R, Kumar A. miRNA genetic variations associated with the predisposition of oral squamous cell carcinoma in central Indian population. Noncoding RNA Res 2024; 9:1333-1341. [PMID: 39131689 PMCID: PMC11315085 DOI: 10.1016/j.ncrna.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
The disease burden of Oral Squamous Cell Carcinoma (OSCC) is rising day-by-day and is expected to rise 62 % through 2035. The chewing of tobacco, areca nut, and betel leaf, poor oral hygiene, and chronic infection are common risk factors of OSCC, but genetic and epigenetic factors also contribute equally. MicroRNAs (miRNAs) are comprised of small, non-coding endogenous RNA that regulate a plethora of biological activities by targeting messenger RNA through degradation or inhibition. Single Nucleotide Polymorphisms (SNPs) in miRNA genes can regulate the development and progression of OSCC. The present study aimed to determine the association between SNPs in miRNA genes (miRSNPs) with the risk of OSCC. A case-control study involving 225 histo-pathologically confirmed OSCC cases and 225 healthy controls was conducted, where 25 miRSNPs were analyzed by iPLEX MassArray analysis. A SNP rs12220909 in MIR4293 showed a highly protective effect (CC vs GG, OR = 0.0431, 95%CI = 0.005-0.323, p = 3e-6). Whereas three SNPs, namely, rs4705342 in MIR143 (CC vs TT, OR = 2.25, 95%CI = 2.00-2.53, p = 0.0008), rs531564 in MIR124 (CC vs GG, OR = 24.18, 95%CI = 3.22-181.37, p = 3e-6), and rs3746444 in MIR499 (AA vs GG, OR = 2.01, 95%CI = 1.32-3.05, p = 0.001) were significantly associated with a higher risk of OSCC. Additionally, NanoString-based nCounter miRNA expression profiling revealed that miR-499a (Log2FC = -1.07), and miR-143 (Log2FC = -1.56) were aberrantly expressed in OSCC tissue. Taken together, the above miSNPs may contribute to the high incidence of OSCC in central India. However, further studies with large cohorts and ethnic stratification are required to validate our findings.
Collapse
Affiliation(s)
- Shikha Tiwari
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462020, India
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Ritu Pandey
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462020, India
| | - Vinay Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462020, India
| | - Saikat Das
- Department of Radiotherapy, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462020, India
| | - Vikas Gupta
- ENT and Head and Neck Surgery, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, 462020, India
| | - Rajeev Nema
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462020, India
| |
Collapse
|
9
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
10
|
Liu J, Li M, Chen G, Yang J, Jiang Y, Li F, Hua H. Jianwei Xiaoyan granule ameliorates chronic atrophic gastritis by regulating HIF-1α-VEGF pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118591. [PMID: 39025161 DOI: 10.1016/j.jep.2024.118591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianwei Xiaoyan Granule (JWXYG) is the traditional Chinese medicine preparation in Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, which has been widely used in clinical treatment of chronic atrophic gastritis (CAG). However, the material basis and potential mechanism of JWXYG in the treatment of CAG are not clear. PURPOSE To explore the material basis and potential mechanism of JWXYG in the treatment of CAG. METHODS In this study, the components of JWXYG were analyzed by HPLC-Q-TOF-MS/MS. Then, the CAG model in rats established by a composite modeling method and MC cell model induced by MNNG were used to explore the improvement effect of JWXYG on CAG. Finally, the potential mechanism of JWXYG in the treatment of CAG was preliminarily predicted based on network pharmacology and validated experimentally. RESULTS Thirty-one components of JWXYG were analyzed through HPLC-Q-TOF-MS/MS, such as albiflorin, paeoniflorin, lobetyolin firstly. Research results in vivo showed that the gastric mucosa became thinner, intestinal metaplasia appeared, the number of glands was reduced, the serum levels of PG I and PG II increased and the contents of G17 and IL-6 reduced in CAG model rats. After 4 weeks of JWXYG (2.70 g/kg) administration, these conditions were significantly improved. In addition, cell viability, migration, and invasion of MNNG-induced MC cells was inhibited by JWXYG treatment (800 μg/mL). Furthermore, the results of network pharmacology indicated that HIF-1 and VEGF signaling pathways might play important roles in the therapeutic process. Then the results of Western blot, immunohistochemistry and immunofluorescence confirmed that with JWXYG treatment, the increased expression of HIF-1α, VEGF and VEGFR2 in gastric issue of CAG rats were restrained. Eventually, potential components of JWXYG in the treatment of CAG were predicted through molecular docking to elucidate the material basis. CONCLUSION JWXYG could inhibit angiogenesis by regulating HIF-1α-VEGF pathway to exert therapeutic effects on CAG. Our study explored the potential mechanisms and material basis of JWXYG in the treatment of CAG and provides experimental data for the clinical rational application of JWXYG.
Collapse
Affiliation(s)
- Jia Liu
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Mengyu Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Guobao Chen
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Junhui Yang
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Ying Jiang
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Haibing Hua
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu Province, China.
| |
Collapse
|
11
|
Özay B, Tükel EY, Ayna Duran G, Kiraz Y. Identification of potential inhibitors for drug resistance in acute lymphoblastic leukemia through differentially expressed gene analysis and in silico screening. Anal Biochem 2024; 694:115619. [PMID: 39025197 DOI: 10.1016/j.ab.2024.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a disease of lymphocyte origin predominantly diagnosed in children. While its 5-year survival rate is high, resistance to chemotherapy drugs is still an obstacle. Our aim is to determine differentially expressed genes (DEGs) related to Asparaginase, Daunorubicin, Prednisolone, and Vincristine resistance and identify potential inhibitors via docking. Three datasets were accessed from the Gene Expression Omnibus database; GSE635, GSE19143, and GSE22529. The microarray data was analyzed using R4.2.0 and Bioconductor packages, and pathway and protein-protein interaction analysis were performed. We identified 1294 upregulated DEGs, with 12 genes consistently upregulated in all four resistant groups. KEGG analysis revealed an association with the PI3K-Akt pathway. Among DEGs, 33 hub genes including MDM2 and USP7 were pinpointed. Within common genes, CLDN9 and HS3ST3A1 were subjected to molecular docking against 3556 molecules. Following ADMET analysis, three drugs emerged as potential inhibitors: Flunarizine, Talniflumate, and Eltrombopag. Molecular dynamics analysis for HS3ST3A1 indicated all candidates had the potential to overcome drug resistance, Eltrombopag displaying particularly promising results. This study promotes a further understanding of drug resistance in ALL, introducing novel genes for consideration in diagnostic screening. It also presents potential inhibitor candidates to tackle drug resistance through repurposing.
Collapse
Affiliation(s)
- Başak Özay
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Ezgi Yağmur Tükel
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Gizem Ayna Duran
- İzmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, 35330, Balçova, Izmir, Turkey
| | - Yağmur Kiraz
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey.
| |
Collapse
|
12
|
Faraj C, Mahdi Y, Essetti S, Chait F, Essaber H, El Bakkari A, Omor Y, Latib R, Amalik S, El Khannoussi B. Primary hepatic leiomyosarcoma with adrenal and hepatic metastasis: Case report and literature review. Radiol Case Rep 2024; 19:4950-4954. [PMID: 39247465 PMCID: PMC11378089 DOI: 10.1016/j.radcr.2024.07.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Primary hepatic leiomyosarcoma (PHL) is a rare malignant tumor, which originates from smooth muscles. The imaging features are nonspecific and the diagnosis is often delayed until the tumor reaches a large size, which leads often to a dismal prognosis. We report a case of a 46-year-old male patient who was complaining about abdominal pain for 2 months. The imaging revealed the presence of a large mass in the liver with adrenal and liver metastasis. Diagnosis of PHL was confirmed by histopathological and immunohistochemical examinations. In this case report, we review the epidemiological, clinical, and paraclinical aspects of the disease, as well as the treatment modalities.
Collapse
Affiliation(s)
- Chaymae Faraj
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Youssef Mahdi
- Pathology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Sara Essetti
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Fatima Chait
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hatim Essaber
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Asaad El Bakkari
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Youssef Omor
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Rachida Latib
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Sanae Amalik
- Radiology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Basma El Khannoussi
- Pathology department, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| |
Collapse
|
13
|
Wang X, Yang J, Ren B, Yang G, Liu X, Xiao R, Ren J, Zhou F, You L, Zhao Y. Comprehensive multi-omics profiling identifies novel molecular subtypes of pancreatic ductal adenocarcinoma. Genes Dis 2024; 11:101143. [PMID: 39253579 PMCID: PMC11382047 DOI: 10.1016/j.gendis.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/11/2024] Open
Abstract
Pancreatic cancer, a highly fatal malignancy, is predicted to rank as the second leading cause of cancer-related death in the next decade. This highlights the urgent need for new insights into personalized diagnosis and treatment. Although molecular subtypes of pancreatic cancer were well established in genomics and transcriptomics, few known molecular classifications are translated to guide clinical strategies and require a paradigm shift. Notably, chronically developing and continuously improving high-throughput technologies and systems serve as an important driving force to further portray the molecular landscape of pancreatic cancer in terms of epigenomics, proteomics, metabonomics, and metagenomics. Therefore, a more comprehensive understanding of molecular classifications at multiple levels using an integrated multi-omics approach holds great promise to exploit more potential therapeutic options. In this review, we recapitulated the molecular spectrum from different omics levels, discussed various subtypes on multi-omics means to move one step forward towards bench-to-beside translation of pancreatic cancer with clinical impact, and proposed some methodological and scientific challenges in store.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| |
Collapse
|
14
|
Wang X, Li K, Song T, Xing S, Wang W, Fang Y. Advances in ferroptosis in head and neck cancer (Review). Biomed Rep 2024; 21:151. [PMID: 39247426 PMCID: PMC11375624 DOI: 10.3892/br.2024.1839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death that was discovered in 2012. It encompasses the coordinated orchestration of three fundamental biological pathways: Iron homeostasis, glutathione regulation and lipid metabolism. Head and neck cancer (HNC) is a heterogeneous group of cancers occurring on the mucosal surfaces of the upper respiratory and digestive tracts. Head and neck squamous cell carcinoma is the most common type of HNC, accounting for >90% of HNC cases, and has high morbidity and mortality rates. Despite improvements in diagnosis and treatment, the 5-year survival rate hovers at a dismal 50-60%, with recurrence afflicting nearly 30% of patients, highlighting the inadequacies of currently available treatments. Of note, research exploring the nexus between ferroptosis and HNC remains scarce; however, the present review endeavors to synthesize current knowledge surrounding ferroptosis. The present review elaborated on the normal physiological role of ferroptosis and discussed its potential involvement in HNC pathogenesis. Therapeutic strategies and prognostic paradigms for HNC that target ferroptosis were also reviewed. This review aims to provide direction to catalyze future investigations into ferroptosis in HNC.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Dermatology, Fuyang People's Hospital Affiliated to Bengbu Medical University, Fuyang, Anhui 236000, P.R. China
| | - Kunpeng Li
- Department of Dermatology, Fuyang People's Hospital Affiliated to Bengbu Medical University, Fuyang, Anhui 236000, P.R. China
| | - Teng Song
- Department of Dermatology, Fuyang People's Hospital Affiliated to Bengbu Medical University, Fuyang, Anhui 236000, P.R. China
| | - Suliang Xing
- Department of Dermatology, Fuyang People's Hospital Affiliated to Bengbu Medical University, Fuyang, Anhui 236000, P.R. China
| | - Wei Wang
- Department of Dermatology, Fuyang People's Hospital Affiliated to Bengbu Medical University, Fuyang, Anhui 236000, P.R. China
| | - Yuhui Fang
- Department of Dermatology, Fuyang People's Hospital Affiliated to Bengbu Medical University, Fuyang, Anhui 236000, P.R. China
| |
Collapse
|
15
|
Wang N, Niu X, Li L, Tang J, Bi Y, Liu S, Han K, Cheng Y, Cai Z, Chai N, Linghu E. A new, simplified endoscopic scoring system for predicting clinical outcome in gastric low-grade intraepithelial neoplasia: the "e-cout system". Neoplasia 2024; 56:101030. [PMID: 39047660 PMCID: PMC11318536 DOI: 10.1016/j.neo.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND OBJECTIVES The clinical outcomes of gastric low-grade intraepithelial neoplasia (LGIN) exhibit significant diversity, and the current reliance on endoscopic biopsy for diagnosis poses limitations in devising appropriate treatment strategies for this disease. This study aims to establish a prognostic prediction scoring system (e-Cout system) for gastric LGIN, offering a theoretical foundation for solving this clinical challenge. METHODS Retrospectively selecting 1013 cases meeting the inclusion and exclusion criteria from over 300,000 cases of upper gastrointestinal endoscopy performed at the Digestive Endoscopy Center of our hospital between 2000 and 2022, the cohort included 484 cases as development cohort and 529 cases for validation. Employing relevant statistical analysis, we used development cohort data to establish the e-Cout system for gastric LGIN, and further used validation cohort data to for internal validation. RESULTS In the developmental stage, based on accordant regression coefficients, we assigned point values to six risk factors for poor prognosis: 4 points for microvessel (MV) distortion, 3 points for MV thickening, 2 points for ulcer, and 1 point each for lesion size > 2cm, disease duration > 1 year, and hyperemia and redness on the lesion surface. Patients were then categorized into four risk levels: low risk (0-1 point), medium risk (2-3), high risk (4-6), and very high risk (≥7). During the validation stage, significant differences in the three different outcomes of gastric LGIN were observed across all risk levels. The probability of reversal and progression showed a significant decrease and increase, respectively, with escalating of risk levels, and these differences were statistically significant (P< 0.001). CONCLUSIONS The proposed e-Cout system holds promise in aiding clinicians to predict the probability and risk levels of different clinical outcomes in patients with gastric LGIN. This system is expected to provide an improved foundation and guidance for the selection of clinical strategies for this disease.
Collapse
Affiliation(s)
- Nanjun Wang
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiaotong Niu
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China; Medical School of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Longsong Li
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jing Tang
- Department of Radiology, The Fourth Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yawei Bi
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shengzhen Liu
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ke Han
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China; Medical School of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yaxuan Cheng
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China; Medical School of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhaobei Cai
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China; Medical School of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ningli Chai
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
16
|
Wong HJ, Rawal R, Tseng J, Phillips E, Gangi A, Burch M. Enhancing Lymph Node Yield in Gastric Cancer Resection: Impact of Back Table Dissection on Number of Lymph Node Examined. Am Surg 2024; 90:2622-2627. [PMID: 38709236 DOI: 10.1177/00031348241250038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
INTRODUCTION During gastric cancer resection, back table dissection (BTD) involves examination and separation of lymph node (LN) packets from the surgical specimen based on LN stations, which are sent to pathology as separately labeled specimens. With potential impact on clinical outcomes, we aimed to explore how BTD affects number of LNs examined. METHODS A retrospective review of a gastric cancer database was performed, including all cases of gastrectomy with D2 lymphadenectomy from January 2009 to March 2022. Back table dissection and conventional groups were compared using Mann-Whitney U and Fisher's exact tests. Multiple linear regression modeling was used to identify potential predictors of number of LN examined. RESULTS A total of 174 patients were identified: 39 (22%) BTD and 135 (78%) conventional. More patients in the BTD group underwent neoadjuvant chemotherapy (62% vs 29%, P < .05). Compared to the conventional group, the BTD group had a greater number of LNs examined (42 [26-59] vs 21[15-33], median [IQR], P < .001), lower LN positivity ratio (.01 vs .07, P = .013), and greater number of LNs in patients with BMI >35 (32.5[27.5-39] vs 22[13-27], P = .041). A multiple linear regression model controlling for age, BMI, preoperative N stage, neoadjuvant chemotherapy, surgeon experience, and operative approach identified BTD as a significant positive predictor of number of LN examined (β = 19.7, P = .001). CONCLUSION Back table dissection resulted in improved LN yield during gastric cancer resection. As a simple technical addition, BTD helps enhance pathology examination and improve surgeon awareness, which may ultimately translate to improve oncologic outcomes.
Collapse
Affiliation(s)
- Harry J Wong
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rushil Rawal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua Tseng
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Phillips
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexandra Gangi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Miguel Burch
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
17
|
Liu W, Qu A, Yuan J, Wang L, Chen J, Zhang X, Wang H, Han Z, Li Y. Colorectal cancer histopathology image analysis: A comparative study of prognostic values of automatically extracted morphometric nuclear features in multispectral and red-blue-green imagery. Histol Histopathol 2024; 39:1303-1316. [PMID: 38343355 DOI: 10.14670/hh-18-715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
OBJECTIVES Multispectral imaging (MSI) has been utilized to predict the prognosis of colorectal cancer (CRC) patients, however, our understanding of the prognostic value of nuclear morphological parameters of bright-field MSI in CRC is still limited. This study was designed to compare the efficiency of MSI and standard red-green-blue (RGB) images in predicting the prognosis of CRC. METHODS We compared the efficiency of MS and conventional RGB images on the quantitative assessment of hematoxylin-eosin (HE) stained histopathology images. A pipeline was developed using a pixel-wise support vector machine (SVM) classifier for gland-stroma segmentation, and a marker-controlled watershed algorithm was used for nuclei segmentation. The correlation between extracted morphological parameters and the five-year disease-free survival (5-DFS) was analyzed. RESULTS Forty-seven nuclear morphological parameters were extracted in total. Based on Kaplan-Meier analysis, eight features derived from MS images and seven featured derived from RGB images were significantly associated with 5-DFS, respectively. Compared with RGB images, MSI showed higher accuracy, precision, and Dice index in nuclei segmentation. Multivariate analysis indicated that both integrated parameters 1 (factors negatively correlated with CRC prognosis including nuclear number, circularity, eccentricity, major axis length) and 2 (factors positively correlated with CRC prognosis including nuclear average area, area perimeter, total area/total perimeter ratio, average area/perimeter ratio) in MS images were independent prognostic factors of 5-DFS, in contrast with only integrated parameter 1 (P<0.001) in RGB images. More importantly, the quantification of HE-stained MS images displayed higher accuracy in predicting 5-DFS compared with RGB images (76.9% vs 70.9%). CONCLUSIONS Quantitative evaluation of HE-stained MS images could yield more information and better predictive performance for CRC prognosis than conventional RGB images, thereby contributing to precision oncology.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aiping Qu
- School of Computer, University of South China, Hengyang, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linwei Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiamei Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuli Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongmei Wang
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhengxiang Han
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Yan Li
- Department of Cancer Surgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Jiang J, Yang P, Xu X, Yuan H, Zhu H. Donafenib inhibits PARP1 expression and induces DNA damage, in combination with PARP1 inhibitors promotes apoptosis in liver cancer cells. Anticancer Drugs 2024; 35:789-805. [PMID: 38940933 DOI: 10.1097/cad.0000000000001631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Liver cancer is a prevalent malignant tumor globally. The newly approved first-line drug, donafenib, is a novel oral small molecule multi-tyrosine kinase inhibitor that has significant antitumor effects on liver cancer. This study aims to investigate the antitumor effects of donafenib on liver cancer and to explore its potential mechanisms. Donafenib significantly inhibited the viability of Huh-7 and HCCLM3 cells, inhibited malignant cell proliferation, and promoted cell apoptosis, as demonstrated by CCK-8, EdU, and Calcein/PI (propidium iodide) staining experiments. The results of DNA damage detection experiments and western blot analysis indicate that donafenib caused considerable DNA damage in liver cancer cells. The analysis of poly (ADP-ribose) polymerase 1 (PARP1) in liver cancer patients using online bioinformatics data websites such as TIMER2.0, GEPIA, UALCAN, cBioPortal, Kaplan-Meier Plotter, and HPA revealed a high expression of PARP1, which is associated with poor prognosis. Molecular docking and western blot analysis demonstrated that donafenib can directly target and downregulate the protein expression of PARP1, a DNA damage repair protein, thereby promoting DNA damage in liver cancer cells. Western blot and immunofluorescence detection showed that the group treated with donafenib combined with PARP1 inhibitor had significantly higher expression of γ-H2AX and 8-OHdG compared to the groups treated with donafenib or PARP1 inhibitors alone, the combined treatment suppresses the expression of the antiapoptotic protein Bcl2 and enhances the protein expression level of the proapoptotic protein Bcl-2-associated X protein (BAX). These data suggest that the combination of donafenib and a PARP1 inhibitor results in more significant DNA damage in cells and promotes cell apoptosis. Thus, the combination of donafenib and PARP1 inhibitors has the potential to be a treatment option for liver cancer.
Collapse
Affiliation(s)
| | - Pingping Yang
- Department of Laboratory Medicine, People's Hospital of Qiannan Prefecture, Guizhou
| | - Xinyu Xu
- School of Clinical Medicine, Guizhou Medical University
| | - Huixiong Yuan
- Affiliated Hospital of Youjiang Medical University for Nationalities; Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
19
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
|