1
|
Naskar K, Mukherjee S, Ghosh S, Adhikari S. Coupled 3D ( J ≥ 0) Time-Dependent Wave Packet Calculation for the F + H 2 Reaction on Accurate Ab Initio Multi-State Diabatic Potential Energy Surfaces. J Phys Chem A 2024; 128:1438-1456. [PMID: 38359800 DOI: 10.1021/acs.jpca.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We had calculated adiabatic potential energy surfaces (PESs), nonadiabatic, and spin-orbit (SO) coupling terms among the lowest three electronic states (12A', 22A', and 12A″) of the F + H2 system using the multireference configuration interaction (MRCI) level of theory, and the adiabatic-to-diabatic transformation equations were solved to formulate the diabatic Hamiltonian matrix [J. Chem. Phys. 2020, 153, 174301] for the entire region of the nuclear configuration space. The accuracy of such diabatic PESs is explored by performing scattering calculations to evaluate integral cross sections (ICSs) and rate constants. The nonadiabatic and SO effects are studied by utilizing coupled 3D time-dependent wave packet formalism with zero and nonzero total angular momentum on multiple adiabatic/diabatic surfaces calculation. We depict the convergence profiles of reaction probabilities for the reactive as well as nonreactive processes on various electronic states at different collision energies with respect to total angular momentum including all helicity quantum numbers. Finally, total ICSs are calculated as functions of collision energies for the initial rovibrational state (v = 0, j = 0) of the H2 molecule along with the temperature-dependent rate coefficient, where those quantities are compared with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, West Bengal, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
2
|
Lara M, Jambrina PG, Aoiz FJ. Universal behavior in complex-mediated reactions: Dynamics of S(1D) + o-D2 → D + SD at low collision energies. J Chem Phys 2023; 158:2889001. [PMID: 37154275 DOI: 10.1063/5.0147182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Reactive and elastic cross sections and rate coefficients have been calculated for the S(1D) + D2(v = 0, j = 0) reaction using a modified hyperspherical quantum reactive scattering method. The considered collision energy ranges from the ultracold regime, where only one partial wave is open, up to the Langevin regime, where many of them contribute. This work presents the extension of the quantum calculations, which in a previous study were compared with the experimental results, down to energies in the cold and ultracold domains. Results are analyzed and compared with the universal case of the quantum defect theory by Jachymski et al. [Phys. Rev. Lett. 110, 213202 (2013)]. State-to-state integral and differential cross sections are also shown covering the ranges of low-thermal, cold, and ultracold collision energy regimes. It is found that at E/kB < 1 K, there are substantial departures from the expected statistical behavior and that dynamical features become increasingly important with decreasing collision energy, leading to vibrational excitation.
Collapse
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P G Jambrina
- Departamento de Química Física, Facultad de Farmacia, Universidad de Salamanca, 37008 Salamanca, Spain
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
3
|
Naskar K, Ghosh S, Adhikari S. Accurate Calculation of Rate Constant and Isotope Effect for the F + H 2 Reaction by the Coupled 3D Time-Dependent Wave Packet Method on the Newly Constructed Ab Initio Ground Potential Energy Surface. J Phys Chem A 2022; 126:3311-3328. [PMID: 35594416 DOI: 10.1021/acs.jpca.2c01209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ coupled three-dimensional (3D) time dependent wave packet formalism in hyperspherical coordinates for reactive scattering problem on the newly constructed ab initio calculated ground adiabatic potential energy surface for the F + H2/D2 reaction. The convergence profiles for various reactive channels are depicted at low collision energy regimes with respect to the total angular momentum (J) quantum numbers. For two different reactant diatomic molecules (H2 and D2) initially at their respective ground roto-vibrational state (v = 0, j = 0), calculated state-to-state as well as total integral cross sections as a function of collision energy, temperature dependent rate constants, and the kinetic isotope effect for various reactivity profiles of F + H2 and F + D2 reactions are presented along with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata West Bengal-741246, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
4
|
Mukherjee S, Hazra S, Ghosh S, Mukherjee S, Adhikari S. Trajectory Surface Hopping vs. Quantum Scattering Calculations on D+ + H2 and H + H2+ Reactions using Ab Initio Surfaces and Couplings. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Jambrina PG, Lara M, Aoiz FJ. Signature of shape resonances on the differential cross sections of the S( 1D)+H 2 reaction. J Chem Phys 2021; 154:124304. [PMID: 33810659 DOI: 10.1063/5.0042967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Shape resonances appear when the system is trapped in an internuclear potential well after tunneling through a barrier. They manifest as peaks in the collision energy dependence of the cross section (excitation function), and in many cases, their presence can be observed experimentally. High-resolution crossed-beam experiments on the S(1D) + H2(j = 0) reaction in the 0.81-8.5 meV collision energy range reaction revealed non-monotonic behavior and the presence of oscillations in the reaction cross section as a function of the collision energy, as predicted by quantum mechanical (QM) calculations. In this work, we have analyzed the effect of shape resonances on the differential cross sections for this insertion reaction by performing additional QM calculations. We have found that, in some cases, the resonance gives rise to a large enhancement of extreme backward scattering for specific final states. Our results also show that, in order to yield a significant change in the state-resolved differential cross section, the resonance has to be associated with constructive interference between groups of partial waves, which requires not getting blurred by the participation of many product helicity states.
Collapse
Affiliation(s)
- P G Jambrina
- Departamento de Química Física, Facultad de Química, University of Salamanca, 37008 Salamanca, Spain
| | - Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
6
|
Ghosh S, Sahoo T, Baer M, Adhikari S. Charge Transfer Processes for H + H 2+ Reaction Employing Coupled 3D Wavepacket Approach on Beyond Born-Oppenheimer Based Ab Initio Constructed Diabatic Potential Energy Surfaces. J Phys Chem A 2021; 125:731-745. [PMID: 33461293 DOI: 10.1021/acs.jpca.0c08975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of the H + H2+ reaction has been analyzed from the electronically first excited state of diabatic potential energy surfaces constructed by employing the Beyond Born-Oppenheimer theory [J. Chem. Phys. 2014, 141, 204306]. We have employed the coupled 3D time-dependent wavepacket formalism in hyperspherical coordinates for multisurface reactive scattering problems. To be specific, the charge transfer processes have been investigated extensively by calculating state-to-state as well as total reaction probabilities and integral cross sections, when the reaction process is initiated from the first excited electronic state (21A'). We have depicted the convergence profiles of reaction probabilities for the competing charge transfer processes, namely, reactive charge transfer (RCT) and nonreactive charge transfer (NRCT) processes for different total energies with respect to total angular momentum, J. Total and state-to-state integral cross sections are calculated as a function of total energy for the initial rovibrational state, namely, v = 0, j = 0 level of H2+ (2Σg+) molecule and are compared with previous theoretical calculations. Finally, we have calculated temperature-dependent rate constants using our presently evaluated cross sections and compared their average with the experimentally measured one.
Collapse
Affiliation(s)
- Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| | - Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 700 032, India
| |
Collapse
|
7
|
Varandas AJC. Extrapolation in quantum chemistry: Insights on energetics and reaction dynamics. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620300013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since there is no exact solution for problems in physics and chemistry, extrapolation methods may assume a key role in quantitative quantum chemistry. Two topics where it bears considerable impact are addressed, both at the heart of computational quantum chemistry: electronic structure and reaction dynamics. In the first, the problem of extrapolating the energy obtained by solving the electronic Schrödinger equation to the limit of the complete one-electron basis set is addressed. With the uniform-singlet-and-triplet-extrapolation (USTE) scheme at the focal point, the emphasis is on recent updates covering from the energy itself to other molecular properties. The second topic refers to extrapolation of quantum mechanical reactive scattering probabilities from zero total angular momentum to any of the values that it may assume when running quasiclassical trajectories, QCT/QM-[Formula: see text]J. With the extrapolation guided in both cases by physically motivated asymptotic theories, realism is seeked by avoiding unsecure jumps into the unknown. Although, mostly review oriented, a few issues are addressed for the first time here and there. Prospects for future work conclude the overview.
Collapse
Affiliation(s)
- A. J. C. Varandas
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Department of Physics, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil
- Department of Chemistry and Chemistry Centre, University of Coimbra, Coimbra 3004-535, Portugal
| |
Collapse
|
8
|
Bonnet L, Larregaray P. Statistical properties of quantum probability fluctuations in complex-forming chemical reactions. J Chem Phys 2020; 152:084117. [DOI: 10.1063/1.5139207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L. Bonnet
- Université de Bordeaux, ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| | - P. Larregaray
- Université de Bordeaux, ISM, UMR 5255, F-33400 Talence, France
- CNRS, ISM, UMR 5255, F-33400 Talence, France
| |
Collapse
|
9
|
Bonnet L, Larrégaray P, Lara M, Launay JM. Theoretical Study of Barrierless Chemical Reactions Involving Nearly Elastic Rebound: The Case of S( 1D) + X 2, X = H, D. J Phys Chem A 2019; 123:6439-6454. [PMID: 31329443 DOI: 10.1021/acs.jpca.9b04938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For some values of the total angular momentum consistent with reaction, the title processes involve nonreactive trajectories proceeding through a single rebound mechanism during which the internal motion of the reagent diatom is nearly unperturbed. When such paths are in a significant amount, the classical reaction probability is found to be markedly lower than the quantum mechanical one. This finding was recently attributed to an unusual quantum effect called diffraction-mediated trapping, and a semiclassical correction was proposed in order to take into account this effect in the classical trajectory method. In the present work, we apply the resulting approach to the calculation of opacity functions as well as total and state-resolved integral cross sections (ICSs) and compare the values obtained with exact quantum ones, most of which are new. As the title reactions proceed through a deep insertion well, mean potential statistical calculations are also presented. Seven values of the collision energy, ranging from 30 to 1127 K, are considered. Two remarkable facts stand out: (i) The corrected classical treatment strongly improves the accuracy of the opacity function as compared to the usual classical treatment. When the entrance transition state is tight, however, those trajectories crossing it with a bending vibrational energy below the zero point energy must be discarded. (ii) The quantum opacity function, particularly its cutoff, is finely reproduced by the statistical approach. Consequently, the total ICS is also very well described by the two previous approximate methods. These, however, do not predict state-resolved ICSs with the same accuracy, proving thereby that (i) one or several genuine quantum effects involved in the dynamics are missed by the corrected classical treatment and (ii) the dynamics are not fully statistical.
Collapse
Affiliation(s)
- L Bonnet
- Université de Bordeaux, ISM , UMR 5255, F-33400 Talence , France.,CNRS , ISM , UMR 5255, F-33400 Talence , France
| | - P Larrégaray
- Université de Bordeaux, ISM , UMR 5255, F-33400 Talence , France.,CNRS , ISM , UMR 5255, F-33400 Talence , France
| | - M Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - J-M Launay
- Institut de Physique de Rennes, UMR CNRS 6251 , Université de Rennes I , F-35042 Rennes , France
| |
Collapse
|
10
|
Morita M, Tscherbul TV. Restricted basis set coupled-channel calculations on atom-molecule collisions in magnetic fields. J Chem Phys 2019; 150:074110. [PMID: 30795668 DOI: 10.1063/1.5047063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rigorous coupled-channel quantum scattering calculations on molecular collisions in external fields are computationally demanding due to the need to account for a large number of coupled channels and multiple total angular momenta J of the collision complex. We show that by restricting the total angular momentum basis to include only the states with helicities K ≤ Kmax, it is possible to obtain accurate elastic and inelastic cross sections for low-temperature He + CaH, Li + CaH, and Li + SrOH collisions in the presence of an external magnetic field at a small fraction of the computational cost of the full coupled-channel calculations (where K is the projection of the molecular rotational angular momentum on the atom-diatom axis). The optimal size of the truncated helicity basis set depends on the mechanism of the inelastic process and on the magnitude of the external magnetic field, with the minimal basis set (Kmax = 0) producing quantitatively accurate results for, e.g., ultracold Li + CaH and Li + SrOH scattering at low magnetic fields, leading to nearly 90-fold gain in computational efficiency. Larger basis sets are required to accurately describe the resonance structure in the magnetic field dependence of Li + CaH and Li + SrOH inelastic cross sections in the few partial wave-regime as well as indirect spin relaxation in He + CaH collisions. Our calculations indicate that the resonance structure is due to an interplay of the spin-rotation and Coriolis couplings between the basis states of different K and the couplings between the rotational states of the same K induced by the anisotropy of the interaction potential.
Collapse
Affiliation(s)
- Masato Morita
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
11
|
Bhowmick S, Bossion D, Scribano Y, Suleimanov YV. The low temperature D + + H 2→ HD + H + reaction rate coefficient: a ring polymer molecular dynamics and quasi-classical trajectory study. Phys Chem Chem Phys 2018; 20:26752-26763. [PMID: 30324962 DOI: 10.1039/c8cp05398g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between D+ and H2 plays an important role in astrochemistry at low temperatures and also serves as a prototype for a simple ion-molecule reaction. Its ground X[combining tilde]1A' state has a very small thermodynamic barrier (up to 1.8 × 10-2 eV) and the reaction proceeds through the formation of an intermediate complex lying within the potential well with a depth of at least 0.2 eV, thus representing a challenge for dynamical studies. In the present work, we analyze the title reaction within the temperature range of 20-100 K by means of ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) methods over the full-dimensional global potential energy surface developed by Aguado et al. [A. Aguado, O. Roncero, C. Tablero, C. Sanz and M. Paniagua, J. Chem. Phys., 2000, 112, 1240]. The computed thermal RPMD and QCT rate coefficients are found to be almost independent of temperature and fall within the range of 1.34-2.01 × 10-9 cm3 s-1. They are also in very good agreement with previous time-independent quantum mechanical and statistical quantum method calculations. Furthermore, we observe that the choice of asymptotic separation distance between the reactants can markedly alter the rate coefficient in the low temperature regime (20-50 K). Therefore it is of utmost importance to correctly assign the value of this parameter for dynamical studies, particularly at very low temperatures of astrochemical importance. We finally conclude that the experimental rate measurements for the title reaction are highly desirable in future.
Collapse
Affiliation(s)
- Somnath Bhowmick
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| | - Duncan Bossion
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yohann Scribano
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| |
Collapse
|
12
|
Ghosh S, Mukherjee S, Mukherjee B, Mandal S, Sharma R, Chaudhury P, Adhikari S. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach. J Chem Phys 2017; 147:074105. [PMID: 28830157 DOI: 10.1063/1.4998406] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sandip Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Saikat Mukherjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Bijit Mukherjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Souvik Mandal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Rahul Sharma
- St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata, West Bengal 700 016, India
| | - Pinaki Chaudhury
- Department of Chemistry, University of Calcutta, Kolkata 700 009, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| |
Collapse
|
13
|
Lara M, Jambrina PG, Aoiz FJ, Launay JM. Cold and ultracold dynamics of the barrierless D+ + H2 reaction: Quantum reactive calculations for ∼R−4 long range interaction potentials. J Chem Phys 2015; 143:204305. [DOI: 10.1063/1.4936144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P. G. Jambrina
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - F. J. Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - J.-M. Launay
- Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, F-35042 Rennes, France
| |
Collapse
|
14
|
Ghosh S, Sahoo T, Adhikari S, Sharma R, Varandas AJC. Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: The D++H2 Reaction on the Triple-Sheeted DMBE Potential Energy Surface. J Phys Chem A 2015; 119:12392-403. [DOI: 10.1021/acs.jpca.5b07718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandip Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Tapas Sahoo
- Weizmann Institute of Science, 234 Herzl Street, Rehovot, Illinois 7610001, Israel
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | | | | |
Collapse
|
15
|
Sahoo T, Ghosh S, Adhikari S, Sharma R, Varandas AJC. Low-temperature D+ + H2 reaction: A time-dependent coupled wave-packet study in hyperspherical coordinates. J Chem Phys 2015; 142:024304. [DOI: 10.1063/1.4905379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tapas Sahoo
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rahul Sharma
- Departamento de Química, and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - António J. C. Varandas
- Departamento de Química, and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
16
|
Sahoo T, Ghosh S, Adhikari S, Sharma R, Varandas AJC. Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: Application to the Adiabatic Singlet-State(11A′) D+ + H2 Reaction. J Phys Chem A 2014; 118:4837-50. [DOI: 10.1021/jp5035739] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tapas Sahoo
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rahul Sharma
- Departamento
de Química,
and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - António J. C. Varandas
- Departamento
de Química,
and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
17
|
González-Lezana T, Scribano Y, Honvault P. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature. J Phys Chem A 2014; 118:6416-24. [PMID: 24802076 DOI: 10.1021/jp501446y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.
Collapse
|
18
|
Jambrina PG, Lara M, Menéndez M, Launay JM, Aoiz FJ. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction. J Chem Phys 2013; 137:164314. [PMID: 23126717 DOI: 10.1063/1.4761894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S((1)D) + H(2) → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002)] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009)]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S((1)D).
Collapse
Affiliation(s)
- P G Jambrina
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Lara M, Jambrina PG, Varandas AJC, Launay JM, Aoiz FJ. On the role of dynamical barriers in barrierless reactions at low energies: S(1D) + H2. J Chem Phys 2011; 135:134313. [DOI: 10.1063/1.3644337] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Lara M, Dayou F, Launay JM. Reaching the cold regime: S(1D) + H2 and the role of long-range interactions in open shell reactive collisions. Phys Chem Chem Phys 2011; 13:8359-70. [DOI: 10.1039/c0cp02091e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Berteloite C, Lara M, Bergeat A, Le Picard SD, Dayou F, Hickson KM, Canosa A, Naulin C, Launay JM, Sims IR, Costes M. Kinetics and dynamics of the S(1D2) + H2 → SH + H reaction at very low temperatures and collision energies. PHYSICAL REVIEW LETTERS 2010; 105:203201. [PMID: 21231230 DOI: 10.1103/physrevlett.105.203201] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Indexed: 05/30/2023]
Abstract
We report combined studies on the prototypical S(1D2) + H2 insertion reaction. Kinetics and crossed-beam experiments are performed in experimental conditions approaching the cold energy regime, yielding absolute rate coefficients down to 5.8 K and relative integral cross sections to collision energies as low as 0.68 meV. They are supported by quantum calculations on a potential energy surface treating long-range interactions accurately. All results are consistent and the excitation function behavior is explained in terms of the cumulative contribution of various partial waves.
Collapse
Affiliation(s)
- Coralie Berteloite
- Institut de Physique de Rennes, UMR 6251 du CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Using semiclassical surface hopping for coupled partial wave calculations on systems with non-spherically symmetric potentials. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Huarte-Larrañaga F, Manthe U. Thermal Rate Constants for Polyatomic Reactions: First Principles Quantum Theory. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2007.221.2.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The truly accurate knowledge of molecular dynamics phenomena is generally achieved through a combination of detailed experiments and first principle theory. The complexity of such a level of description had until recently restricted accurate studies to rather small systems. However, the sophistication of theoretical methods and massive technological developments have provided remarkable progress in the detailed knowledge of reactive events during the past three decades. Moreover, significant progress towards the detailed understanding of polyatomic reaction has been made in recent years. Detailed experimental and accurate theoretical studies of reactions involving more than only three or four atoms are becoming increasingly available. In this work, aspects of the theoretical work aiming at the accurate description of polyatomic reactions are reviewed.
The present article focuses on the development of the first principle theory of reaction rates. It reviews theoretical developments and benchmark applications to reactions as CH4 + H → CH3 + H2 and CH4 + O → CH3 + OH. The importance of quantum effects for the thermal rate constants in different temperature regimes is discussed in detail. The accuracy of the classical transition state theory and of different approximate quantum theories is investigated in detail. A quantum transition state concept which facilitates accurate reaction rate calculations for polyatomic reaction is described. Benchmark results for the CH4 + H → CH3 + H2 reaction are shown which demonstrate that the accuracy of thermal rate constants calculated by first principle theory can rival the accuracy of available experimental data. The perspectives offered by these developments are discussed.
Collapse
|
24
|
Abstract
This paper is an overview of the theory of reactive scattering, with emphasis on fully quantum mechanical theories that have been developed to describe simple chemical reactions, especially atom-diatom reactions. We also describe related quasiclassical trajectory applications, and in all of this review the emphasis is on methods and applications concerned with state-resolved reaction dynamics. The review first provides an overview of the development of the theory, including a discussion of computational methods based on coupled channel calculations, variational methods, and wave packet methods. Choices of coordinates, including the use of hyperspherical coordinates are discussed, as are basis set and discrete variational representations. The review also summarizes a number of applications that have been performed, especially the two most comprehensively studied systems, H+H2 and F+H2, along with brief discussions of a large number of other systems, including other hydrogen atom transfer reactions, insertion reactions, electronically nonadiabatic reactions, and reactions involving four or more atoms. For each reaction we describe the method used and important new physical insight extracted from the results.
Collapse
Affiliation(s)
- Wenfang Hu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | |
Collapse
|
25
|
Lepetit B, Wang D, Kuppermann A. Numerical generation of hyperspherical harmonics for tetra-atomic systems. J Chem Phys 2006; 125:133505. [PMID: 17029488 DOI: 10.1063/1.2218515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A numerical generation method of hyperspherical harmonics for tetra-atomic systems, in terms of row-orthonormal hyperspherical coordinates-a hyper-radius and eight angles-is presented. The nine-dimensional coordinate space is split into three three-dimensional spaces, the physical rotation, kinematic rotation, and kinematic invariant spaces. The eight-angle principal-axes-of-inertia hyperspherical harmonics are expanded in Wigner rotation matrices for the physical and kinematic rotation angles. The remaining two-angle harmonics defined in kinematic invariant space are expanded in a basis of trigonometric functions, and the diagonalization of the kinetic energy operator in this basis provides highly accurate harmonics. This trigonometric basis is chosen to provide a mathematically exact and finite expansion for the harmonics. Individually, each basis function does not satisfy appropriate boundary conditions at the poles of the kinetic energy operator; however, the numerically generated linear combination of these functions which constitutes the harmonic does. The size of this basis is minimized using the symmetries of the system, in particular, internal symmetries, involving different sets of coordinates in nine-dimensional space corresponding to the same physical configuration.
Collapse
Affiliation(s)
- Bruno Lepetit
- Laboratoire Collisions, Agrégats, Réactivité, UMR 5589, CNRS, IRSAMC, Université Paul Sabatier Toulouse 3, 31062 Toulouse Cedex 9, France.
| | | | | |
Collapse
|
26
|
Honvault P, Bussery-Honvault B, Launay JM, Aoiz FJ, Bañares L. Quantum mechanical and quasiclassical trajectory scattering calculations for the C(D1)+H2 reaction on the second excited 1A″1 potential energy surface. J Chem Phys 2006; 124:154314. [PMID: 16674233 DOI: 10.1063/1.2187007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Time-independent quantum mechanical (QM) and quasiclassical trajectory (QCT) scattering calculations have been carried out for the C(1D) + H2 --> CH + H reaction at a collision energy of 80 meV on a newly developed ab initio potential energy surface [B. Bussery-Honvault et al., Phys. Chem. Chem. Phys. 7, 1476 (2005)] of 1 1A" symmetry, corresponding to the second singlet state 1 1B1 of CH2. A general good agreement has been found between the QM and QCT rotational distributions and differential cross sections (DCSs). In both cases, DCSs are strongly peaked in the forward direction with a small contribution in the backward direction in contrast with those obtained on the 1 1A' surface, which are nearly symmetric. Rotational distributions obtained on the 1 1A" surface are somewhat colder than those calculated on the 1 1A' surface. The specific dynamics and the contribution of the 1 1A" surface to the overall reactivity of this system are discussed.
Collapse
Affiliation(s)
- P Honvault
- LPM, UMR CNRS 6624 and University of Franche-Comté, Campus de la Bouloie, 25030 Besançon Cedex, France.
| | | | | | | | | |
Collapse
|
27
|
Huarte-Larrañaga F, Manthe U. Calculating initial-state-selected reaction probabilities from thermal flux eigenstates: A transition-state-based approach. J Chem Phys 2005; 123:204114. [PMID: 16351247 DOI: 10.1063/1.2132273] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An approach for the calculation of initial-state-selected reaction probabilities utilizing a transition-state view and the multiconfigurational time-dependent Hartree approach is presented. Using flux correlation functions, wave packets located in the transition-state region are constructed and propagated into the asymptotic region to obtain initial-state-selected reaction probabilities. A complete set of reaction probabilities is obtained from a single set of thermal flux eigenstates. Concepts previously applied with success to the calculation of k(T) or N(E) are transferred to the calculation of state-selected probabilities. The benchmark H+H(2) (J=0) reaction on the LSTH potential-energy surface is used to test the reliability of this approach.
Collapse
Affiliation(s)
- Fermín Huarte-Larrañaga
- Centre Especial de Recerca en Química Teòrica, Parc Científic de Barcelona, Josep Samitier 5, 08028 Barcelona, Spain.
| | | |
Collapse
|
28
|
Bañares L, Castillo JF, Honvault P, Launay JM. Quantum mechanical and quasi-classical trajectory reaction probabilities and cross sections for the S(1D) + H2,D2,HD insertion reactions. Phys Chem Chem Phys 2005; 7:627-34. [DOI: 10.1039/b417368f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
|
30
|
|
31
|
Bañares L, Aoiz FJ, Honvault P, Launay JM. Dynamics of the S(1D) + H2 Insertion Reaction: A Combined Quantum Mechanical and Quasiclassical Trajectory Study. J Phys Chem A 2004. [DOI: 10.1021/jp037109o] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Balucani N, Capozza G, Cartechini L, Bergeat A, Bobbenkamp R, Casavecchia P, Javier Aoiz F, Bañares L, Honvault P, Bussery-Honvault B, Launay JM. Dynamics of the insertion reaction C(1D) + H2: A comparison of crossed molecular beam experiments with quasiclassical trajectory and quantum mechanical scattering calculations. Phys Chem Chem Phys 2004. [DOI: 10.1039/b409327e] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
|
34
|
Aquilanti V, Cavalli S, De Fazio D, Volpi A, Aguilar A, Giménez X, Maria Lucas J. Reactivity enhanced by under-barrier tunneling and resonances: the F+H2→HF+H reaction. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00311-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Abstract
This review discusses recent quantum scattering calculations on bimolecular chemical reactions in the gas phase. This theory provides detailed and accurate predictions on the dynamics and kinetics of reactions containing three atoms. In addition, the method can now be applied to reactions involving polyatomic molecules. Results obtained with both time-independent and time-dependent quantum dynamical methods are described. The review emphasises the recent development in time-dependent wave packet theories and the applications of reduced dimensionality approaches for treating polyatomic reactions. Calculations on over 40 different reactions are described.
Collapse
|
36
|
Althorpe SC. Plane wave packet study of direct and time-delayed mechanisms in the F+HD reaction. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00105-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Dynamics of the S(1D)+H2→SH+H reaction: a quantitative description using an accurate quantum method. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00132-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Bañares L, Aoiz FJ, Honvault P, Bussery-Honvault B, Launay JM. Quantum mechanical and quasi-classical trajectory study of the C(1D)+H2 reaction dynamics. J Chem Phys 2003. [DOI: 10.1063/1.1527014] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Zhang K, Parker GA, Kouri DJ, Hoffman DK, Iyengar SS. Quantum reactive scattering in three dimensions using adiabatically adjusting principal axis hyperspherical coordinates: Periodic distributed approximating functional method for surface functions. J Chem Phys 2003. [DOI: 10.1063/1.1526835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Aoiz FJ, Bañares L, Castillo JF, Herrero VJ, Martı́nez-Haya B, Honvault P, Launay JM, Liu X, Lin JJ, Harich SA, Wang CC, Yang X. The O(1D)+H2 reaction at 56 meV collision energy: A comparison between quantum mechanical, quasiclassical trajectory, and crossed beam results. J Chem Phys 2002. [DOI: 10.1063/1.1478693] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Bussery-Honvault B, Honvault P, Launay JM. A study of the C(1D)+H2→CH+H reaction: Global potential energy surface and quantum dynamics. J Chem Phys 2001. [DOI: 10.1063/1.1417501] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
|
43
|
Museth K, Kuppermann A. Asymptotic analysis of state-to-state tetraatomic reactions using row-orthonormal hyperspherical coordinates. J Chem Phys 2001. [DOI: 10.1063/1.1408288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Rackham EJ, Huarte-Larranaga F, Manolopoulos DE. Coupled-channel statistical theory of the ()+ and ()+ insertion reactions. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00707-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Aoiz FJ, Bañares L, Castillo JF, Brouard M, Denzer W, Vallance C, Honvault P, Launay JM, Dobbyn AJ, Knowles PJ. Insertion and abstraction pathways in the reaction O(1D2) + H2-->OH+H. PHYSICAL REVIEW LETTERS 2001; 86:1729-1732. [PMID: 11290234 DOI: 10.1103/physrevlett.86.1729] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Indexed: 05/23/2023]
Abstract
Rigorous quantum dynamical calculations have been performed on the ground 1 1A' and first excited 1 1A" electronic states of the title reaction, employing the most accurate potential energy surfaces available. Product rovibrational quantum state populations and rotational angular momentum alignment parameters are reported, and are compared with new experimental, and quasiclassical trajectory calculated results. The quantum calculations agree quantitatively with experiment, and reveal unequivocally that the 1 1A" excited state participates in the reaction.
Collapse
Affiliation(s)
- F J Aoiz
- Departmento de Química Física, Facultad de Quíimica, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Honvault P, Launay JM. A quantum-mechanical study of the dynamics of the O(1D)+H2→OH+H insertion reaction. J Chem Phys 2001. [DOI: 10.1063/1.1338973] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Aquilanti V, Cavalli S, De Fazio D, Volpi A. The A+BC reaction by the hyperquantization algorithm: the symmetric hyperspherical parametrization for J > 0. ADVANCES IN QUANTUM CHEMISTRY 2001. [DOI: 10.1016/s0065-3276(05)39007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
48
|
MARKOVIĆ NIKOLA, BILLING GERTD. Analyses of the semi-classical wavepacket approach to chemical reactions: the F + H2→ HF + H reaction. Mol Phys 2000. [DOI: 10.1080/00268970009483381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Blume D, Greene CH. Vibrationally excited states and fragmentation geometries of NeN and ArN clusters, N=3–6, using hyperspherical coordinates. J Chem Phys 2000. [DOI: 10.1063/1.1288385] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Kouri DJ, Hoffman DK. Perspective on “Molecular collisions. VIII”. Theor Chem Acc 2000. [DOI: 10.1007/978-3-662-10421-7_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|