1
|
Kiflie MA, Sharma DP, Haile MA. Deep learning for Ethiopian indigenous medicinal plant species identification and classification. J Ayurveda Integr Med 2024; 15:100987. [PMID: 39546923 PMCID: PMC11613182 DOI: 10.1016/j.jaim.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Medicinal plants are crucial for traditional healers in preparing remedies and also hold significant importance for the modern pharmaceutical industry, facilitating drug discovery processes. Accurate and effective identification and classification of Ethiopian indigenous medicinal plants are vital for their conservation and preservation. However, the existing identification and classification process is time-consuming, and tedious, and demands the expertise of specialists. Botanists traditionally rely on traditional and experience-based methods for identifying various medicinal plant species. OBJECTIVE This research aims to develop an efficient deep learning model through transfer learning for the identification and classification of Ethiopian indigenous medicinal plant species. MATERIALS AND METHODS A custom dataset of 1853 leaf images from 35 species was prepared and labeled by botanist experts. Experiments have been done with the use of pretrained deep learning models, specifically VGG16, VGG19, Inception-V3, and Xception. RESULTS The results demonstrate that fine-tuning the models significantly improves training and test accuracy, indicating the potential of deep learning in this domain. VGG19 outperforms other models with a test accuracy of 94%, followed by VGG16, Inception-V3, and Xception with test accuracies of 92%, 91%, and 87%, respectively. The study successfully addresses the challenges in the identification and classification of Ethiopian indigenous medicinal plant species. CONCLUSION With an inspiring accuracy performance of 95%, it can be concluded that fine-tuning emerged as a highly effective strategy for boosting the performance of deep learning models.
Collapse
Affiliation(s)
- Mulugeta Adibaru Kiflie
- Department of Computer Science and Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama, Ethiopia.
| | - Durga Prasad Sharma
- United Nation Development Programme, Maharishi Arvind Institute of Science and Management (MAISM)- Rajasthan Technical University (RTU), Kota, India
| | - Mesfin Abebe Haile
- Department of Computer Science and Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
2
|
Diakou I, Iliopoulos E, Papakonstantinou E, Dragoumani K, Yapijakis C, Iliopoulos C, Spandidos DA, Chrousos GP, Eliopoulos E, Vlachakis D. Multi‑label classification of biomedical data. MEDICINE INTERNATIONAL 2024; 4:68. [PMID: 39301328 PMCID: PMC11411592 DOI: 10.3892/mi.2024.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Biomedical datasets constitute a rich source of information, containing multivariate data collected during medical practice. In spite of inherent challenges, such as missing or imbalanced data, these types of datasets are increasingly utilized as a basis for the construction of predictive machine-learning models. The prediction of disease outcomes and complications could inform the process of decision-making in the hospital setting and ensure the best possible patient management according to the patient's features. Multi-label classification algorithms, which are trained to assign a set of labels to input samples, can efficiently tackle outcome prediction tasks. Myocardial infarction (MI) represents a widespread health risk, accounting for a significant portion of heart disease-related mortality. Moreover, the danger of potential complications occurring in patients with MI during their period of hospitalization underlines the need for systems to efficiently assess the risks of patients with MI. In order to demonstrate the critical role of applying machine-learning methods in medical challenges, in the present study, a set of multi-label classifiers was evaluated on a public dataset of MI-related complications to predict the outcomes of hospitalized patients with MI, based on a set of input patient features. Such methods can be scaled through the use of larger datasets of patient records, along with fine-tuning for specific patient sub-groups or patient populations in specific regions, to increase the performance of these approaches. Overall, a prediction system based on classifiers trained on patient records may assist healthcare professionals in providing personalized care and efficient monitoring of high-risk patient subgroups.
Collapse
Affiliation(s)
- Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eddie Iliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Christos Yapijakis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Costas Iliopoulos
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
- School of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Li Q, Hu Z, Wang Y, Li L, Fan Y, King I, Jia G, Wang S, Song L, Li Y. Progress and opportunities of foundation models in bioinformatics. Brief Bioinform 2024; 25:bbae548. [PMID: 39461902 PMCID: PMC11512649 DOI: 10.1093/bib/bbae548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024] Open
Abstract
Bioinformatics has undergone a paradigm shift in artificial intelligence (AI), particularly through foundation models (FMs), which address longstanding challenges in bioinformatics such as limited annotated data and data noise. These AI techniques have demonstrated remarkable efficacy across various downstream validation tasks, effectively representing diverse biological entities and heralding a new era in computational biology. The primary goal of this survey is to conduct a general investigation and summary of FMs in bioinformatics, tracing their evolutionary trajectory, current research landscape, and methodological frameworks. Our primary focus is on elucidating the application of FMs to specific biological problems, offering insights to guide the research community in choosing appropriate FMs for tasks like sequence analysis, structure prediction, and function annotation. Each section delves into the intricacies of the targeted challenges, contrasting the architectures and advancements of FMs with conventional methods and showcasing their utility across different biological domains. Further, this review scrutinizes the hurdles and constraints encountered by FMs in biology, including issues of data noise, model interpretability, and potential biases. This analysis provides a theoretical groundwork for understanding the circumstances under which certain FMs may exhibit suboptimal performance. Lastly, we outline prospective pathways and methodologies for the future development of FMs in biological research, facilitating ongoing innovation in the field. This comprehensive examination not only serves as an academic reference but also as a roadmap for forthcoming explorations and applications of FMs in biology.
Collapse
Affiliation(s)
- Qing Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Lei Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Yimin Fan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Gengjie Jia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
- Shenzhen Institute of Advanced Technology, Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Le Song
- BioMap, Zhongguancun Life Science Park, Haidian District, Beijing, 100085, China
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
4
|
Xu X, Xu S. Optimization of the convolutional neural network classification model under the background of innovative art teaching models. Sci Rep 2024; 14:20325. [PMID: 39223236 PMCID: PMC11368964 DOI: 10.1038/s41598-024-71536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
To improve students' ability to recognize and appreciate artworks, and further enhance their academic performance and classroom satisfaction, this study explores the application of the Convolutional Neural Network (CNN) model based on optimization in art teaching. Firstly, the importance and challenges of art teaching are analyzed. Secondly, the principle and structure of CNN and its application in the classification field are expounded, and then the CNN classification model is optimized. Finally, the effectiveness of the optimized model is verified by experiments. Experimental results show that the optimized model's accuracy is up to 95.2% in the performance evaluation. The training time of the optimized model is much lower than that of the traditional model, and this model still maintains 95.2% accuracy under the noise of 14.7%. In addition, the accuracy of the optimized model on the unseen test data is 92%. In comparing teaching experiment results, by introducing the CNN classification model, Class B students' average score of art homework has increased by 4.3 points. The score for class satisfaction is 8.1 points. This indicates that the optimized CNN model has significant advantages in art teaching and can effectively improve students' classroom satisfaction and academic performance. Therefore, this study has specific reference significance for the innovation of the art teaching model.
Collapse
Affiliation(s)
- Xi Xu
- Fuzhou Institute of Technology, Fuzhou, China
| | - Shuguang Xu
- Faculty of Fine and Applied Arts, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
5
|
Kadhim YA, Guzel MS, Mishra A. A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification. Diagnostics (Basel) 2024; 14:1469. [PMID: 39061605 PMCID: PMC11275302 DOI: 10.3390/diagnostics14141469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Collapse
Affiliation(s)
- Yezi Ali Kadhim
- College of Engineering, University of Baghdad, Jadriyah, Baghdad 10071, Iraq;
- Department of Modeling and Design of Engineering Systems (MODES), Atilim University, Ankara 06830, Turkey
- Department of Electrical and Electronics Engineering, Atilim University, Incek, Ankara 06830, Turkey
| | - Mehmet Serdar Guzel
- Department of Computer Engineering, Ankara University, Yenimahalle, Ankara 06100, Turkey;
| | - Alok Mishra
- Faculty of Engineering, Norwegian University of Science and Technology, 7034 Trondheim, Norway
- Department of Software Engineering, Atilim University, Incek, Ankara 06830, Turkey
| |
Collapse
|
6
|
Sethi S, Shakyawar S, Reddy AS, Patel JC, Guda C. A Machine Learning Model for the Prediction of COVID-19 Severity Using RNA-Seq, Clinical, and Co-Morbidity Data. Diagnostics (Basel) 2024; 14:1284. [PMID: 38928699 PMCID: PMC11202902 DOI: 10.3390/diagnostics14121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The premise for this study emanated from the need to understand SARS-CoV-2 infections at the molecular level and to develop predictive tools for managing COVID-19 severity. With the varied clinical outcomes observed among infected individuals, creating a reliable machine learning (ML) model for predicting the severity of COVID-19 became paramount. Despite the availability of large-scale genomic and clinical data, previous studies have not effectively utilized multi-modality data for disease severity prediction using data-driven approaches. Our primary goal is to predict COVID-19 severity using a machine-learning model trained on a combination of patients' gene expression, clinical features, and co-morbidity data. Employing various ML algorithms, including Logistic Regression (LR), XGBoost (XG), Naïve Bayes (NB), and Support Vector Machine (SVM), alongside feature selection methods, we sought to identify the best-performing model for disease severity prediction. The results highlighted XG as the superior classifier, with 95% accuracy and a 0.99 AUC (Area Under the Curve), for distinguishing severity groups. Additionally, the SHAP analysis revealed vital features contributing to prediction, including several genes such as COX14, LAMB2, DOLK, SDCBP2, RHBDL1, and IER3-AS1. Notably, two clinical features, the absolute neutrophil count and Viremia Categories, emerged as top contributors. Integrating multiple data modalities has significantly improved the accuracy of disease severity prediction compared to using any single modality. The identified features could serve as biomarkers for COVID-19 prognosis and patient care, allowing clinicians to optimize treatment strategies and refine clinical decision-making processes for enhanced patient outcomes.
Collapse
Affiliation(s)
- Sahil Sethi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Sushil Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Athreya S. Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jai Chand Patel
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
7
|
Cao R, Liu Y, Wen X, Liao C, Wang X, Gao Y, Tan T. Reinvestigating the performance of artificial intelligence classification algorithms on COVID-19 X-Ray and CT images. iScience 2024; 27:109712. [PMID: 38689643 PMCID: PMC11059117 DOI: 10.1016/j.isci.2024.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
There are concerns that artificial intelligence (AI) algorithms may create underdiagnosis bias by mislabeling patient individuals with certain attributes (e.g., female and young) as healthy. Addressing this bias is crucial given the urgent need for AI diagnostics facing rapidly spreading infectious diseases like COVID-19. We find the prevalent AI diagnostic models show an underdiagnosis rate among specific patient populations, and the underdiagnosis rate is higher in some intersectional specific patient populations (for example, females aged 20-40 years). Additionally, we find training AI models on heterogeneous datasets (positive and negative samples from different datasets) may lead to poor model generalization. The model's classification performance varies significantly across test sets, with the accuracy of the better performance being over 40% higher than that of the poor performance. In conclusion, we developed an AI bias analysis pipeline to help researchers recognize and address biases that impact medical equality and ethics.
Collapse
Affiliation(s)
- Rui Cao
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanan Liu
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Wen
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China
| | - Caiqing Liao
- School of Software, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xin Wang
- Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands
- GROW School for Oncology and Development Biology, Maastricht University, MD, Maastricht 6200, the Netherlands
| | - Yuan Gao
- Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
- GROW School for Oncology and Development Biology, Maastricht University, MD, Maastricht 6200, the Netherlands
| | - Tao Tan
- Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| |
Collapse
|
8
|
Pannipulath Venugopal V, Babu Saheer L, Maktabdar Oghaz M. COVID-19 lateral flow test image classification using deep CNN and StyleGAN2. Front Artif Intell 2024; 6:1235204. [PMID: 38348096 PMCID: PMC10860423 DOI: 10.3389/frai.2023.1235204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Artificial intelligence (AI) in healthcare can enhance clinical workflows and diagnoses, particularly in large-scale operations like COVID-19 mass testing. This study presents a deep Convolutional Neural Network (CNN) model for automated COVID-19 RATD image classification. Methods To address the absence of a RATD image dataset, we crowdsourced 900 real-world images focusing on positive and negative cases. Rigorous data augmentation and StyleGAN2-ADA generated simulated images to overcome dataset limitations and class imbalances. Results The best CNN model achieved a 93% validation accuracy. Test accuracies were 88% for simulated datasets and 82% for real datasets. Augmenting simulated images during training did not significantly improve real-world test image performance but enhanced simulated test image performance. Discussion The findings of this study highlight the potential of the developed model in expediting COVID-19 testing processes and facilitating large-scale testing and tracking systems. The study also underscores the challenges in designing and developing such models, emphasizing the importance of addressing dataset limitations and class imbalances. Conclusion This research contributes to the deployment of large-scale testing and tracking systems, offering insights into the potential applications of AI in mitigating outbreaks similar to COVID-19. Future work could focus on refining the model and exploring its adaptability to other healthcare scenarios.
Collapse
Affiliation(s)
| | - Lakshmi Babu Saheer
- School of Computing and Information Science, Anglia Ruskin University, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Mulugeta AK, Sharma DP, Mesfin AH. Deep learning for medicinal plant species classification and recognition: a systematic review. FRONTIERS IN PLANT SCIENCE 2024; 14:1286088. [PMID: 38250440 PMCID: PMC10796487 DOI: 10.3389/fpls.2023.1286088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Knowledge of medicinal plant species is necessary to preserve medicinal plants and safeguard biodiversity. The classification and identification of these plants by botanist experts are complex and time-consuming activities. This systematic review's main objective is to systematically assess the prior research efforts on the applications and usage of deep learning approaches in classifying and recognizing medicinal plant species. Our objective was to pinpoint systematic reviews following the PRISMA guidelines related to the classification and recognition of medicinal plant species through the utilization of deep learning techniques. This review encompassed studies published between January 2018 and December 2022. Initially, we identified 1644 studies through title, keyword, and abstract screening. After applying our eligibility criteria, we selected 31 studies for a thorough and critical review. The main findings of this reviews are (1) the selected studies were carried out in 16 different countries, and India leads in paper contributions with 29%, followed by Indonesia and Sri Lanka. (2) A private dataset has been used in 67.7% of the studies subjected to image augmentation and preprocessing techniques. (3) In 96.7% of the studies, researchers have employed plant leaf organs, with 74% of them utilizing leaf shapes for the classification and recognition of medicinal plant species. (4) Transfer learning with the pre-trained model was used in 83.8% of the studies as a future extraction technique. (5) Convolutional Neural Network (CNN) is used by 64.5% of the paper as a deep learning classifier. (6) The lack of a globally available and public dataset need for medicinal plants indigenous to a specific country and the trustworthiness of the deep learning approach for the classification and recognition of medicinal plants is an observable research gap in this literature review. Therefore, further investigations and collaboration between different stakeholders are required to fulfilling the aforementioned research gaps.
Collapse
Affiliation(s)
- Adibaru Kiflie Mulugeta
- Department of Computer Science and Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama, Ethiopia
| | | | - Abebe Haile Mesfin
- Department of Computer Science and Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
10
|
Ozaltin O, Yeniay O, Subasi A. OzNet: A New Deep Learning Approach for Automated Classification of COVID-19 Computed Tomography Scans. BIG DATA 2023; 11:420-436. [PMID: 36927081 DOI: 10.1089/big.2022.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. Therefore, the classification of computed tomography (CT) scans alleviates the workload of experts, whose workload increased considerably during the pandemic. Convolutional neural network (CNN) architectures are successful for the classification of medical images. In this study, we have developed a new deep CNN architecture called OzNet. Moreover, we have compared it with pretrained architectures namely AlexNet, DenseNet201, GoogleNet, NASNetMobile, ResNet-50, SqueezeNet, and VGG-16. In addition, we have compared the classification success of three preprocessing methods with raw CT scans. We have not only classified the raw CT scans, but also have performed the classification with three different preprocessing methods, which are discrete wavelet transform (DWT), intensity adjustment, and gray to color red, green, blue image conversion on the data sets. Furthermore, it is known that the architecture's performance increases with the use of DWT preprocessing method rather than using the raw data set. The results are extremely promising with the CNN algorithms using the COVID-19 CT scans processed with the DWT. The proposed DWT-OzNet has achieved a high classification performance of more than 98.8% for each calculated metric.
Collapse
Affiliation(s)
- Oznur Ozaltin
- Department of Statistics, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Ozgur Yeniay
- Department of Statistics, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Abdulhamit Subasi
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Nur-A-Alam M, Nasir MK, Ahsan M, Based MA, Haider J, Kowalski M. Ensemble classification of integrated CT scan datasets in detecting COVID-19 using feature fusion from contourlet transform and CNN. Sci Rep 2023; 13:20063. [PMID: 37973820 PMCID: PMC10654719 DOI: 10.1038/s41598-023-47183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
The COVID-19 disease caused by coronavirus is constantly changing due to the emergence of different variants and thousands of people are dying every day worldwide. Early detection of this new form of pulmonary disease can reduce the mortality rate. In this paper, an automated method based on machine learning (ML) and deep learning (DL) has been developed to detect COVID-19 using computed tomography (CT) scan images extracted from three publicly available datasets (A total of 11,407 images; 7397 COVID-19 images and 4010 normal images). An unsupervised clustering approach that is a modified region-based clustering technique for segmenting COVID-19 CT scan image has been proposed. Furthermore, contourlet transform and convolution neural network (CNN) have been employed to extract features individually from the segmented CT scan images and to fuse them in one feature vector. Binary differential evolution (BDE) approach has been employed as a feature optimization technique to obtain comprehensible features from the fused feature vector. Finally, a ML/DL-based ensemble classifier considering bagging technique has been employed to detect COVID-19 from the CT images. A fivefold and generalization cross-validation techniques have been used for the validation purpose. Classification experiments have also been conducted with several pre-trained models (AlexNet, ResNet50, GoogleNet, VGG16, VGG19) and found that the ensemble classifier technique with fused feature has provided state-of-the-art performance with an accuracy of 99.98%.
Collapse
Affiliation(s)
- Md Nur-A-Alam
- Department of Computer Science & Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mostofa Kamal Nasir
- Department of Computer Science & Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mominul Ahsan
- Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK
| | - Md Abdul Based
- Department of Computer Science & Engineering, Dhaka International University, Dhaka, 1205, Bangladesh
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Chester St, Manchester, M1 5GD, UK
| | - Marcin Kowalski
- Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego 2, Warsaw, Poland.
| |
Collapse
|
12
|
Ahmad I, Merla A, Ali F, Shah B, AlZubi AA, AlZubi MA. A deep transfer learning approach for COVID-19 detection and exploring a sense of belonging with Diabetes. Front Public Health 2023; 11:1308404. [PMID: 38026271 PMCID: PMC10657998 DOI: 10.3389/fpubh.2023.1308404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19 is an epidemic disease that results in death and significantly affects the older adult and those afflicted with chronic medical conditions. Diabetes medication and high blood glucose levels are significant predictors of COVID-19-related death or disease severity. Diabetic individuals, particularly those with preexisting comorbidities or geriatric patients, are at a higher risk of COVID-19 infection, including hospitalization, ICU admission, and death, than those without Diabetes. Everyone's lives have been significantly changed due to the COVID-19 outbreak. Identifying patients infected with COVID-19 in a timely manner is critical to overcoming this challenge. The Real-Time Polymerase Chain Reaction (RT-PCR) diagnostic assay is currently the gold standard for COVID-19 detection. However, RT-PCR is a time-consuming and costly technique requiring a lab kit that is difficult to get in crises and epidemics. This work suggests the CIDICXR-Net50 model, a ResNet-50-based Transfer Learning (TL) method for COVID-19 detection via Chest X-ray (CXR) image classification. The presented model is developed by substituting the final ResNet-50 classifier layer with a new classification head. The model is trained on 3,923 chest X-ray images comprising a substantial dataset of 1,360 viral pneumonia, 1,363 normal, and 1,200 COVID-19 CXR images. The proposed model's performance is evaluated in contrast to the results of six other innovative pre-trained models. The proposed CIDICXR-Net50 model attained 99.11% accuracy on the provided dataset while maintaining 99.15% precision and recall. This study also explores potential relationships between COVID-19 and Diabetes.
Collapse
Affiliation(s)
- Ijaz Ahmad
- Digital Transition, Innovation and Health Service, Leonardo da Vinci Telematic University, Chieti, Italy
| | - Arcangelo Merla
- Department of Engineering and Geology (INGEO) University "G. d’Annunzio" Chieti-Pescara, Pescara, Italy
| | - Farman Ali
- Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul, Republic of Korea
| | - Babar Shah
- College of Technological Innovation, Zayed University, Dubai, United Arab Emirates
| | - Ahmad Ali AlZubi
- Department of Computer Science, Community College, King Saud University, Riyadh, Saudi Arabia
| | - Mallak Ahmad AlZubi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Ahoor A, Arif F, Sajid MZ, Qureshi I, Abbas F, Jabbar S, Abbas Q. MixNet-LD: An Automated Classification System for Multiple Lung Diseases Using Modified MixNet Model. Diagnostics (Basel) 2023; 13:3195. [PMID: 37892016 PMCID: PMC10606171 DOI: 10.3390/diagnostics13203195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The lungs are critical components of the respiratory system because they allow for the exchange of oxygen and carbon dioxide within our bodies. However, a variety of conditions can affect the lungs, resulting in serious health consequences. Lung disease treatment aims to control its severity, which is usually irrevocable. The fundamental objective of this endeavor is to build a consistent and automated approach for establishing the intensity of lung illness. This paper describes MixNet-LD, a unique automated approach aimed at identifying and categorizing the severity of lung illnesses using an upgraded pre-trained MixNet model. One of the first steps in developing the MixNet-LD system was to build a pre-processing strategy that uses Grad-Cam to decrease noise, highlight irregularities, and eventually improve the classification performance of lung illnesses. Data augmentation strategies were used to rectify the dataset's unbalanced distribution of classes and prevent overfitting. Furthermore, dense blocks were used to improve classification outcomes across the four severity categories of lung disorders. In practice, the MixNet-LD model achieves cutting-edge performance while maintaining model size and manageable complexity. The proposed approach was tested using a variety of datasets gathered from credible internet sources as well as a novel private dataset known as Pak-Lungs. A pre-trained model was used on the dataset to obtain important characteristics from lung disease images. The pictures were then categorized into categories such as normal, COVID-19, pneumonia, tuberculosis, and lung cancer using a linear layer of the SVM classifier with a linear activation function. The MixNet-LD system underwent testing in four distinct tests and achieved a remarkable accuracy of 98.5% on the difficult lung disease dataset. The acquired findings and comparisons demonstrate the MixNet-LD system's improved performance and learning capabilities. These findings show that the proposed approach may effectively increase the accuracy of classification models in medicinal image investigations. This research helps to develop new strategies for effective medical image processing in clinical settings.
Collapse
Affiliation(s)
- Ayesha Ahoor
- Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (F.A.); (M.Z.S.)
| | - Fahim Arif
- Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (F.A.); (M.Z.S.)
| | - Muhammad Zaheer Sajid
- Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan; (A.A.); (F.A.); (M.Z.S.)
| | - Imran Qureshi
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (S.J.); (Q.A.)
| | - Fakhar Abbas
- Centre for Trusted Internet and Community, National University of Singapore (NUS), Singapore 119228, Singapore;
| | - Sohail Jabbar
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (S.J.); (Q.A.)
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (S.J.); (Q.A.)
| |
Collapse
|
14
|
Ghassemi N, Shoeibi A, Khodatars M, Heras J, Rahimi A, Zare A, Zhang YD, Pachori RB, Gorriz JM. Automatic diagnosis of COVID-19 from CT images using CycleGAN and transfer learning. Appl Soft Comput 2023; 144:110511. [PMID: 37346824 PMCID: PMC10263244 DOI: 10.1016/j.asoc.2023.110511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The outbreak of the corona virus disease (COVID-19) has changed the lives of most people on Earth. Given the high prevalence of this disease, its correct diagnosis in order to quarantine patients is of the utmost importance in the steps of fighting this pandemic. Among the various modalities used for diagnosis, medical imaging, especially computed tomography (CT) imaging, has been the focus of many previous studies due to its accuracy and availability. In addition, automation of diagnostic methods can be of great help to physicians. In this paper, a method based on pre-trained deep neural networks is presented, which, by taking advantage of a cyclic generative adversarial net (CycleGAN) model for data augmentation, has reached state-of-the-art performance for the task at hand, i.e., 99.60% accuracy. Also, in order to evaluate the method, a dataset containing 3163 images from 189 patients has been collected and labeled by physicians. Unlike prior datasets, normal data have been collected from people suspected of having COVID-19 disease and not from data from other diseases, and this database is made available publicly. Moreover, the method's reliability is further evaluated by calibration metrics, and its decision is interpreted by Grad-CAM also to find suspicious regions as another output of the method and make its decisions trustworthy and explainable.
Collapse
Affiliation(s)
- Navid Ghassemi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jonathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Alireza Rahimi
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ram Bilas Pachori
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - J Manuel Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Spain
- Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
15
|
Santosh KC, GhoshRoy D, Nakarmi S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare (Basel) 2023; 11:2388. [PMID: 37685422 PMCID: PMC10486542 DOI: 10.3390/healthcare11172388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.
Collapse
Affiliation(s)
- KC Santosh
- 2AI: Applied Artificial Intelligence Research Lab, Vermillion, SD 57069, USA
| | - Debasmita GhoshRoy
- School of Automation, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Suprim Nakarmi
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
16
|
Wekesa JS, Kimwele M. A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment. Front Genet 2023; 14:1199087. [PMID: 37547471 PMCID: PMC10398577 DOI: 10.3389/fgene.2023.1199087] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Accurate diagnosis is the key to providing prompt and explicit treatment and disease management. The recognized biological method for the molecular diagnosis of infectious pathogens is polymerase chain reaction (PCR). Recently, deep learning approaches are playing a vital role in accurately identifying disease-related genes for diagnosis, prognosis, and treatment. The models reduce the time and cost used by wet-lab experimental procedures. Consequently, sophisticated computational approaches have been developed to facilitate the detection of cancer, a leading cause of death globally, and other complex diseases. In this review, we systematically evaluate the recent trends in multi-omics data analysis based on deep learning techniques and their application in disease prediction. We highlight the current challenges in the field and discuss how advances in deep learning methods and their optimization for application is vital in overcoming them. Ultimately, this review promotes the development of novel deep-learning methodologies for data integration, which is essential for disease detection and treatment.
Collapse
|
17
|
Hansun S, Argha A, Alinejad-Rokny H, Liaw ST, Celler BG, Marks GB. Revisiting Transfer Learning Method for Tuberculosis Diagnosis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083096 DOI: 10.1109/embc40787.2023.10340441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transfer learning (TL) has been proven to be a good strategy for solving domain-specific problems in many deep learning (DL) applications. Typically, in TL, a pre-trained DL model is used as a feature extractor and the extracted features are then fed to a newly trained classifier as the model head. In this study, we propose a new ensemble approach of transfer learning that uses multiple neural network classifiers at once in the model head. We compared the classification results of the proposed ensemble approach with the direct approach of several popular models, namely VGG-16, ResNet-50, and MobileNet, on two publicly available tuberculosis datasets, i.e., Montgomery County (MC) and Shenzhen (SZ) datasets. Moreover, we also compared the results when a fully pre-trained DL model was used for feature extraction versus the cases in which the features were obtained from a middle layer of the pre-trained DL model. Several metrics derived from confusion matrix results were used, namely the accuracy (ACC), sensitivity (SNS), specificity (SPC), precision (PRC), and F1-score. We concluded that the proposed ensemble approach outperformed the direct approach. Best result was achieved by ResNet-50 when the features were extracted from a middle layer with an accuracy of 91.2698% on MC dataset.Clinical Relevance- The proposed ensemble approach could increase the detection accuracy of 7-8% for Montgomery County dataset and 4-5% for Shenzhen dataset.
Collapse
|
18
|
Adhikari M, Hazra A, Nandy S. Deep Transfer Learning for Communicable Disease Detection and Recommendation in Edge Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2468-2479. [PMID: 35671308 DOI: 10.1109/tcbb.2022.3180393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Considering the increasing number of communicable disease cases such as COVID-19 worldwide, the early detection of the disease can prevent and limit the outbreak. Besides that, the PCR test kits are not available in most parts of the world, and there is genuine concern about their performance and reliability. To overcome this, in this paper, we develop a novel edge-centric healthcare framework integrating with wearable sensors and advanced machine learning (ML) model for timely decisions with minimum delay. Through wearable sensors, a set of features have been collected that are further preprocessed for preparing a useful dataset. However, due to limited resource capacity, analyzing the features in resource-constrained edge devices is challenging. Motivated by this, we introduce an advanced ML technique for data analysis at edge networks, namely Deep Transfer Learning (DTL). DTL transfers the knowledge from the well-trained model to a new lightweight ML model that can support the resource-constraint nature of distributed edge devices. We consider a benchmark COVID-19 dataset for validation purposes, consisting of 11 features and 2 Million sensor data. The extensive simulation results demonstrate the efficiency of the proposed DTL technique over the existing ones and achieve 99.8% accuracy while diseases prediction.
Collapse
|
19
|
Li J, Luo X, Ma H, Zhao W. A Hybrid Deep Transfer Learning Model With Kernel Metric for COVID-19 Pneumonia Classification Using Chest CT Images. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2506-2517. [PMID: 36279353 DOI: 10.1109/tcbb.2022.3216661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coronavirus disease-2019 (COVID-19) as a new pneumonia which is extremely infectious, the classification of this coronavirus is essential to effectively control the development of the epidemic. Pathological changes in the chest computed tomography (CT) scans are often used as one of the diagnostic criteria of COVID-19. Meanwhile, deep learning-based transfer learning is currently an effective strategy for computer-aided diagnosis (CAD). To further improve the performance of deep transfer learning model used for COVID-19 classification with CT images, in this article, we propose a hybrid model combined with a semi-supervised domain adaption model and extreme learning machine (ELM) classifier, and the application of a novel multikernel correntropy induced loss function in transfer learning is also presented. The proposed model is evaluated on open-source datasets. The experimental results are compared to some baseline models to verify the effectiveness, while adopting accuracy, precision, recall, F1 score and area under curve (AUC) as the evaluation metrics. Experimental results show that the proposed method improves the performance of original model and is more suitable for CT images analysis.
Collapse
|
20
|
Mehrdad S, Shamout FE, Wang Y, Atashzar SF. Deep learning for deterioration prediction of COVID-19 patients based on time-series of three vital signs. Sci Rep 2023; 13:9968. [PMID: 37339986 PMCID: PMC10282033 DOI: 10.1038/s41598-023-37013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Unrecognized deterioration of COVID-19 patients can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient's home. In this study, we develop and compare two prognostic models that predict if a patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models are also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. The difference between the two models is the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally-dilated version of the Long-Short Term Memory model (LSTM) for temporal processes, and Model #2 utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the models using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The convolution-based model outperforms the LSTM based model, achieving a high AUROC of 0.8844-0.9336 for 3 to 24 h deterioration prediction on a held-out test set. We also conduct occlusion experiments to evaluate the importance of each input feature, which reveals the significance of continuously monitoring the variation of the vital signs. Our results show the prospect for accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.
Collapse
Affiliation(s)
- Sarmad Mehrdad
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA
| | - Farah E Shamout
- Department of Biomedical Engineering, New York University (NYU), New York, USA
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Computer Science and Engineering, New York University (NYU), New York, USA
| | - Yao Wang
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA
- Department of Biomedical Engineering, New York University (NYU), New York, USA
| | - S Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA.
- Department of Biomedical Engineering, New York University (NYU), New York, USA.
- Department of Mechanical and Aerospace Engineering, New York University (NYU), New York, USA.
| |
Collapse
|
21
|
Das S, Ayus I, Gupta D. A comprehensive review of COVID-19 detection with machine learning and deep learning techniques. HEALTH AND TECHNOLOGY 2023; 13:1-14. [PMID: 37363343 PMCID: PMC10244837 DOI: 10.1007/s12553-023-00757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/14/2023] [Indexed: 06/28/2023]
Abstract
Purpose The first transmission of coronavirus to humans started in Wuhan city of China, took the shape of a pandemic called Corona Virus Disease 2019 (COVID-19), and posed a principal threat to the entire world. The researchers are trying to inculcate artificial intelligence (Machine learning or deep learning models) for the efficient detection of COVID-19. This research explores all the existing machine learning (ML) or deep learning (DL) models, used for COVID-19 detection which may help the researcher to explore in different directions. The main purpose of this review article is to present a compact overview of the application of artificial intelligence to the research experts, helping them to explore the future scopes of improvement. Methods The researchers have used various machine learning, deep learning, and a combination of machine and deep learning models for extracting significant features and classifying various health conditions in COVID-19 patients. For this purpose, the researchers have utilized different image modalities such as CT-Scan, X-Ray, etc. This study has collected over 200 research papers from various repositories like Google Scholar, PubMed, Web of Science, etc. These research papers were passed through various levels of scrutiny and finally, 50 research articles were selected. Results In those listed articles, the ML / DL models showed an accuracy of 99% and above while performing the classification of COVID-19. This study has also presented various clinical applications of various research. This study specifies the importance of various machine and deep learning models in the field of medical diagnosis and research. Conclusion In conclusion, it is evident that ML/DL models have made significant progress in recent years, but there are still limitations that need to be addressed. Overfitting is one such limitation that can lead to incorrect predictions and overburdening of the models. The research community must continue to work towards finding ways to overcome these limitations and make machine and deep learning models even more effective and efficient. Through this ongoing research and development, we can expect even greater advances in the future.
Collapse
Affiliation(s)
- Sreeparna Das
- Department of Computer Science and Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Ishan Ayus
- Department of Computer Science and Engineering, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030 India
| | - Deepak Gupta
- Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP 211004 India
| |
Collapse
|
22
|
Tummala S, Suresh AK. Few-shot learning using explainable Siamese twin network for the automated classification of blood cells. Med Biol Eng Comput 2023; 61:1549-1563. [PMID: 36800155 DOI: 10.1007/s11517-023-02804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Automated classification of blood cells from microscopic images is an interesting research area owing to advancements of efficient neural network models. The existing deep learning methods rely on large data for network training and generating such large data could be time-consuming. Further, explainability is required via class activation mapping for better understanding of the model predictions. Therefore, we developed a Siamese twin network (STN) model based on contrastive learning that trains on relatively few images for the classification of healthy peripheral blood cells using EfficientNet-B3 as the base model. Hence, in this study, a total of 17,092 publicly accessible cell histology images were analyzed from which 6% were used for STN training, 6% for few-shot validation, and the rest 88% for few-shot testing. The proposed architecture demonstrates percent accuracies of 97.00, 98.78, 94.59, 95.70, 98.86, 97.09, 99.71, and 96.30 during 8-way 5-shot testing for the classification of basophils, eosinophils, immature granulocytes, erythroblasts, lymphocytes, monocytes, platelets, and neutrophils, respectively. Further, we propose a novel class activation mapping scheme that highlights the important regions in the test image for the STN model interpretability. Overall, the proposed framework could be used for a fully automated self-exploratory classification of healthy peripheral blood cells. The whole proposed framework demonstrates the Siamese twin network training and 8-way k-shot testing. The values indicate the amount of dissimilarity.
Collapse
Affiliation(s)
- Sudhakar Tummala
- Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522503, India.
| | - Anil K Suresh
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522503, India
| |
Collapse
|
23
|
Shankar K, Mohanty SN, Yadav K, Gopalakrishnan T, Elmisery AM. Automated COVID-19 diagnosis and classification using convolutional neural network with fusion based feature extraction model. Cogn Neurodyn 2023; 17:1-14. [PMID: 34522236 PMCID: PMC8431962 DOI: 10.1007/s11571-021-09712-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/31/2022] Open
Abstract
COVID-19 was first identified in December 2019 at Wuhan, China. At present, the outbreak of COVID-19 pandemic has resulted in severe consequences on both economic and social infrastructures of the developed and developing countries. Several studies have been conducted and ongoing still to design efficient models for diagnosis and treatment of COVID-19 patients. The traditional diagnostic models that use reverse transcription-polymerase chain reaction (rt-qPCR) is a costly and time-consuming process. So, automated COVID-19 diagnosis using Deep Learning (DL) models becomes essential. The primary intention of this study is to design an effective model for diagnosis and classification of COVID-19. This research work introduces an automated COVID-19 diagnosis process using Convolutional Neural Network (CNN) with a fusion-based feature extraction model, called FM-CNN. FM-CNN model has three major phases namely, pre-processing, feature extraction, and classification. Initially, Wiener Filtering (WF)-based preprocessing is employed to discard the noise that exists in input chest X-Ray (CXR) images. Then, the pre-processed images undergo fusion-based feature extraction model which is a combination of Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRM), and Local Binary Patterns (LBP). In order to determine the optimal subset of features, Particle Swarm Optimization (PSO) algorithm is employed. At last, CNN is deployed as a classifier to identify the existence of binary and multiple classes of CXR images. In order to validate the proficiency of the proposed FM-CNN model in terms of its diagnostic performance, extension experimentation was carried out upon CXR dataset. As per the results attained from simulation, FM-CNN model classified multiple classes with the maximum sensitivity of 97.22%, specificity of 98.29%, accuracy of 98.06%, and F-measure of 97.93%.
Collapse
Affiliation(s)
- K. Shankar
- Federal University of Piauí, Teresina, Brazil
| | - Sachi Nandan Mohanty
- Department of Computer Science and Engineering, Vardhaman College of Engineering (Autonomous), Hyderabad, India
| | - Kusum Yadav
- College of Computer Science and Engineering, University of Haʼil, Hail, Saudi Arabia
| | - T. Gopalakrishnan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India
| | - Ahmed M. Elmisery
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| |
Collapse
|
24
|
Poola RG, Pl L, Y SS. COVID-19 diagnosis: A comprehensive review of pre-trained deep learning models based on feature extraction algorithm. RESULTS IN ENGINEERING 2023; 18:101020. [PMID: 36945336 PMCID: PMC10017171 DOI: 10.1016/j.rineng.2023.101020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 05/14/2023]
Abstract
Due to the augmented rise of COVID-19, clinical specialists are looking for fast faultless diagnosis strategies to restrict Covid spread while attempting to lessen the computational complexity. In this way, swift diagnosis techniques for COVID-19 with high precision can offer valuable aid to clinical specialists. RT- PCR test is an expensive and tedious COVID diagnosis technique in practice. Medical imaging is feasible to diagnose COVID-19 by X-ray chest radiography to get around the shortcomings of RT-PCR. Through a variety of Deep Transfer-learning models, this research investigates the potential of Artificial Intelligence -based early diagnosis of COVID-19 via X-ray chest radiographs. With 10,192 normal and 3616 Covid X-ray chest radiographs, the deep transfer-learning models are optimized to further the accurate diagnosis. The x-ray chest radiographs undergo a data augmentation phase before developing a modified dataset to train the Deep Transfer-learning models. The Deep Transfer-learning architectures are trained using the extracted features from the Feature Extraction stage. During training, the classification of X-ray Chest radiographs based on feature extraction algorithm values is converted into a feature label set containing the classified image data with a feature string value representing the number of edges detected after edge detection. The feature label set is further tested with the SVM, KNN, NN, Naive Bayes and Logistic Regression classifiers to audit the quality metrics of the proposed model. The quality metrics include accuracy, precision, F1 score, recall and AUC. The Inception-V3 dominates the six Deep Transfer-learning models, according to the assessment results, with a training accuracy of 84.79% and a loss function of 2.4%. The performance of Cubic SVM was superior to that of the other SVM classifiers, with an AUC score of 0.99, precision of 0.983, recall of 0.8977, accuracy of 95.8%, and F1 score of 0.9384. Cosine KNN fared better than the other KNN classifiers with an AUC score of 0.95, precision of 0.974, recall of 0.777, accuracy of 90.8%, and F1 score of 0.864. Wide NN fared better than the other NN classifiers with an AUC score of 0.98, precision of 0.975, recall of 0.907, accuracy of 95.5%, and F1 score of 0.939. According to the findings, SVM classifiers topped other classifiers in terms of performance indicators like accuracy, precision, recall, F1-score, and AUC. The SVM classifiers reported better mean optimal scores compared to other classifiers. The performance assessment metrics uncover that the proposed methodology can aid in preliminary COVID diagnosis.
Collapse
Affiliation(s)
| | - Lahari Pl
- Dept. of ECE, SRM University, AP, India
| | | |
Collapse
|
25
|
Lee MH, Shomanov A, Kudaibergenova M, Viderman D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J Clin Med 2023; 12:jcm12103446. [PMID: 37240552 DOI: 10.3390/jcm12103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 is a novel virus that has been affecting the global population by spreading rapidly and causing severe complications, which require prompt and elaborate emergency treatment. Automatic tools to diagnose COVID-19 could potentially be an important and useful aid. Radiologists and clinicians could potentially rely on interpretable AI technologies to address the diagnosis and monitoring of COVID-19 patients. This paper aims to provide a comprehensive analysis of the state-of-the-art deep learning techniques for COVID-19 classification. The previous studies are methodically evaluated, and a summary of the proposed convolutional neural network (CNN)-based classification approaches is presented. The reviewed papers have presented a variety of CNN models and architectures that were developed to provide an accurate and quick automatic tool to diagnose the COVID-19 virus based on presented CT scan or X-ray images. In this systematic review, we focused on the critical components of the deep learning approach, such as network architecture, model complexity, parameter optimization, explainability, and dataset/code availability. The literature search yielded a large number of studies over the past period of the virus spread, and we summarized their past efforts. State-of-the-art CNN architectures, with their strengths and weaknesses, are discussed with respect to diverse technical and clinical evaluation metrics to safely implement current AI studies in medical practice.
Collapse
Affiliation(s)
- Min-Ho Lee
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Adai Shomanov
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Madina Kudaibergenova
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Dmitriy Viderman
- School of Medicine, Nazarbayev University, 5/1 Kerey and Zhanibek Khandar Str., Astana 010000, Kazakhstan
| |
Collapse
|
26
|
Dabbagh R, Jamal A, Bhuiyan Masud JH, Titi MA, Amer YS, Khayat A, Alhazmi TS, Hneiny L, Baothman FA, Alkubeyyer M, Khan SA, Temsah MH. Harnessing Machine Learning in Early COVID-19 Detection and Prognosis: A Comprehensive Systematic Review. Cureus 2023; 15:e38373. [PMID: 37265897 PMCID: PMC10230599 DOI: 10.7759/cureus.38373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
During the early phase of the COVID-19 pandemic, reverse transcriptase-polymerase chain reaction (RT-PCR) testing faced limitations, prompting the exploration of machine learning (ML) alternatives for diagnosis and prognosis. Providing a comprehensive appraisal of such decision support systems and their use in COVID-19 management can aid the medical community in making informed decisions during the risk assessment of their patients, especially in low-resource settings. Therefore, the objective of this study was to systematically review the studies that predicted the diagnosis of COVID-19 or the severity of the disease using ML. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), we conducted a literature search of MEDLINE (OVID), Scopus, EMBASE, and IEEE Xplore from January 1 to June 31, 2020. The outcomes were COVID-19 diagnosis or prognostic measures such as death, need for mechanical ventilation, admission, and acute respiratory distress syndrome. We included peer-reviewed observational studies, clinical trials, research letters, case series, and reports. We extracted data about the study's country, setting, sample size, data source, dataset, diagnostic or prognostic outcomes, prediction measures, type of ML model, and measures of diagnostic accuracy. Bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with the number CRD42020197109. The final records included for data extraction were 66. Forty-three (64%) studies used secondary data. The majority of studies were from Chinese authors (30%). Most of the literature (79%) relied on chest imaging for prediction, while the remainder used various laboratory indicators, including hematological, biochemical, and immunological markers. Thirteen studies explored predicting COVID-19 severity, while the rest predicted diagnosis. Seventy percent of the articles used deep learning models, while 30% used traditional ML algorithms. Most studies reported high sensitivity, specificity, and accuracy for the ML models (exceeding 90%). The overall concern about the risk of bias was "unclear" in 56% of the studies. This was mainly due to concerns about selection bias. ML may help identify COVID-19 patients in the early phase of the pandemic, particularly in the context of chest imaging. Although these studies reflect that these ML models exhibit high accuracy, the novelty of these models and the biases in dataset selection make using them as a replacement for the clinicians' cognitive decision-making questionable. Continued research is needed to enhance the robustness and reliability of ML systems in COVID-19 diagnosis and prognosis.
Collapse
Affiliation(s)
- Rufaidah Dabbagh
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Amr Jamal
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | | | - Maher A Titi
- Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Yasser S Amer
- Pediatrics, Quality Management Department, King Saud University Medical City, Riyadh, SAU
- Research Chair for Evidence-Based Health Care and Knowledge Translation, Family and Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Afnan Khayat
- Health Information Management Department, Prince Sultan Military College of Health Sciences, Al Dhahran, SAU
| | - Taha S Alhazmi
- Family & Community Medicine Department, College of Medicine, King Saud University, Riyadh, SAU
| | - Layal Hneiny
- Medicine, Wegner Health Sciences Library, University of South Dakota, Vermillion, USA
| | - Fatmah A Baothman
- Department of Information Systems, King Abdulaziz University, Jeddah, SAU
| | | | - Samina A Khan
- School of Computer Sciences, Universiti Sains Malaysia, Penang, MYS
| | - Mohamad-Hani Temsah
- Pediatric Intensive Care Unit, Department of Pediatrics, King Saud University, Riyadh, SAU
| |
Collapse
|
27
|
Soundrapandiyan R, Naidu H, Karuppiah M, Maheswari M, Poonia RC. AI-based wavelet and stacked deep learning architecture for detecting coronavirus (COVID-19) from chest X-ray images. COMPUTERS & ELECTRICAL ENGINEERING : AN INTERNATIONAL JOURNAL 2023; 108:108711. [PMID: 37065503 PMCID: PMC10086108 DOI: 10.1016/j.compeleceng.2023.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
A novel coronavirus (COVID-19), belonging to a family of severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2), was identified in Wuhan city, Hubei, China, in November 2019. The disease had already infected more than 681.529665 million people as of March 13, 2023. Hence, early detection and diagnosis of COVID-19 are essential. For this purpose, radiologists use medical images such as X-ray and computed tomography (CT) images for the diagnosis of COVID-19. It is very difficult for researchers to help radiologists to do automatic diagnoses by using traditional image processing methods. Therefore, a novel artificial intelligence (AI)-based deep learning model to detect COVID-19 from chest X-ray images is proposed. The proposed work uses a wavelet and stacked deep learning architecture (ResNet50, VGG19, Xception, and DarkNet19) named WavStaCovNet-19 to detect COVID-19 from chest X-ray images automatically. The proposed work has been tested on two publicly available datasets and achieved an accuracy of 94.24% and 96.10% on 4 classes and 3 classes, respectively. From the experimental results, we believe that the proposed work can surely be useful in the healthcare domain to detect COVID-19 with less time and cost, and with higher accuracy.
Collapse
Affiliation(s)
- Rajkumar Soundrapandiyan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | | | - Marimuthu Karuppiah
- School of Computer Science and Engineering & Information Science, Presidency University, Bengaluru, Karnataka 560064, India
| | - M Maheswari
- Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Ramesh Chandra Poonia
- Department of Computer Science, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| |
Collapse
|
28
|
Taha BA, Al-Jubouri Q, Al Mashhadany Y, Hafiz Mokhtar MH, Bin Zan MSD, Bakar AAA, Arsad N. Density estimation of SARS-CoV2 spike proteins using super pixels segmentation technique. Appl Soft Comput 2023; 138:110210. [PMID: 36960080 PMCID: PMC10019041 DOI: 10.1016/j.asoc.2023.110210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/14/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The worldwide outbreak of COVID-19 disease was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). The existence of spike proteins, which allow these viruses to infect host cells, is one of the distinctive biological traits of various prior viruses. As a result, the process by which these viruses infect people is largely dependent on spike proteins. The density of SARS-CoV-2 spike proteins must be estimated to better understand and develop diagnostics and vaccines against the COVID-19 pandemic. CT scans and X-rays have three issues: frosted glass, consolidation, and strange roadway layouts. Each of these issues can be graded separately or together. Although CT scan is sensitive to COVID-19, it is not very specific. Therefore, patients who obtain these results should have more comprehensive clinical and laboratory tests to rule out other probable reasons. This work collected 586 SARS-CoV 2 transmission electron microscopy (TEM) images from open source for density estimation of virus spike proteins through a segmentation approach based on the superpixel technique. As a result, the spike density means of SARS-CoV2 and SARS-CoV were 21,97 nm and 22,45 nm, respectively. Furthermore, in the future, we aim to include this model in an intelligent system to enhance the accuracy of viral detection and classification. Moreover, we can remotely connect hospitals and public sites to conduct environmental hazard assessments and data collection.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
| | - Qussay Al-Jubouri
- Department of Communication Engineering, University of Technology, Baghdad, Iraq
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar, 00964, Iraq
| | - Mohd Hadri Hafiz Mokhtar
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
| | - Ahmad Ashrif A Bakar
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
| | - Norhana Arsad
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia
| |
Collapse
|
29
|
Chakraborty D, Goswami D, Ghosh S, Ghosh A, Chan JH, Wang L. Transfer-recursive-ensemble learning for multi-day COVID-19 prediction in India using recurrent neural networks. Sci Rep 2023; 13:6795. [PMID: 37100806 PMCID: PMC10130813 DOI: 10.1038/s41598-023-31737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/16/2023] [Indexed: 04/28/2023] Open
Abstract
The COVID-19 pandemic has put a huge challenge on the Indian health infrastructure. With a larger number of people getting affected during the second wave, hospitals were overburdened, running out of supplies and oxygen. Hence, predicting new COVID-19 cases, new deaths, and total active cases multiple days in advance can aid better utilization of scarce medical resources and prudent pandemic-related decision-making. The proposed method uses gated recurrent unit networks as the main predicting model. A study is conducted by building four models pre-trained on COVID-19 data from four different countries (United States of America, Brazil, Spain, and Bangladesh) and fine-tuned on India's data. Since the four countries chosen have experienced different types of infection curves, the pre-training provides a transfer learning to the models incorporating diverse situations into account. Each of the four models then gives 7-day ahead predictions using the recursive learning method for the Indian test data. The final prediction comes from an ensemble of the predictions of the different models. This method with two countries, Spain and Bangladesh, is seen to achieve the best performance amongst all the combinations as well as compared to other traditional regression models.
Collapse
Affiliation(s)
| | - Debayan Goswami
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India
| | - Susmita Ghosh
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.
| | - Ashish Ghosh
- Technology Innovation Hub (TIH), Indian Statistical Institute, Kolkata, India
| | - Jonathan H Chan
- Innovative Cognitive Computing (IC2) Research Center, School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| | - Lipo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
30
|
Ren K, Hong G, Chen X, Wang Z. A COVID-19 medical image classification algorithm based on Transformer. Sci Rep 2023; 13:5359. [PMID: 37005476 PMCID: PMC10067012 DOI: 10.1038/s41598-023-32462-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Coronavirus 2019 (COVID-19) is a new acute respiratory disease that has spread rapidly throughout the world. This paper proposes a novel deep learning network based on ResNet-50 merged transformer named RMT-Net. On the backbone of ResNet-50, it uses Transformer to capture long-distance feature information, adopts convolutional neural networks and depth-wise convolution to obtain local features, reduce the computational cost and acceleration the detection process. The RMT-Net includes four stage blocks to realize the feature extraction of different receptive fields. In the first three stages, the global self-attention method is adopted to capture the important feature information and construct the relationship between tokens. In the fourth stage, the residual blocks are used to extract the details of feature. Finally, a global average pooling layer and a fully connected layer perform classification tasks. Training, verification and testing are carried out on self-built datasets. The RMT-Net model is compared with ResNet-50, VGGNet-16, i-CapsNet and MGMADS-3. The experimental results show that the RMT-Net model has a Test_ acc of 97.65% on the X-ray image dataset, 99.12% on the CT image dataset, which both higher than the other four models. The size of RMT-Net model is only 38.5 M, and the detection speed of X-ray image and CT image is 5.46 ms and 4.12 ms per image, respectively. It is proved that the model can detect and classify COVID-19 with higher accuracy and efficiency.
Collapse
Affiliation(s)
- Keying Ren
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Geng Hong
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Xiaoyan Chen
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, China.
| | - Zichen Wang
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, China
| |
Collapse
|
31
|
Challenges, opportunities, and advances related to COVID-19 classification based on deep learning. DATA SCIENCE AND MANAGEMENT 2023. [PMCID: PMC10063459 DOI: 10.1016/j.dsm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The novel coronavirus disease, or COVID-19, is a hazardous disease. It is endangering the lives of many people living in more than two hundred countries. It directly affects the lungs. In general, two main imaging modalities: - computed tomography (CT) and chest x-ray (CXR) are used to achieve a speedy and reliable medical diagnosis. Identifying the coronavirus in medical images is exceedingly difficult for diagnosis, assessment, and treatment. It is demanding, time-consuming, and subject to human mistakes. In biological disciplines, excellent performance can be achieved by employing artificial intelligence (AI) models. As a subfield of AI, deep learning (DL) networks have drawn considerable attention than standard machine learning (ML) methods. DL models automatically carry out all the steps of feature extraction, feature selection, and classification. This study has performed comprehensive analysis of coronavirus classification using CXR and CT imaging modalities using DL architectures. Additionally, we have discussed how transfer learning is helpful in this regard. Finally, the problem of designing and implementing a system using computer-aided diagnostic (CAD) to find COVID-19 using DL approaches is highlighted a future research possibility.
Collapse
|
32
|
Rehman A, Khan A, Fatima G, Naz S, Razzak I. Review on chest pathogies detection systems using deep learning techniques. Artif Intell Rev 2023; 56:1-47. [PMID: 37362896 PMCID: PMC10027283 DOI: 10.1007/s10462-023-10457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Chest radiography is the standard and most affordable way to diagnose, analyze, and examine different thoracic and chest diseases. Typically, the radiograph is examined by an expert radiologist or physician to decide about a particular anomaly, if exists. Moreover, computer-aided methods are used to assist radiologists and make the analysis process accurate, fast, and more automated. A tremendous improvement in automatic chest pathologies detection and analysis can be observed with the emergence of deep learning. The survey aims to review, technically evaluate, and synthesize the different computer-aided chest pathologies detection systems. The state-of-the-art of single and multi-pathologies detection systems, which are published in the last five years, are thoroughly discussed. The taxonomy of image acquisition, dataset preprocessing, feature extraction, and deep learning models are presented. The mathematical concepts related to feature extraction model architectures are discussed. Moreover, the different articles are compared based on their contributions, datasets, methods used, and the results achieved. The article ends with the main findings, current trends, challenges, and future recommendations.
Collapse
Affiliation(s)
- Arshia Rehman
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Ahmad Khan
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Gohar Fatima
- The Islamia University of Bahawalpur, Bahawal Nagar Campus, Bahawal Nagar, Pakistan
| | - Saeeda Naz
- Govt Girls Post Graduate College No.1, Abbottabad, Pakistan
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
33
|
Xue X, Chinnaperumal S, Abdulsahib GM, Manyam RR, Marappan R, Raju SK, Khalaf OI. Design and Analysis of a Deep Learning Ensemble Framework Model for the Detection of COVID-19 and Pneumonia Using Large-Scale CT Scan and X-ray Image Datasets. Bioengineering (Basel) 2023; 10:363. [PMID: 36978754 PMCID: PMC10045423 DOI: 10.3390/bioengineering10030363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Recently, various methods have been developed to identify COVID-19 cases, such as PCR testing and non-contact procedures such as chest X-rays and computed tomography (CT) scans. Deep learning (DL) and artificial intelligence (AI) are critical tools for early and accurate detection of COVID-19. This research explores the different DL techniques for identifying COVID-19 and pneumonia on medical CT and radiography images using ResNet152, VGG16, ResNet50, and DenseNet121. The ResNet framework uses CT scan images with accuracy and precision. This research automates optimum model architecture and training parameters. Transfer learning approaches are also employed to solve content gaps and shorten training duration. An upgraded VGG16 deep transfer learning architecture is applied to perform multi-class classification for X-ray imaging tasks. Enhanced VGG16 has been proven to recognize three types of radiographic images with 99% accuracy, typical for COVID-19 and pneumonia. The validity and performance metrics of the proposed model were validated using publicly available X-ray and CT scan data sets. The suggested model outperforms competing approaches in diagnosing COVID-19 and pneumonia. The primary outcomes of this research result in an average F-score (95%, 97%). In the event of healthy viral infections, this research is more efficient than existing methodologies for coronavirus detection. The created model is appropriate for recognition and classification pre-training. The suggested model outperforms traditional strategies for multi-class categorization of various illnesses.
Collapse
Affiliation(s)
- Xingsi Xue
- Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou 350011, China
| | - Seelammal Chinnaperumal
- Department of Computer Science and Engineering, Solamalai College of Engineering, Madurai 625020, Tamil Nadu, India
| | | | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Mangalagiri 522503, Andhra Pradesh, India
| | - Raja Marappan
- School of Computing, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Sekar Kidambi Raju
- School of Computing, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Osamah Ibrahim Khalaf
- Department of Solar, Al-Nahrain Renewable Energy Research Center, Al-Nahrain University, Baghdad 64040, Iraq
| |
Collapse
|
34
|
Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images. Neural Comput Appl 2023; 35:13597-13611. [PMCID: PMC10014413 DOI: 10.1007/s00521-023-08450-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
The coronavirus (COVID-19) pandemic has a devastating impact on people’s daily lives and healthcare systems. The rapid spread of this virus should be stopped by early detection of infected patients through efficient screening. Artificial intelligence techniques are used for accurate disease detection in computed tomography (CT) images. This article aims to develop a process that can accurately diagnose COVID-19 using deep learning techniques on CT images. Using CT images collected from Yozgat Bozok University, the presented method begins with the creation of an original dataset, which includes 4000 CT images. The faster R-CNN and mask R-CNN methods are presented for this purpose in order to train and test the dataset to categorize patients with COVID-19 and pneumonia infections. In this study, the results are compared using VGG-16 for faster R-CNN model and ResNet-50 and ResNet-101 backbones for mask R-CNN. The faster R-CNN model used in the study has an accuracy rate of 93.86%, and the ROI (region of interest) classification loss is 0.061 per ROI. At the conclusion of the final training, the mask R-CNN model generates mAP (mean average precision) values for ResNet-50 and ResNet-101, respectively, of 97.72% and 95.65%. The results for five folds are obtained by applying the cross-validation to the methods used. With training, our model performs better than the industry standard baselines and can help with automated COVID-19 severity quantification in CT images.
Collapse
|
35
|
D S, R K. Prognosticating various acute covid lung disorders from COVID-19 patient using chest CT Images. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023; 119:105820. [PMID: 36644478 PMCID: PMC9829610 DOI: 10.1016/j.engappai.2023.105820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The global spread of coronavirus illness has surged dramatically, resulting in a catastrophic pandemic situation. Despite this, accurate screening remains a significant challenge due to difficulties in categorizing infection regions and the minuscule difference between typical pneumonia and COVID (Coronavirus Disease) pneumonia. Diagnosing COVID-19 using the Mask Regional-Convolutional Neural Network (Mask R-CNN) is proposed to classify the chest computerized tomographic (CT) images into COVID-positive and COVID-negative. Covid-19 has a direct effect on the lungs, causing damage to the alveoli, which leads to various lung complications. By fusing multi-class data, the severity level of the patients can be classified using the meta-learning few-shot learning technique with the residual network with 50 layers deep (ResNet-50) as the base classifier. It has been tested with the outcome of COVID positive chest CT image data. From these various classes, it is possible to predict the onset possibilities of acute COVID lung disorders such as sepsis, acute respiratory distress syndrome (ARDS), COVID pneumonia, COVID bronchitis, etc. The first method of classification is proposed to diagnose whether the patient is affected by COVID-19 or not; it achieves a mean Average Precision (mAP) of 91.52% and G-mean of 97.69% with 98.60% of classification accuracy. The second method of classification is proposed for the detection of various acute lung disorders based on severity provide better performance in all the four stages, the average accuracy is of 95.4%, the G-mean for multiclass achieves 94.02%, and the AUC is 93.27% compared with the cutting-edge techniques. It enables healthcare professionals to correctly detect severity for potential treatments.
Collapse
Affiliation(s)
- Suganya D
- Department of Computer Science and Engineering, Puducherry Technological University, Puducherry 605014, India
| | - Kalpana R
- Department of Computer Science and Engineering, Puducherry Technological University, Puducherry 605014, India
| |
Collapse
|
36
|
Rajpal A, Sehra K, Mishra A, Chetty G. A low-resolution real-time face recognition using extreme learning machine and its variants. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2183544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Ankit Rajpal
- Department of Computer Science, University of Delhi, Delhi, India
| | - Khushwant Sehra
- Department of Electronic Science, University of Delhi South Campus, Delhi, India
| | - Anurag Mishra
- Department of Electronics, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Girija Chetty
- Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
37
|
Reis HC, Turk V. Transfer Learning Approach and Nucleus Segmentation with MedCLNet Colon Cancer Database. J Digit Imaging 2023; 36:306-325. [PMID: 36127531 PMCID: PMC9984669 DOI: 10.1007/s10278-022-00701-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Machine learning has been recently used especially in the medical field. In the diagnosis of serious diseases such as cancer, deep learning techniques can be used to reduce the workload of experts and to produce quick solutions. The nuclei found in the histopathology dataset are an essential parameter in disease detection. The nucleus segmentation was performed using the colorectal histology MNIST dataset for nucleus detection in this study. The graph theory, PSO, watershed, and random walker algorithms were used for the segmentation process. In addition, we present the 10-class MedCLNet visual dataset consisting of the NCT-CRC-HE-100 K dataset, LC25000 dataset, and GlaS dataset that can be used in transfer learning studies from deep learning techniques. The study proposes a transfer learning technique using the MedCLNet database. Deep neural networks pre-trained with the proposed transfer learning method were used in the classification with the colorectal histology MNIST dataset in the experimental process. DenseNet201, DenseNet169, InceptionResNetV2, InceptionV3, ResNet152V2, ResNet101V2, and Xception deep learning algorithms were used in transfer learning and the classification studies. The proposed approach was analyzed before and after transfer learning with different methods (DenseNet169 + SVM, DenseNet169 + GRU). In the performance measurement, using the colorectal histology MNIST dataset, 94.29% accuracy was obtained in the DenseNet169 model, which was initiated with random weights in the multi-classification study, and 95.00% accuracy after transfer learning was applied. In comparison with the results obtained from empirical studies, it was demonstrated that the proposed method produced satisfactory outcomes. The application is expected to provide a secondary evaluation for physicians in colon cancer detection and the segmentation.
Collapse
Affiliation(s)
- Hatice Catal Reis
- Department of Geomatics Engineering, Gumushane University, Gumushane, 2900, Turkey.
| | - Veysel Turk
- Department of Computer Engineering, University of Harran, Sanliurfa, Turkey
| |
Collapse
|
38
|
Abdar M, Salari S, Qahremani S, Lam HK, Karray F, Hussain S, Khosravi A, Acharya UR, Makarenkov V, Nahavandi S. UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2023; 90:364-381. [PMID: 36217534 PMCID: PMC9534540 DOI: 10.1016/j.inffus.2022.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 05/03/2023]
Abstract
The COVID-19 (Coronavirus disease 2019) pandemic has become a major global threat to human health and well-being. Thus, the development of computer-aided detection (CAD) systems that are capable of accurately distinguishing COVID-19 from other diseases using chest computed tomography (CT) and X-ray data is of immediate priority. Such automatic systems are usually based on traditional machine learning or deep learning methods. Differently from most of the existing studies, which used either CT scan or X-ray images in COVID-19-case classification, we present a new, simple but efficient deep learning feature fusion model, called U n c e r t a i n t y F u s e N e t , which is able to classify accurately large datasets of both of these types of images. We argue that the uncertainty of the model's predictions should be taken into account in the learning process, even though most of the existing studies have overlooked it. We quantify the prediction uncertainty in our feature fusion model using effective Ensemble Monte Carlo Dropout (EMCD) technique. A comprehensive simulation study has been conducted to compare the results of our new model to the existing approaches, evaluating the performance of competing models in terms of Precision, Recall, F-Measure, Accuracy and ROC curves. The obtained results prove the efficiency of our model which provided the prediction accuracy of 99.08% and 96.35% for the considered CT scan and X-ray datasets, respectively. Moreover, our U n c e r t a i n t y F u s e N e t model was generally robust to noise and performed well with previously unseen data. The source code of our implementation is freely available at: https://github.com/moloud1987/UncertaintyFuseNet-for-COVID-19-Classification.
Collapse
Affiliation(s)
- Moloud Abdar
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Soorena Salari
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Sina Qahremani
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hak-Keung Lam
- Centre for Robotics Research, Department of Engineering, King's College London, London, United Kingdom
| | - Fakhri Karray
- Centre for Pattern Analysis and Machine Intelligence, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
- Department of Machine Learning, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| | - Sadiq Hussain
- System Administrator, Dibrugarh University, Dibrugarh, India
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi, Singapore
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Vladimir Makarenkov
- Department of Computer Science, University of Quebec in Montreal, Montreal, Canada
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| |
Collapse
|
39
|
A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. ALEXANDRIA ENGINEERING JOURNAL 2023; 64:923-935. [PMCID: PMC9626367 DOI: 10.1016/j.aej.2022.10.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 05/27/2023]
Abstract
In 2019, the world experienced the rapid outbreak of the Covid-19 pandemic creating an alarming situation worldwide. The virus targets the respiratory system causing pneumonia with other symptoms such as fatigue, dry cough, and fever which can be mistakenly diagnosed as pneumonia, lung cancer, or TB. Thus, the early diagnosis of COVID-19 is critical since the disease can provoke patients’ mortality. Chest X-ray (CXR) is commonly employed in healthcare sector where both quick and precise diagnosis can be supplied. Deep learning algorithms have proved extraordinary capabilities in terms of lung diseases detection and classification. They facilitate and expedite the diagnosis process and save time for the medical practitioners. In this paper, a deep learning (DL) architecture for multi-class classification of Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is proposed. Tremendous CXR images of 3615 COVID-19, 6012 Lung opacity, 5870 Pneumonia, 20,000 lung cancer, 1400 tuberculosis, and 10,192 normal images were resized, normalized, and randomly split to fit the DL requirements. In terms of classification, we utilized a pre-trained model, VGG19 followed by three blocks of convolutional neural network (CNN) as a feature extraction and fully connected network at the classification stage. The experimental results revealed that our proposed VGG19 + CNN outperformed other existing work with 96.48 % accuracy, 93.75 % recall, 97.56 % precision, 95.62 % F1 score, and 99.82 % area under the curve (AUC). The proposed model delivered superior performance allowing healthcare practitioners to diagnose and treat patients more quickly and efficiently.
Collapse
|
40
|
Khan A, Khan SH, Saif M, Batool A, Sohail A, Waleed Khan M. A Survey of Deep Learning Techniques for the Analysis of COVID-19 and their usability for Detecting Omicron. J EXP THEOR ARTIF IN 2023. [DOI: 10.1080/0952813x.2023.2165724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Asifullah Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- PIEAS Artificial Intelligence Center (PAIC), Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
- Center for Mathematical Sciences, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
| | - Saddam Hussain Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Computer Systems Engineering, University of Engineering and Applied Sciences (UEAS), Swat, Pakistan
| | - Mahrukh Saif
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
| | - Asiya Batool
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
| | - Anabia Sohail
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Computer Science, Faculty of Computing & Artificial Intelligence, Air University, Islamabad, Pakistan
| | - Muhammad Waleed Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Mechanical and Aerospace Engineering, Columbus, OH, USA
| |
Collapse
|
41
|
Kaya Y, Gürsoy E. A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection. Soft comput 2023; 27:5521-5535. [PMID: 36618761 PMCID: PMC9812349 DOI: 10.1007/s00500-022-07798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
COVID-19 is a virus that causes upper respiratory tract and lung infections. The number of cases and deaths increased daily during the pandemic. Once it is vital to diagnose such a disease in a timely manner, the researchers have focused on computer-aided diagnosis systems. Chest X-rays have helped monitor various lung diseases consisting COVID-19. In this study, we proposed a deep transfer learning approach with novel fine-tuning mechanisms to classify COVID-19 from chest X-ray images. We presented one classical and two new fine-tuning mechanisms to increase the model's performance. Two publicly available databases were combined and used for the study, which included 3616 COVID-19 and 1576 normal (healthy) and 4265 pneumonia X-ray images. The models achieved average accuracy rates of 95.62%, 96.10%, and 97.61%, respectively, for 3-class cases with fivefold cross-validation. Numerical results show that the third model reduced 81.92% of the total fine-tuning operations and achieved better results. The proposed approach is quite efficient compared with other state-of-the-art methods of detecting COVID-19.
Collapse
Affiliation(s)
- Yasin Kaya
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Ercan Gürsoy
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
42
|
Hasan MM, Islam MU, Sadeq MJ, Fung WK, Uddin J. Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment. SENSORS (BASEL, SWITZERLAND) 2023; 23:527. [PMID: 36617124 PMCID: PMC9824505 DOI: 10.3390/s23010527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Artificial intelligence has significantly enhanced the research paradigm and spectrum with a substantiated promise of continuous applicability in the real world domain. Artificial intelligence, the driving force of the current technological revolution, has been used in many frontiers, including education, security, gaming, finance, robotics, autonomous systems, entertainment, and most importantly the healthcare sector. With the rise of the COVID-19 pandemic, several prediction and detection methods using artificial intelligence have been employed to understand, forecast, handle, and curtail the ensuing threats. In this study, the most recent related publications, methodologies and medical reports were investigated with the purpose of studying artificial intelligence's role in the pandemic. This study presents a comprehensive review of artificial intelligence with specific attention to machine learning, deep learning, image processing, object detection, image segmentation, and few-shot learning studies that were utilized in several tasks related to COVID-19. In particular, genetic analysis, medical image analysis, clinical data analysis, sound analysis, biomedical data classification, socio-demographic data analysis, anomaly detection, health monitoring, personal protective equipment (PPE) observation, social control, and COVID-19 patients' mortality risk approaches were used in this study to forecast the threatening factors of COVID-19. This study demonstrates that artificial-intelligence-based algorithms integrated into Internet of Things wearable devices were quite effective and efficient in COVID-19 detection and forecasting insights which were actionable through wide usage. The results produced by the study prove that artificial intelligence is a promising arena of research that can be applied for disease prognosis, disease forecasting, drug discovery, and to the development of the healthcare sector on a global scale. We prove that artificial intelligence indeed played a significantly important role in helping to fight against COVID-19, and the insightful knowledge provided here could be extremely beneficial for practitioners and research experts in the healthcare domain to implement the artificial-intelligence-based systems in curbing the next pandemic or healthcare disaster.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Muhammad Jafar Sadeq
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Wai-Keung Fung
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| |
Collapse
|
43
|
Hybrid intelligent model for classifying chest X-ray images of COVID-19 patients using genetic algorithm and neutrosophic logic. Soft comput 2023; 27:3427-3442. [PMID: 34421342 PMCID: PMC8371596 DOI: 10.1007/s00500-021-06103-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The highly spreading virus, COVID-19, created a huge need for an accurate and speedy diagnosis method. The famous RT-PCR test is costly and not available for many suspected cases. This article proposes a neurotrophic model to diagnose COVID-19 patients based on their chest X-ray images. The proposed model has five main phases. First, the speeded up robust features (SURF) method is applied to each X-ray image to extract robust invariant features. Second, three sampling algorithms are applied to treat imbalanced dataset. Third, the neutrosophic rule-based classification system is proposed to generate a set of rules based on the three neutrosophic values < T; I; F>, the degrees of truth, indeterminacy falsity. Fourth, a genetic algorithm is applied to select the optimal neutrosophic rules to improve the classification performance. Fifth, in this phase, the classification-based neutrosophic logic is proposed. The testing rule matrix is constructed with no class label, and the goal of this phase is to determine the class label for each testing rule using intersection percentage between testing and training rules. The proposed model is referred to as GNRCS. It is compared with six state-of-the-art classifiers such as multilayer perceptron (MLP), support vector machines (SVM), linear discriminant analysis (LDA), decision tree (DT), naive Bayes (NB), and random forest classifiers (RFC) with quality measures of accuracy, precision, sensitivity, specificity, and F1-score. The results show that the proposed model is powerful for COVID-19 recognition with high specificity and high sensitivity and less computational complexity. Therefore, the proposed GNRCS model could be used for real-time automatic early recognition of COVID-19.
Collapse
|
44
|
Kathamuthu ND, Subramaniam S, Le QH, Muthusamy S, Panchal H, Sundararajan SCM, Alrubaie AJ, Zahra MMA. A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications. ADVANCES IN ENGINEERING SOFTWARE (BARKING, LONDON, ENGLAND : 1992) 2023; 175:103317. [PMID: 36311489 PMCID: PMC9595382 DOI: 10.1016/j.advengsoft.2022.103317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 05/26/2023]
Abstract
The Coronavirus (COVID-19) has become a critical and extreme epidemic because of its international dissemination. COVID-19 is the world's most serious health, economic, and survival danger. This disease affects not only a single country but the entire planet due to this infectious disease. Illnesses of Covid-19 spread at a much faster rate than usual influenza cases. Because of its high transmissibility and early diagnosis, it isn't easy to manage COVID-19. The popularly used RT-PCR method for COVID-19 disease diagnosis may provide false negatives. COVID-19 can be detected non-invasively using medical imaging procedures such as chest CT and chest x-ray. Deep learning is the most effective machine learning approach for examining a considerable quantity of chest computed tomography (CT) pictures that can significantly affect Covid-19 screening. Convolutional neural network (CNN) is one of the most popular deep learning techniques right now, and its gaining traction due to its potential to transform several spheres of human life. This research aims to develop conceptual transfer learning enhanced CNN framework models for detecting COVID-19 with CT scan images. Though with minimal datasets, these techniques were demonstrated to be effective in detecting the presence of COVID-19. This proposed research looks into several deep transfer learning-based CNN approaches for detecting the presence of COVID-19 in chest CT images.VGG16, VGG19, Densenet121, InceptionV3, Xception, and Resnet50 are the foundation models used in this work. Each model's performance was evaluated using a confusion matrix and various performance measures such as accuracy, recall, precision, f1-score, loss, and ROC. The VGG16 model performed much better than the other models in this study (98.00 % accuracy). Promising outcomes from experiments have revealed the merits of the proposed model for detecting and monitoring COVID-19 patients. This could help practitioners and academics create a tool to help minimal health professionals decide on the best course of therapy.
Collapse
Affiliation(s)
- Nirmala Devi Kathamuthu
- Department of Computer Science and Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India
| | - Shanthi Subramaniam
- Department of Computer Science and Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India
| | - Quynh Hoang Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Suresh Muthusamy
- Department of Electronics and Communication Engineering, Kongu Engineering College (Autonomous), Perundurai, Erode, Tamil Nadu, India
| | - Hitesh Panchal
- Department of Mechanical Engineering, Government Engineering College, Patan, Gujarat, India
| | | | - Ali Jawad Alrubaie
- Department of Medical Instrumentation Techniques Engineering, Al- Mustaqbal University College, 51001, Hilla, Iraq
| | - Musaddak Maher Abdul Zahra
- Computer Techniques Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
- Electrical Engineering Department, College of Engineering, University of Babylon, Hilla, Babil, Iraq
| |
Collapse
|
45
|
Motwani A, Shukla PK, Pawar M, Kumar M, Ghosh U, Alnumay W, Nayak SR. Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function. COMPUTERS & ELECTRICAL ENGINEERING : AN INTERNATIONAL JOURNAL 2023; 105:108479. [PMID: 36406625 PMCID: PMC9659516 DOI: 10.1016/j.compeleceng.2022.108479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models, the number of 'False Negatives' can put lives at risk. The primary objective is to improve the model so that it does not reveal 'Covid' as 'Non-Covid'. This study uses Dense-CNN to categorize patients efficiently. A novel loss function based on cross-entropy has also been used to improve the CNN algorithm's convergence. The proposed model is built and tested on a recently published large dataset. Extensive study and comparison with well-known models reveal the effectiveness of the proposed method over known methods. The proposed model achieved a prediction accuracy of 93.78%, while false-negative is only 6.5%. This approach's significant advantage is accelerating the diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Anand Motwani
- Faculty, School of Computing Science & Engineering, VIT Bhopal University, Sehore (MP), 466114, India
| | - Piyush Kumar Shukla
- Department of Computer Science & Engineering, University Institute of Technology, RGPV, Bhopal (MP), 462033, India
| | - Mahesh Pawar
- Department of Information Technology, University Institute of Technology, RGPV, Bhopal (MP), 462033, India
| | - Manoj Kumar
- Faculty of Engineering and Information Sciences, University of Wollongong in Dubai, Dubai Knowledge Park, UAE
| | - Uttam Ghosh
- Department of Computer Science & Data Science Meharry School of Computational Sciences Nashville, TN, USA
| | - Waleed Alnumay
- Riyadh Community College, CS department, King Saud University, Riyadh, SA
| | - Soumya Ranjan Nayak
- School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| |
Collapse
|
46
|
Kibriya H, Amin R. A residual network-based framework for COVID-19 detection from CXR images. Neural Comput Appl 2022; 35:8505-8516. [PMID: 36536673 PMCID: PMC9754308 DOI: 10.1007/s00521-022-08127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
In late 2019, a new Coronavirus disease (COVID-19) appeared in Wuhan, Hubei Province, China. The virus began to spread throughout many countries, affecting a large population. Polymerase chain reaction is currently being utilized to diagnose COVID-19 in suspected patients; however, its sensitivity is quite low. The researchers also developed automated approaches for reliably and timely identifying COVID-19 from X-ray images. However, traditional machine learning-based image classification algorithms necessitate manual image segmentation and feature extraction, which is a time-consuming task. Due to promising results and robust performance, Convolutional Neural Network (CNN)-based techniques are being used widely to classify COVID-19 from Chest X-rays (CXR). This study explores CNN-based COVID-19 classification methods. A series of experiments aimed at COVID-19 detection and classification validates the viability of our proposed framework. Initially, the dataset is preprocessed and then fed into two Residual Network (ResNet) architectures for deep feature extraction, such as ResNet18 and ResNet50, whereas support vector machines with its multiple kernels, including Quadratic, Linear, Gaussian and Cubic, are used to classify these features. The experimental results suggest that the proposed framework efficiently detects COVID-19 from CXR images. The proposed framework obtained the best accuracy of 97.3% using ResNet50.
Collapse
Affiliation(s)
- Hareem Kibriya
- grid.442854.bDepartment of Computer Sciences, University of Engineering and Technology, Taxila, Pakistan
| | - Rashid Amin
- grid.442854.bDepartment of Computer Sciences, University of Engineering and Technology, Taxila, Pakistan
- Department of Computer Science, University of Chakwal, Chakwal, 48800, Pakistan
| |
Collapse
|
47
|
Rahman T, Akinbi A, Chowdhury MEH, Rashid TA, Şengür A, Khandakar A, Islam KR, Ismael AM. COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network. Health Inf Sci Syst 2022; 10:1. [PMID: 35096384 PMCID: PMC8785028 DOI: 10.1007/s13755-021-00169-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
The reliable and rapid identification of the COVID-19 has become crucial to prevent the rapid spread of the disease, ease lockdown restrictions and reduce pressure on public health infrastructures. Recently, several methods and techniques have been proposed to detect the SARS-CoV-2 virus using different images and data. However, this is the first study that will explore the possibility of using deep convolutional neural network (CNN) models to detect COVID-19 from electrocardiogram (ECG) trace images. In this work, COVID-19 and other cardiovascular diseases (CVDs) were detected using deep-learning techniques. A public dataset of ECG images consisting of 1937 images from five distinct categories, such as normal, COVID-19, myocardial infarction (MI), abnormal heartbeat (AHB), and recovered myocardial infarction (RMI) were used in this study. Six different deep CNN models (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and MobileNetv2) were used to investigate three different classification schemes: (i) two-class classification (normal vs COVID-19); (ii) three-class classification (normal, COVID-19, and other CVDs), and finally, (iii) five-class classification (normal, COVID-19, MI, AHB, and RMI). For two-class and three-class classification, Densenet201 outperforms other networks with an accuracy of 99.1%, and 97.36%, respectively; while for the five-class classification, InceptionV3 outperforms others with an accuracy of 97.83%. ScoreCAM visualization confirms that the networks are learning from the relevant area of the trace images. Since the proposed method uses ECG trace images which can be captured by smartphones and are readily available facilities in low-resources countries, this study will help in faster computer-aided diagnosis of COVID-19 and other cardiac abnormalities.
Collapse
Affiliation(s)
- Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar
| | - Alex Akinbi
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK
| | | | - Tarik A. Rashid
- Computer Science and Engineering Department, School of Science and Engineering, University of Kurdistan Hewler, Erbīl, KRG Iraq
| | - Abdulkadir Şengür
- Electrical-Electronics Engineering Department, Technology Faculty, Firat University, Elazig, Turkey
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar
| | | | - Aras M. Ismael
- Information Technology Department, College of Informatics, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| |
Collapse
|
48
|
Kuanr M, Mohapatra P, Mittal S, Maindarkar M, Fouda MM, Saba L, Saxena S, Suri JS. Recommender System for the Efficient Treatment of COVID-19 Using a Convolutional Neural Network Model and Image Similarity. Diagnostics (Basel) 2022; 12:2700. [PMID: 36359545 PMCID: PMC9689970 DOI: 10.3390/diagnostics12112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 09/09/2023] Open
Abstract
Background: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. Methodology: This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. Results: This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings.
Collapse
Affiliation(s)
- Madhusree Kuanr
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | | | - Sanchi Mittal
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09123 Cagliari, Italy
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
- Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| |
Collapse
|
49
|
Er MB. COVID-19 detection based on pre-trained deep networks and LSTM model using X-ray images enhanced contrast with artificial bee colony algorithm. EXPERT SYSTEMS 2022; 40:e13185. [PMID: 36718212 PMCID: PMC9878115 DOI: 10.1111/exsy.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.
Collapse
Affiliation(s)
- Mehmet Bilal Er
- Department of Computer Engineering, Faculty of EngineeringHarran UniversityŞanlıurfaTurkey
| |
Collapse
|
50
|
Jalali Moghaddam M, Ghavipour M. Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging. IPEM-TRANSLATION 2022; 3:100008. [PMID: 36312890 PMCID: PMC9597575 DOI: 10.1016/j.ipemt.2022.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of the technical details of models developed in these articles and discusses the challenges in the smart diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the developed models in clinical use needs to be further investigated. This review provides some recommendations to help researchers develop more accurate prediction models.
Collapse
Affiliation(s)
- Marjan Jalali Moghaddam
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mina Ghavipour
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|