1
|
Karadzov Orlic N, Joksić I. Preeclampsia pathogenesis and prediction - where are we now: the focus on the role of galectins and miRNAs. Hypertens Pregnancy 2025; 44:2470626. [PMID: 40012493 DOI: 10.1080/10641955.2025.2470626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Preeclampsia is a complex, progressive multisystem hypertensive disorder during pregnancy that significantly contributes to increased maternal and perinatal morbidity and mortality. Two screening algorithms are in clinical use for detecting preeclampsia: first-trimester screening, which has been developed and validated for predicting early-onset preeclampsia but is less effective for late-onset disease; and the sFlt-1:PlGF biomarker ratio (soluble tyrosine kinase and placental growth factor) used in suspected cases of preeclampsia. This ratio has a high negative predictive value, allowing for the reliable exclusion of the disease. Both of these screening tests have not met expectations. This review attempts to summarize the current knowledge on the pathogenesis and prediction of preeclampsia and to draw attention to novel biomarkers with a focus on microRNAs and galectins. Although these molecules belong to two distinct biological classes, they functionally converge in regulating placental and immune pathways. Ample evidence supports their involvement in the molecular mechanisms underlying preeclampsia. Based on current knowledge, galectin-13, C19MC members, and miRNA-210 are associated with the trophoblast/placenta and conditions of placental ischemia or hypoxia. Their levels differ significantly in pregnant women at risk of preeclampsia as early as the late first and early second trimester, making them potential markers for predicting preeclampsia.
Collapse
Affiliation(s)
- Natasa Karadzov Orlic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- High-Risk Pregnancy Unit, Obstetrics/Gynecology Clinic "Narodni Front", Belgrade, Serbia
| | - Ivana Joksić
- Genetic Laboratory Department, Obstetrics and Gynaecology Clinic "Narodni Front", Belgrade, Serbia
| |
Collapse
|
2
|
Wang Y, Guo Y, Wang P, Liu J, Zhang X, Liu Q, Wei L, Xu C, Qin J. An engineered human placental organoid microphysiological system in a vascular niche to model viral infection. Commun Biol 2025; 8:669. [PMID: 40287582 PMCID: PMC12033323 DOI: 10.1038/s42003-025-08057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
The placenta forms the maternal-fetal interface to protect the developing fetus from xenobiotics or pathogens. However, the understanding of complex placental features and responses to pathogens are hindered due to the lack of near-physiological models. Here, we present an engineered human placental organoid microphysiological system (MPS) incorporated with vascular endothelium, which allows to recapitulate early placental features in a vascular niche. The MPS comprises a customized insert-based organ chip and a rocker, enabling in situ differentiation and formation of placental organoids from human trophoblast stem cells under dynamic culture conditions. By incorporating vascular endothelium, trophoblast organoids (TOs) maintain improved cell viability, long-term trophoblast proliferation and differentiation. Moreover, trophoblast organoids cocultured with endothelium (EndTOs) show the activation of innate immune-related signaling pathways and high-level secretion of distinct immunomodulatory factors, including antiviral type I and III interferons and trophoblast-specific factors. We further demonstrate that EndTOs exhibit attenuated susceptibility to Zika virus (ZIKV) than single cultured TOs, indicating the crucial role of vascular niche in enhancing intrinsic antiviral defenses functions of trophoblasts. This bioinspired placental organoid MPS provides a useful platform for studying placental physiology and relevant diseases.
Collapse
Affiliation(s)
- Yaqing Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Jiayue Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qian Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Lin Wei
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jianhua Qin
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Beijing Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Cinkornpumin JK, Kwon SY, Prandstetter AM, Maxian T, Sirois J, Goldberg J, Zhang J, Saini D, Dasgupta P, Jeyarajah MJ, Renaud SJ, Paul S, Haider S, Pastor WA. Hypoxia and loss of GCM1 expression prevent differentiation and contact inhibition in human trophoblast stem cells. Stem Cell Reports 2025:102481. [PMID: 40280139 DOI: 10.1016/j.stemcr.2025.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
During the first stages of embryonic development, the placenta develops under very low oxygen tension (∼1%-2% O2), so we sought to determine the regulatory role of oxygen in human trophoblast stem cells (hTSCs). We find that low oxygen promotes hTSC self-renewal but inhibits differentiation to syncytiotrophoblast (STB) and extravillous trophoblast (EVT). The transcription factor GCM1 (glial cell missing transcription factor 1) is downregulated in low oxygen, and concordantly, there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC likewise impaired EVT and STB formation. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed binding near key genes upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - James Goldberg
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Joy Zhang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, Kansas, USA; Institute for Reproduction and Developmental Sciences, University of Kansas, Kansas City, Kansas, USA; Department of Obstetrics and Gynecology, University of Kansas, Kansas City, Kansas, USA
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada; The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Afshar Y, Kashani Ligumsky L, Bartels HC, Krakow D. Biology and Pathophysiology of Placenta Accreta Spectrum Disorder. Obstet Gynecol 2025:00006250-990000000-01245. [PMID: 40209229 DOI: 10.1097/aog.0000000000005903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/20/2025] [Indexed: 04/12/2025]
Abstract
Placenta accreta spectrum (PAS) disorders present a significant clinical challenge, characterized by abnormal placental adherence to the uterine wall secondary to uterine scarring. With the rising global cesarean delivery rates, the incidence of this iatrogenic disorder has increased, underscoring the critical need for an understanding of its pathophysiology to inform management and prevention strategies. Normal placentation depends on tightly regulated extravillous trophoblast invasion into the decidua, spiral artery remodeling, interactions with the extracellular matrix, and immune modulation. Uterine scarring disrupts this balance, creating an environment deficient in key regulatory signals required for coordinated implantation and decidualization. In PAS, the loss of inhibitory decidual cues and deficient boundary limits permits unrestrained trophoblast into the abnormal decidual environment. Dysregulated signaling, along with an inflammatory milieu in scarred tissues, exacerbates abnormal placental development. Current prenatal imaging focuses on the appearance of excessive fibrinoid deposition, extracellular matrix remodeling, and incomplete spiral artery transformation as surrogates of PAS risk stratification. Emerging single-cell RNA sequencing and proteomic profiling offer insights into biomarkers and pathways that enable targeted interventions. Preventive efforts should prioritize reducing cesarean delivery rates to limit uterine scarring. Advances in regenerative medicine and bioengineering, including extracellular matrix-modulating biomaterials, growth factor therapies, and antifibrotic interventions, hold promise for improving scar healing and reducing PAS risk. This review bridges foundational science and clinical application, emphasizing the importance of the underlying placental biology and pathophysiology to make a clinical difference in detecting, treating, and preventing PAS. Addressing drivers of abnormal placentation is critical for improving maternal and neonatal outcomes with this increasingly prevalent iatrogenic condition.
Collapse
Affiliation(s)
- Yalda Afshar
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, the Department of Orthopaedic Surgery, and Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California; the School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and the Department of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
5
|
Ye X, Yu J, Zhuo Y, Yong A, Wei J, Li R, Wan S, Wang G, Yang X. Mitochondrial genetic landscape and its correlation with immune cell infiltration in preeclampsia: Insights from bioinformatics. J Reprod Immunol 2025; 169:104527. [PMID: 40203595 DOI: 10.1016/j.jri.2025.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Preeclampsia (PE), a hypertensive pregnancy disorder, remains a leading cause of maternal and perinatal morbidity and mortality. Mitochondria-related placental metabolic dysfunction is implicated in PE, but its mechanistic role is unclear. This study aimed to identify mitochondria-related genes (MRGs) and their possible regulatory mechanisms in PE. METHODS Differentially expressed mitochondria-related genes (MRGs) of PE were identified from Gene Expression Omnibus (GEO) dataset GSE114691 and GSE190971. LASSO regression analysis was used to screen key MRGs. Datasets GSE75010 and GSE25906 were used to validate the efficiency of the MRGs predictive model via receiver operating characteristic (ROC) curve analysis. Gene set enrichment analysis (GSEA) was conducted to verify underlying biological pathways in PE. Furthermore, we investigated the correlation analysis of MRGs and immune cell infiltration, as well as the association between the MRGs and clinical features. Single-cell sequencing analysis and immunofluorescence staining were used to verify the expression of critical gene in the placenta. RESULTS Five hub MRGs (MOCS1, CYP11A1, GATM, SFXN3, and BCL2L11) showed high diagnostic accuracy for PE and correlated with immune cell infiltration. CYP11A1 was further associated with Hemolysis, Elevated Liver enzymes, Low platelets (HELLP) syndrome and predominantly expressed in extravillous trophoblasts, with upregulated expression in PE placenta. CONCLUSION The interaction between MRGs with the immune microenvironment might be vital in the development of PE. Among 5 hub MRGs, CYP11A1 might be a potential biomarker of HELLP syndrome. These findings provide novel insights into the underlying pathophysiology of PE and the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Xunjia Ye
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou 510317, China; International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jieying Yu
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Youyuan Zhuo
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Anlu Yong
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China.
| | - Shuo Wan
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Guang Wang
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou 510317, China; International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China; International School, Guangzhou Huali College, Zengcheng, Guangzhou 511325, China.
| |
Collapse
|
6
|
Xulu N, Nkosi A, Khathi A, Sibiya NH, Ngubane PS. Changes to the Haematological Parameters of Rat Offspring Born From High Fat High Carbohydrate (HFHC) Diet-Induced Prediabetic and Preeclamptic Sprague Dawley Rats: Assessing the Effects on Selected Haematological Markers. Diabetes Metab Syndr Obes 2025; 18:831-845. [PMID: 40134831 PMCID: PMC11934874 DOI: 10.2147/dmso.s436001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 03/27/2025] Open
Abstract
Introduction Infants delivered from preeclamptic pregnancies frequently exhibit developmental programming which leads to foetal growth restriction and foetal haematological abnormalities. Diabetes is recognised as a predisposing factor for preeclampsia (PE). Hyperglycaemia, a characteristic feature of pregestational type 2 diabetes, has been associated with the pathogenesis of intrauterine growth restriction (IUGR), a condition associated with disrupted foetal haematological pathways. Prediabetes pre-empts the onset of type 2 diabetes and is characterised by moderately elevated blood glucose levels, which have been shown in prediabetic models to induce erythrocyte dysfunction. However, the precise relationship between prediabetes and the development of preeclampsia or associated foetal complications remains to be fully elucidated. Accordingly, this study aims to investigate prediabetes as a risk factor for preeclampsia and its effects on selected haematological markers in Sprague Dawley rat pups. Methods and Materials Male and female pups born from normal, L-NAME preeclamptic and HFHC diet-induced prediabetic dams were immediately collected and weighed. The pups were then carefully returned to the dams for further development. On day 21, the pups were weaned and separated into males and females. Thereafter, the pups were sacrificed using a guillotine and blood and plasma was collected for haematological and biochemical analysis. Results Pups born from prediabetic and preeclamptic dams exhibited significantly lower birth weights than those born from normal pregnancies. Moreover, pups born from prediabetic and preeclamptic dams exhibited dysregulation of red blood cell (RBC) count, granulocyte colony-stimulating factor (G-CSF), erythropoietin (EPO) levels, glutathione peroxidase (GPx) and malondialdehyde (MDA) concentrations compared to those delivered from normal dams. Conclusion These findings suggest prediabetes caused dysregulation of haematological parameters in offspring and may be a predisposing factor for the development of preeclampsia in pregnancy. Therefore, strict monitoring of prediabetes during pregnancy may reduce the risk of preeclampsia and resultant foetal morbidity and mortality.
Collapse
Affiliation(s)
- Nombuso Xulu
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayanda Nkosi
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani S Ngubane
- Schools of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Wu X, Hong J, Hong L. The Deubiquitinating Enzyme USP4 Promotes Trophoblast Dysfunction by Stabilizing RYBP. Cell Biochem Biophys 2025; 83:929-939. [PMID: 39405024 DOI: 10.1007/s12013-024-01525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
Previous studies have suggested that impaired spiral artery remodeling, placental dysfunction, and insufficient trophoblast infiltration are the etiology and pathogenesis of Preeclampsia (PE). Ring 1 and YY1 binding protein (RYBP) has been reported to be associated with trophoblast dysfunction. However, the molecular mechanism of RYBP involved in trophoblasts in the pathogenesis of PE is poorly defined. RYBP and Ubiquitin-specific peptidase 4 (USP4) mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR). RYBP, USP4, p-PI3K, PI3K, p-AKT, and AKT protein levels were measured using western blot assay. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. After ubibrowser database analysis, the interaction between USP4 and RYBP was verified using Co-immunoprecipitation (CoIP) assay. RYBP and USP4 expression were upregulated in placental tissues from PE patients. By using JEG-3 and HTR-8/SVneo trophoblast cells, RYBP overexpression or USP4 upregulation could hinder cell viability, proliferation, invasion, migration, and promote apoptosis. Mechanistically, USP4 could trigger the deubiquitination of RYBP and prevent its degradation. In addition, USP4 repressed the PI3K/AKT signaling pathway by regulating RYBP. In total, Decreased USP4-mediated ubiquitination results in an adverse impact on trophoblast function by enhancing RYBP expression, providing a novel therapeutic target for PE.
Collapse
Affiliation(s)
- Xuandi Wu
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Jia Hong
- Department of Obstetrics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China.
| | - Liang Hong
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Rossi F, Luppi S, Fejza A, Giolo E, Ricci G, Andreuzzi E. Extracellular matrix and pregnancy: functions and opportunities caught in the net. Reprod Biol Endocrinol 2025; 23:24. [PMID: 39953593 PMCID: PMC11827249 DOI: 10.1186/s12958-025-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix is a complex network of macromolecules that support the growth and homeostatic development of organisms. By conveying multiple signaling cascades, it impacts on several biological processes and influences the behaviour of numerous cell types. During the endometrial cycle and the key events necessary for a correct embryo implantation and placentation, this bioactive meshwork is substantially modified to favour endometrial receptivity and vascular adaptation, trophoblast cell migration, and immune activation as well. A correct extracellular remodeling is fundamental for the establishment of a physiological pregnancy; indeed, the occurrence of altered matrix modifications associates with gestational disorders such as preeclampsia. In the present review, we will critically evaluate the role of pivotal matrix constituents in regulating the key steps of embryo implantation and placentation, provide up-to-date information concerning their primary mechanisms of action and discuss on their potential as a novel source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Rossi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Albina Fejza
- UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina, 10000, Kosovo
| | - Elena Giolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eva Andreuzzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy.
| |
Collapse
|
9
|
de Vos ES, Danser AHJ, Koning AHJ, Willemsen SP, van der Meeren LE, Steegers EAP, Steegers-Theunissen RPM, Mulders AGMGJ. Maternal serum PlGF associates with 3D power doppler ultrasound markers of utero-placental vascular development in the first trimester: the rotterdam periconception cohort. Angiogenesis 2024; 27:797-808. [PMID: 39143350 PMCID: PMC11564232 DOI: 10.1007/s10456-024-09939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE (S) Circulating angiogenic factors are used for prediction of placenta-related complications, but their associations with first-trimester placental development is unknown. This study investigates associations between maternal angiogenic factors and utero-placental vascular volume (uPVV) and utero-placental vascular skeleton (uPVS) as novel imaging markers of volumetric and morphologic (branching) development of the first-trimester utero-placental vasculature. METHODS In 185 ongoing pregnancies from the VIRTUAL Placenta study, a subcohort of the ongoing prospective Rotterdam Periconception cohort, three-dimensional power Doppler ultrasounds of the placenta were obtained at 7-9-11 weeks gestational age (GA). The uPVV was measured as a parameter of volumetric development and reported the vascular quantity in cm3. The uPVS was generated as a parameter of morphologic (branching) development and reported the number of end-, bifurcation- crossing- or vessel points and total vascular length. At 11 weeks GA, maternal serum biomarkers suggested to reflect placental (vascular) development were assessed: placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng). sFlt-1/PlGF and sEng/PlGF ratios were calculated. Multivariable linear regression with adjustments was used to estimate associations between serum biomarkers and uPVV and uPVS trajectories. RESULTS Serum PlGF was positively associated with uPVV and uPVS development (uPVV: β = 0.39, 95% CI = 0.15;0.64; bifurcation points: β = 4.64, 95% CI = 0.04;9.25; crossing points: β = 4.01, 95% CI = 0.65;7.37; total vascular length: β = 13.33, 95% CI = 3.09;23.58, all p-values < 0.05). sEng/PlGF ratio was negatively associated with uPVV and uPVS development. We observed no associations between sFlt-1, sEng or sFlt-1/PlGF ratio and uPVV and uPVS development. CONCLUSION(S) Higher first-trimester maternal serum PlGF concentration is associated with increased first-trimester utero-placental vascular development as reflected by uPVV and uPVS. Clinical trial registration number Dutch Trial Register NTR6854.
Collapse
Affiliation(s)
- Eline S de Vos
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Pharmacology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anton H J Koning
- Department of Pathology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Lotte E van der Meeren
- Department of Pathology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Annemarie G M G J Mulders
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Hameete BC, Plösch T, Hogenkamp A, Groenink L. A systematic review and risk of bias analysis of in vitro studies on trophoblast response to immunological triggers. Placenta 2024:S0143-4004(24)00682-9. [PMID: 39551667 DOI: 10.1016/j.placenta.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024]
Abstract
An increasing amount of evidence suggests that immune responses may affect trophoblast functioning, which in turn may play a role in gestational disorders and fetal development. This systematic review offers the first summary of in vitro studies on the trophoblast response to immunological triggers, in conjunction with a risk of bias analysis. A search in Pubmed and Embase yielded 110 relevant studies. Primary trophoblasts were the most commonly used cell type, but trophoblast subtypes were not always defined. Similarly, the exact natures of trophoblast cell lines were sometimes unclear. Cytokines and Toll-like receptor agonists were often used as interventions, but most studies focused on a select few substances such as tumor necrosis factor-α and lipopolysaccharide. In regard to the outcome parameters, some important trophoblast functions, such as hormone production and barrier formation were underrepresented. Whether or not risk of bias was high varied strongly between types of bias. Risk of selection bias, for example, was usually low. However, none of the included studies mentioned blinding or plate randomization. Only a select few studies mentioned passage numbers, use of vehicle control or conflict of interest. In conclusion, better characterization of trophoblast subtypes and a broader range of studied interventions and outcome parameters would contribute to a more complete understanding of trophoblast responses to immune stimuli. Additionally, researchers are encouraged to replicate experiments and pay close attention when setting up and writing down methodologies, in order to improve the reproducibility and translatability of their work.
Collapse
Affiliation(s)
- Bart Christiaan Hameete
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands.
| |
Collapse
|
11
|
Cinkornpumin JK, Kwon SY, Prandstetter AM, Maxian T, Sirois J, Goldberg J, Zhang J, Saini D, Dasgupta P, Jeyarajah MJ, Renaud SJ, Paul S, Haider S, Pastor WA. Hypoxia and loss of GCM1 expression prevents differentiation and contact inhibition in human trophoblast stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612343. [PMID: 39314437 PMCID: PMC11419009 DOI: 10.1101/2024.09.10.612343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The placenta develops alongside the embryo and nurtures fetal development to term. During the first stages of embryonic development, due to low blood circulation, the blood and ambient oxygen supply is very low (~1-2% O2) and gradually increases upon placental invasion. While a hypoxic environment is associated with stem cell self-renewal and proliferation, persistent hypoxia may have severe effects on differentiating cells and could be the underlying cause of placental disorders. We find that human trophoblast stem cells (hTSC) thrive in low oxygen, whereas differentiation of hTSC to trophoblast to syncytiotrophoblast (STB) and extravillous trophoblast (EVT) is negatively affected by hypoxic conditions. The pro-differentiation factor GCM1 (human Glial Cell Missing-1) is downregulated in low oxygen, and concordantly there is substantial reduction of GCM1-regulated genes in hypoxic conditions. Knockout of GCM1 in hTSC caused impaired EVT and STB formation and function, reduced expression of differentiation-responsive genes, and resulted in maintenance of self-renewal genes. Treatment with a PI3K inhibitor reported to reduce GCM1 protein levels likewise counteracts spontaneous or directed differentiation. Additionally, chromatin immunoprecipitation of GCM1 showed enrichment of GCM1-specific binding near key transcription factors upregulated upon differentiation including the contact inhibition factor CDKN1C. Loss of GCM1 resulted in downregulation of CDKN1C and corresponding loss of contact inhibition, implicating GCM1 in regulation of this critical process.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - James Goldberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Joy Zhang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Purbasa Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
| | - Mariyan J Jeyarajah
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Stephen J Renaud
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, United States
- Institute for Reproduction and Developmental Sciences, University of Kansas, Kansas City, United States
- Department of Obstetrics and Gynecology, University of Kansas, Kansas City, United States
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Tokalioglu EO, Tanacan A, Ayhan ŞG, Serbetci H, Agaoglu MO, Kara O, Sahin D. Umbilical artery half peak systolic velocity deceleration time: a novel Doppler parameter for prediction of neonatal outcomes in pregnant women with preeclampsia. Arch Gynecol Obstet 2024; 310:245-251. [PMID: 37865627 DOI: 10.1007/s00404-023-07248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
PURPOSE To assess the effectiveness of half peak systolic velocity deceleration time (hPSV-DT) in predicting neonatal outcomes in pregnant women with preeclampsia and to compare its usefulness with the conventional umbilical artery (UA) pulsatility index (PI) approach. METHODS A prospective cohort study was conducted among pregnant women with preeclampsia who were admitted to the Department of Perinatology, Ministry of Health Ankara City Hospital between 01 September 2022 and 01 January 2023 at 28-41 weeks gestational age. 55 patients were divided into two groups: the study group with UA hPSV-DT value < 5th percentile (n = 22) and the control group with UA hPSV-DT value ≥ 5th percentile (n = 33). UA hPSV-DT calculates the time in milliseconds needed to halve the maximal velocity of the UA waveform using Doppler ultrasonography. RESULTS Birth weight, gestational age at birth, 1st minute APGAR, 5th minute APGAR, and umbilical cord pH values were significantly lower in the anormal hPSV-DT group (p < 0.05). Additionally, the rates of admission to NICU, respiratory distress syndrome (RDS), delivery time < 34 weeks, and birth weight < 2500 g were significantly more frequent in the anormal hPSV-DT group compared to the normal hPSV-DT group (p < 0.05). UA-PI > 95th percentile was detected in only 2 (8%) of 23 patients whose newborns were admitted to the NICU (p = 0.149), while hPSV-DT < 5th percentile was detected in 16 (69%) of 23 patients (p < 0.001). According to ROC analysis, the area under the curve was 0.82 (95% CI 0.06-0.28) for admission to the NICU. The best balance of sensitivity/specificity in ROC curves was 221.5 (82.6% sensitivity, 69.1% specificity, p < 0.001). CONCLUSION UA hPSV-DT was successful in predicting composite adverse perinatal outcomes in pregnant women with preeclampsia. It is a promising novel method that is accurate, quantitative, reproducible, and easily applicable. With further studies, this method may be a primary diagnostic tool in the management of high-risk pregnancies and in determining the optimal timing of delivery.
Collapse
Affiliation(s)
- Eda Ozden Tokalioglu
- Department of Obstetrics and Gynecology, Division of Perinatology, Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Atakan Tanacan
- Department of Obstetrics and Gynecology, Division of Perinatology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Şule Goncu Ayhan
- Department of Obstetrics and Gynecology, Division of Perinatology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Hakkı Serbetci
- Department of Obstetrics and Gynecology, Division of Perinatology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Merve Ozturk Agaoglu
- Department of Obstetrics and Gynecology, Division of Perinatology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Ozgur Kara
- Department of Obstetrics and Gynecology, Division of Perinatology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Dilek Sahin
- Department of Obstetrics and Gynecology, Division of Perinatology, Ministry of Health Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Ji K, Chen Y, Pan X, Chen L, Wang X, Wen B, Bao J, Zhong J, Lv Z, Zheng Z, Liu H. Single-cell and spatial transcriptomics reveal alterations in trophoblasts at invasion sites and disturbed myometrial immune microenvironment in placenta accreta spectrum disorders. Biomark Res 2024; 12:55. [PMID: 38831319 PMCID: PMC11149369 DOI: 10.1186/s40364-024-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Placenta accreta spectrum disorders (PAS) are a severe complication characterized by abnormal trophoblast invasion into the myometrium. The underlying mechanisms of PAS involve a complex interplay of various cell types and molecular pathways. Despite its significance, both the characteristics and intricate mechanisms of this condition remain poorly understood. METHODS Spatial transcriptomics (ST) and single-cell RNA sequencing (scRNA-seq), were performed on the tissue samples from four PAS patients, including invasive tissues (ST, n = 3; scRNA-seq, n = 4), non-invasive normal placenta samples (ST, n = 1; scRNA-seq, n = 2). Three healthy term pregnant women provided normal myometrium samples (ST, n = 1; scRNA-seq, n = 2). ST analysis characterized the spatial expression landscape, and scRNA-seq was used to identify specific cellular components in PAS. Immunofluorescence staining was conducted to validate the findings. RESULTS ST slices distinctly showed the myometrium in PAS was invaded by three subpopulations of trophoblast cells, extravillous trophoblast cells, cytotrophoblasts, and syncytiotrophoblasts, especially extravillous trophoblast cells. The pathways enriched by genes in trophoblasts, smooth muscle cells (SMC), and immune cells of PAS were mainly associated with immune and inflammation. We identified elevated expression of the angiogenesis-stimulating gene PTK2, alongside the cell proliferation-enhancing gene EGFR, within the trophoblasts of PAS group. Trophoblasts mainly contributed the enhancement of HLA-G and EBI3 signaling, which is crucial in establishing immune escape. Meanwhile, SMC regions in PAS exhibited upregulation of immunomodulatory markers such as CD274, HAVCR2, and IDO1, with CD274 expression experimentally verified to be increased in the invasive SMC areas of the PAS group. CONCLUSIONS This study provided information of cellular composition and spatial organization in PAS at single-cell and spatial level. The dysregulated expression of genes in PAS revealed a complex interplay between enhanced immune escape in trophoblasts and immune tolerance in SMCs during invasion in PAS. These findings will enhance our understanding of PAS pathogenesis for developing potential therapeutic strategies.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Xiuyu Pan
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Junmin Zhong
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Zi Lv
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China
| | - Zheng Zheng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China.
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, China.
- Institute of Reproductive Health and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Tian X, Zhang Y, Zhao M, Yin X. Circ_0030042 inhibits trophoblast cell growth, invasion and epithelial-mesenchymal transition process in preeclampsia via miR-942-5p/LITAF. J Reprod Immunol 2024; 162:104205. [PMID: 38262261 DOI: 10.1016/j.jri.2024.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND There is increasing evidence that circular RNAs (circRNAs) are involved in the processes of preeclampsia (PE). Circ_0030042 was found to be abnormally expressed in PE patients. However, the role and molecular mechanism of circ_0030042 in PE progression remains unclear. METHODS Quantitative real-time PCR was used for determining the expression of circ_0030042, microRNA (miR)- 942-5p and lipopolysaccharide induced TNF-α factor (LITAF). Trophoblast cell functions were determined using cell counting kit 8 assay, EdU assay, flow cytometry and transwell assay. The protein levels of epithelial-mesenchymal transition (EMT)-related markers and LITAF were examined using western blot analysis. Dual-luciferase reporter assay and RNA pull-down assay were used to verify RNA interaction. RESULTS Circ_0030042 had an elevated expression in PE patients, and its overexpression inhibited trophoblast cell growth, invasion, and EMT process. Circ_0030042 served as miR-942-5p sponge, and miR-942-5p inhibitor also reversed the regulation of circ_0030042 on trophoblast cell growth, invasion and EMT process. LITAF was targeted by miR-942-5p, and its knockdown abolished the inhibition effect of miR-942-5p on trophoblast cell growth, invasion, and EMT process. Also, circ_0030042 regulated LITAF expression via sponging miR-942-5p. CONCLUSION Circ_0030042 regulated trophoblast cell growth, invasion, and EMT process via the miR-942-5p/LITAF axis, providing a novel insight for PE treatment.
Collapse
Affiliation(s)
- Xiaolong Tian
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Yajun Zhang
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Meng Zhao
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China.
| | - Xiaofang Yin
- Department of Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China.
| |
Collapse
|
15
|
Chen L, Wu M, Zhou Y. HSPB8 binding to c-Myc alleviates hypoxia/reoxygenation-induced trophoblast cell dysfunction. Exp Ther Med 2024; 27:114. [PMID: 38361516 PMCID: PMC10867730 DOI: 10.3892/etm.2024.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 02/17/2024] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome with complex pathogenesis. The present study aimed to explore the role of heat shock protein B8 (HSPB8) and c-Myc in trophoblast cell dysfunction using a hypoxia/reoxygenation (H/R)-treated HTR8/SVneo cell model. HSPB8 expression in tissues of patients with PE was analyzed using the Gene Expression Omnibus database. Following detection of HSPB8 expression in H/R-stimulated HTR8/SVneo cells, HSPB8 was overexpressed by transfection of the gene with a HSPB8-specific plasmid. Cell Counting Kit-8, wound healing and Transwell assays were used to evaluate the proliferation, migration and invasion of HTR8/SVneo cells exposed to H/R conditions. Reactive oxygen species (ROS) were determined by 2,7-dichlorodihydrofluorescein diacetate staining. 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) staining was applied to assess mitochondrial membrane potential. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected using the corresponding commercial kits. In addition, the induction of apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Moreover, the Biogrid database predicted that HSPB8 was bound to c-Myc, and a co-immunoprecipitation (Co-IP) assay was used to verify this interaction. Subsequently, c-Myc expression was silenced to conduct rescue experiments in HTR8/SVneo cells exposed to H/R conditions and upregulated HSPB8 expression. Notably, reduced HSPB8 expression was noted in PE tissues and H/R-stimulated HTR8/SVneo cells. HSPB8 enforced expression promoted the proliferation, migration and invasion of HTR8/SVneo cells. Moreover, H/R caused an increase in ROS and MDA levels as well as in TUNEL staining and a decrease in aggregated JC-1 fluorescence and SOD activity levels, which were restored following HSPB8 overexpression. Co-IP confirmed the interaction between HSPB8 and c-Myc. Moreover, knockdown of c-Myc expression compromised the effects of HSPB8 upregulation on trophoblast cell dysfunction following induction of H/R. Collectively, the data indicated that HSPB8 could improve mitochondrial oxidative stress by binding to c-Myc to alleviate trophoblast cell dysfunction. The findings may provide new insights into the pathogenesis of PE and highlight the role of HSPB8/c-Myc in the prevention and treatment of PE in the future.
Collapse
Affiliation(s)
- Ling Chen
- Department of Gynecology and Obstetrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Meiting Wu
- Department of Gynecology and Obstetrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yu Zhou
- Department of Gynecology and Obstetrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
16
|
Jung YM, Wi W, Cho KD, Hong SJ, Kim HY, Ahn KH, Hong SC, Kim HJ, Oh MJ, Cho GJ. The Risk of Hypertension and Diabetes Mellitus According to Offspring's Birthweight in Women With Normal Body Mass Index: A Nationwide Population-Based Study. J Korean Med Sci 2024; 39:e50. [PMID: 38317450 PMCID: PMC10843973 DOI: 10.3346/jkms.2024.39.e50] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Maladaptation to vascular, metabolic, and physiological changes during pregnancy can lead to fetal growth disorders. Moreover, adverse outcomes during pregnancy can further increase the risk of cardiovascular and metabolic diseases in mothers. Delivering a large-for-gestational-age (LGA) baby may indicate a pre-existing metabolic dysfunction, whereas delivering a small-for-gestational-age (SGA) baby may indicate a pre-existing vascular dysfunction. This study aims to assess the risk of hypertension (HTN) and diabetes mellitus (DM) in women with normal body mass index (BMI) scores who did not experience gestational DM or hypertensive disorders during pregnancy based on the offspring's birthweight. METHODS This retrospective nationwide study included women with normal BMI scores who delivered a singleton baby after 37 weeks. Women with a history of DM or HTN before pregnancy and those with gestational DM or hypertensive disorders, were excluded from the study. We compared the risk of future maternal outcomes (HTN and DM) according to the offspring's birthweight. Multivariate analyses were performed to estimate the hazard ratio (HR) for the future risk of HTN or DM. RESULTS A total of 64,037 women were included in the analysis. Of these, women who delivered very LGA babies (birthweight > 97th percentile) were at a higher risk of developing DM than those who delivered appropriate-for-gestational-age (AGA) babies (adjusted HR = 1.358 [1.068-1.727]), and women who delivered very SGA babies (birthweight < 3rd percentile) were at a higher risk of developing HTN than those who delivered AGA babies (adjusted HR = 1.431 [1.181-1.734]), even after adjusting for age, parity, gestational age at delivery, fetal sex, maternal BMI score, and a history of smoking. CONCLUSION These findings provide a novel support for the use of the offspring's birthweight as a predictor of future maternal diseases such as HTN and DM.
Collapse
Affiliation(s)
- Young Mi Jung
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Wonyoung Wi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Kyu-Dong Cho
- Big Data Department, National Health Insurance Service, Wonju, Korea
| | - Su Jung Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Ho Yeon Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Ki Hoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Zhang L, Lv Y. microRNA-203 Targets Insulin-Like Growth Factor Receptor 1 to Inhibit Trophoblast Vascular Remodeling to Augment Preeclampsia. Am J Perinatol 2024; 41:355-364. [PMID: 34891198 DOI: 10.1055/s-0041-1740300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is a pregnancy-specific condition featured by high blood pressure, edema, and proteinuria. Research about the role of microRNA (miR)-203 in PE remains insufficient. This experiment is designed to investigate the specific role of miR-203 in trophoblasts in PE. STUDY DESIGN miR-203 expression in placenta tissues of normal pregnant women and PE patients was examined to analyze the relevance between miR-203 and PE diagnostic efficiency and between miR-203 and blood pressure (systolic pressure and diastolic pressure) and proteinuria of PE patients. miR-203 expression was downregulated in hypoxia-cultured trophoblasts using miR-203 inhibitor to assess matrix metalloproteinase-9 (MMP-9) level. Then, the angiogenesis of trophoblasts with different treatments was determined. Subsequently, the target relation between miR-203 and insulin-like growth factor receptor 1 (IGF-1R) was predicted and verified. Additionally, the effect of IGF-1R in the mechanism of miR-203 modulating trophoblast vascular remodeling was detected. RESULTS miR-203 was overexpressed in the placenta of PE patients and it acted as a promising diagnostic indicator for PE. Moreover, miR-203 was positively associated with blood pressure (systolic pressure and diastolic pressure) and proteinuria of PE patients. miR-203 silencing in hypoxia-cultured trophoblasts enhanced trophoblast vascular remodeling. Mechanically, miR-203 bound to IGF-1R to suppress its transcription. IGF-1R downregulation counteracted the promotive effect of miR-203 silencing on trophoblast vascular remodeling. CONCLUSION miR-203 was overexpressed in PE, and it targeted IGF-1R to limit trophoblast vascular remodeling. KEY POINTS · miR-203 is overexpressed in the placenta of PE patients.. · miR-203 acts as a potential diagnostic marker for PE.. · miR-203 targets IGF-1R to reduce trophoblast vascular remodeling in PE..
Collapse
Affiliation(s)
- Li Zhang
- Department of Obstetrics, Maternal and Child health Hospital of Hubei Province, Wuhan City, Hubei Province, People's Republic of China
| | - Yuxia Lv
- Department of Obstetrics, Maternal and Child health Hospital of Hubei Province, Wuhan City, Hubei Province, People's Republic of China
| |
Collapse
|
18
|
Yin Z, Su J, Lu L, Yang L, Su S, Jiang X. Visual identification of three kinds of human decidual tissues from elective termination of pregnancy. Placenta 2024; 146:89-100. [PMID: 38215630 DOI: 10.1016/j.placenta.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
INTRODUCTION The decidua can be classified into the decidua basalis, decidua capsularis and decidua parietalis. This study aimed to visually identify these three kinds of decidual tissues from fresh samples obtained in early pregnancy based on their macroscopic appearances, which can be discerned visually. METHODS Decidual samples were collected from 15 pregnant women between 6 and 8 weeks of gestation after elective termination of pregnancy. We identified the three different kinds of fresh decidual tissues in early pregnancy according to their different macroscopic appearances by only the naked eye. H&E staining, in situ immunofluorescence and flow cytometry were performed to confirm the accuracy of this method. RESULTS We developed a method to discern the three different kinds of decidual tissues according to their individual macroscopic features. We found that the decidua parietalis was a thick tissue with less blood, with one side being intact epidermis and the other side being rough tissue. The decidua basalis had rough surfaces, a dense texture and high blood content. The decidua capsularis was a thin membrane tissue with or without blood clots. CK+/HLA-G+ extravillous trophoblast cells (EVTs) and heme oxygenase-1+ (HMOX1+) decidual macrophages were present in large quantities in the decidua basalis and decidua capsularis but were nearly undetectable in the decidua parietalis. We also found a wide distribution of endovascular extravillous trophoblast cells (enEVTs), which participate in spiral artery remodelling in the decidua basalis. DISCUSSION We successfully identified three kinds of human decidual tissues from early pregnancy with the naked eye for the first time. This breakthrough method will greatly assist studies related to decidua during early pregnancy.
Collapse
Affiliation(s)
- Ziwei Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linsen Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Liangliang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shiyue Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Xiangxiang Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
19
|
Shen Y, Cui Q, Xiao L, Wang L, Li Q, Zhang R, Chen Z, Niu J. Down-regulated Wnt7a and GPR124 in early-onset preeclampsia placentas reduce invasion and migration of trophoblast cells. J Perinat Med 2024; 52:41-49. [PMID: 37694534 DOI: 10.1515/jpm-2022-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/17/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES Preeclampsia (PE) is a disease specific to pregnancy that causes 9-10 % of maternal deaths. Early-onset PE (<34 weeks' gestation) is the most dangerous category of PE. Wnt7a and GPR124 (G protein-coupled receptor 124) are widely expressed in the human reproductive process. Especially during embryogenesis and tumorigenesis, Wnt7a plays a crucial role. However, few studies have examined the association between Wnt7a-GPR124 and early-onset PE. The aim of this study was to examine the significance of Wnt7a and GPR124 in early-onset PE as well as Wnt7a's role in trophoblast cells. METHODS Immunohistochemistry (IHC), real-time PCR, and western blotting (WB) were used to investigate Wnt7a and GPR124 expression in normal and early-onset PE placentas. Additionally, FACS, Transwell, and CCK-8 assays were used to diagnose Wnt7a involvement in migration, invasion, and proliferation. RESULTS In the early-onset PE group, Wnt7a and GPR124 expression was significantly lower than in the normal group, especially in the area of syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). A negative correlation was found between Wnt7a RNA and GPR124 expression (r=-0.42, p<0.01). However, the Wnt7a RNA expression level was positive correlated with PE severity. In further cellular functional experiments, knockdown of Wnt7a inhibits HTR8/SVeno cells invasion and migration but has little effect on proliferation and apoptosis. CONCLUSIONS Through the Wnt pathway, Wnt7a regulates trophoblast cell invasion and migration, and may contribute to early-onset preeclampsia pathogenesis. A molecular level study of Wnt7a will be needed to find downstream proteins and mechanisms of interaction.
Collapse
Affiliation(s)
- Yan Shen
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Cheeloo College of Medicine, Shandong University, Shenzhen, Guangdong, P.R. China
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, P.R. China
| | - Qingyu Cui
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, P.R. China
| | - Li Xiao
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Lifeng Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Qianqian Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Ruihong Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Zhaowen Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Jianmin Niu
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Cheeloo College of Medicine, Shandong University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
20
|
Meng Y, Chen H, Zhang X, Lin X, Ou J, Xing W. Thick endometrium is associated with hypertensive disorders of pregnancy in programmed frozen-thawed embryo transfers: a retrospective analysis of 2,275 singleton deliveries. Fertil Steril 2024; 121:36-45. [PMID: 37914068 DOI: 10.1016/j.fertnstert.2023.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To investigate whether endometrial thickness (EMT) acts as a contributing factor to adverse perinatal outcomes in programmed frozen-thawed embryo transfer (FET) cycles. DESIGN Retrospective cohort study. SETTING University-based reproductive medical center. SUBJECT The study included singleton live births resulting from programmed FET cycles that took place between January 2017 and April 2022 (N = 2,275 cycles). EXPOSURE The EMT measurement conducted on the day of progesterone initiation was utilized. Programmed FET cycles with EMT <7 mm were excluded from consideration. All included subjects were divided into 4 groups on the basis of the 10th, 50th, and 90th percentiles of EMT: group Ⅰ (EMT ≤8 mm, n = 193), group Ⅱ (EMT = 8.1-10 mm, n = 1,261), group Ⅲ (EMT = 10.1-12 mm, n = 615), and group Ⅳ (EMT >12 mm, n = 206). After adjusting for patient demographics and FET parameters, logistic regression analysis and restricted cubic spline were used to investigate the relationship between EMT and perinatal outcomes. The group Ⅱ (EMT = 8.1-10 mm) served as a reference. MAIN OUTCOME MEASURE(S) The primary outcome measure was the hypertensive disorders of pregnancy (HDP). Secondary outcomes included gestational diabetes mellitus, cesarean delivery, placenta previa, premature rupture of membrane, birthweight, preterm birth, low birthweight, macrosomia, small for gestational age, large for gestational age and neonatal morbidity. RESULTS(S) The incidence of HDP was substantially elevated in group Ⅳ when compared with the other groups (5.7% vs. 4.1% vs. 5.7% vs. 9.7% for groups Ⅰ-Ⅳ, respectively). In addition, group I displayed a higher incidence of cesarean deliveries, whereas both group I and group IV exhibited an elevated prevalence of placenta previa. After adjusting for confounding factors, patients in group IV exhibited a significantly increased risk of HDP (adjusted odds ratio [OR] = 2.03, 95% confidence interval [CI] 1.13-3.67) as compared with patients in the reference group. The restricted cubic spline model revealed a nonlinear association between EMT and the odds of HDP on continuous scales. In comparison to women with an EMT of 9.5 mm, there was no significant change in the risk of HDP in women with EMT between 7 and 11 mm, as indicated by adjusted ORs of 1.37 (95% CI 0.41-4.52), 1.34 (95% CI 0.73-2.47), 1.13 (95% CI 0.79-1.62), 1.04 (95% CI 0.87-1.25), and 1.46 (95% CI 0.81-2.65), respectively. However, the risk of HDP was significantly higher in women with EMT ranging from 12 to 15 mm, with adjusted ORs of 1.86 (95% CI 1.03-3.35), 2.33 (95% CI 1.32-4.12), 2.92 (95% CI 1.52-5.60), and 3.62 (95% CI 1.63-8.04), respectively. CONCLUSION(S) This study demonstrated a noteworthy association between EMT and adverse perinatal outcomes during the programmed FET cycles. Specifically, a thick endometrium (EMT >12 mm) was independently associated with an increased risk of developing HDP, whereas the optimal EMT for reducing the risk of HDP was at around 9-10 mm.
Collapse
Affiliation(s)
- Yue Meng
- Reproductive Medicine Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huikun Chen
- Reproductive Medicine Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiya Zhang
- Reproductive Medicine Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoqi Lin
- Reproductive Medicine Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianping Ou
- Reproductive Medicine Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weijie Xing
- Reproductive Medicine Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
21
|
Elkin ER, Campbell KA, Lapehn S, Harris SM, Padmanabhan V, Bakulski KM, Paquette AG. Placental single cell transcriptomics: Opportunities for endocrine disrupting chemical toxicology. Mol Cell Endocrinol 2023; 578:112066. [PMID: 37690473 PMCID: PMC10591899 DOI: 10.1016/j.mce.2023.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The placenta performs essential biologic functions for fetal development throughout pregnancy. Placental dysfunction is at the root of multiple adverse birth outcomes such as intrauterine growth restriction, preeclampsia, and preterm birth. Exposure to endocrine disrupting chemicals during pregnancy can cause placental dysfunction, and many prior human studies have examined molecular changes in bulk placental tissues. Placenta-specific cell types, including cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and placental resident macrophage Hofbauer cells play unique roles in placental development, structure, and function. Toxicant-induced changes in relative abundance and/or impairment of these cell types likely contribute to placental pathogenesis. Although gene expression insights gained from bulk placental tissue RNA-sequencing data are useful, their interpretation is limited because bulk analysis can mask the effects of a chemical on individual populations of placental cells. Cutting-edge single cell RNA-sequencing technologies are enabling the investigation of placental cell-type specific responses to endocrine disrupting chemicals. Moreover, in situ bioinformatic cell deconvolution enables the estimation of cell type proportions in bulk placental tissue gene expression data. These emerging technologies have tremendous potential to provide novel mechanistic insights in a complex heterogeneous tissue with implications for toxicant contributions to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Elana R Elkin
- School of Public Health, San Diego State University, San Diego, CA, USA.
| | - Kyle A Campbell
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, Michigan Medicine, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Tagami K, Iwama N, Hamada H, Tomita H, Kudo R, Kumagai N, Sato N, Izumi S, Sakurai K, Watanabe Z, Ishikuro M, Obara T, Tatsuta N, Hoshiai T, Metoki H, Saito M, Sugawara J, Kuriyama S, Arima T, Yaegashi N. Maternal birth weight as an indicator of early-onset and late-onset hypertensive disorders of pregnancy: The Japan Environment and Children's study. Pregnancy Hypertens 2023; 34:159-168. [PMID: 37992490 DOI: 10.1016/j.preghy.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES This study aimed to investigate the association between maternal birth weight (MBW) and hypertensive disorders of pregnancy (HDP) according to the gestational age when HDP develops. STUDY DESIGN A total of 77,345 subjects were included in this prospective birth cohort study. The association between MBW and HDP was investigated by a multinomial logistic regression model. MAIN OUTCOME MEASURES Early-onset HDP (EO-HDP), preterm late-onset HDP (preterm LO-HDP), and term late-onset HDP (term LO-HDP). RESULTS Lower MBW was associated with higher odds of preterm and term LO-HDP (p-values for trend < 0.0001 and = 0.0005, respectively). A linear association between MBW and EO-HDP was observed (p-values for trend = 0.0496). The shape of the association between MBW and preterm LO-HDP was a combination of the associations between MBW with EO-HDP or LO-HDP. The effect size of the association between MBW < 2,500 g and EO-HDP was lower than that of MBW < 2,500 g with preterm or term LO-HDP. The adjusted odds ratios for EO-HDP, preterm LO-HDP, and term LO-HDP in subjects with MBW < 2,500 g were 1.052 (95 % confidence interval [CI]: 0.665-1.664), 1.745 (95 % CI: 1.220-2.496), and 1.496 (95 % CI: 1.154-1.939), respectively. CONCLUSIONS MBW was associated with HDP, regardless of gestational age when HDP developed. Furthermore, the association of MBW < 2,500 g with preterm or term LO-HDP was stronger than that with EO-HDP.
Collapse
Affiliation(s)
- Kazuma Tagami
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Noriyuki Iwama
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan; Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan.
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Hasumi Tomita
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Rie Kudo
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Natsumi Kumagai
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Naoto Sato
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Seiya Izumi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Kasumi Sakurai
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan; Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan; Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Nozomi Tatsuta
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Tetsuro Hoshiai
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Hirohito Metoki
- Division of Public Health, Hygiene and Epidemiology, Tohoku Medical Pharmaceutical University, 1-15-1 Fukumuro, Sendai 983-8536, Miyagi, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan; Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan
| | - Junichi Sugawara
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan; Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryomachi, Sendai 980-8573, Miyagi, Japan; Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan; International Research Institute of Disaster Science, Tohoku University, 468-1, Aramaki, Sendai 980-8572, Miyagi, Japan
| | - Takahiro Arima
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1, Seiryomachi, Sendai 980-8574, Miyagi, Japan; Environment and Genome Research Center, Tohoku University Graduate School of Medicine, 2-1, Seiryomachi, Sendai 980-8575, Miyagi, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
23
|
Ren H, Dai R, Nik Nabil WN, Xi Z, Wang F, Xu H. Unveiling the dual role of autophagy in vascular remodelling and its related diseases. Biomed Pharmacother 2023; 168:115643. [PMID: 37839111 DOI: 10.1016/j.biopha.2023.115643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Vascular remodelling is an adaptive response to physiological and pathological stimuli that leads to structural and functional changes in the vascular intima, media, and adventitia. Pathological vascular remodelling is a hallmark feature of numerous vascular diseases, including atherosclerosis, hypertension, abdominal aortic aneurysm, pulmonary hypertension and preeclampsia. Autophagy is critical in maintaining cellular homeostasis, and its dysregulation has been implicated in the pathogenesis of various diseases, including vascular diseases. However, despite emerging evidence, the role of autophagy and its dual effects on vascular remodelling has garnered limited attention. Autophagy can exert protective and detrimental effects on the vascular intima, media and adventitia, thereby substantially influencing the course of vascular remodelling and its related vascular diseases. Currently, there has not been a review that thoroughly describes the regulation of autophagy in vascular remodelling and its impact on related diseases. Therefore, this review aimed to bridge this gap by focusing on the regulatory roles of autophagy in diseases related to vascular remodelling. This review also summarizes recent advancements in therapeutic agents targeting autophagy to regulate vascular remodelling. Additionally, this review offers an overview of recent breakthroughs in therapeutic agents targeting autophagy to regulate vascular remodelling. A deeper understanding of how autophagy orchestrates vascular remodelling can drive the development of targeted therapies for vascular diseases.
Collapse
Affiliation(s)
- Hangui Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China; Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
24
|
Hunter R, Baird B, Garcia M, Begay J, Goitom S, Lucas S, Herbert G, Scieszka D, Padilla J, Brayer K, Ottens AK, Suter MA, Barrozo ER, Hines C, Bleske B, Campen MJ. Gestational ozone inhalation elicits maternal cardiac dysfunction and transcriptional changes to placental pericytes and endothelial cells. Toxicol Sci 2023; 196:238-249. [PMID: 37695302 PMCID: PMC10682975 DOI: 10.1093/toxsci/kfad092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Ozone (O3) is a criteria air pollutant with the most frequent incidence of exceeding air quality standards. Inhalation of O3 is known to cause lung inflammation and consequent systemic health effects, including endothelial dysfunction. Epidemiologic data have shown that gestational exposure to air pollutants correlates with complications of pregnancy, including low birth weight, intrauterine growth deficiency, preeclampsia, and premature birth. Mechanisms underlying how air pollution may facilitate or exacerbate gestational complications remain poorly defined. The current study sought to uncover how gestational O3 exposure impacted maternal cardiovascular function, as well as the development of the placenta. Pregnant mice were exposed to 1PPM O3 or a sham filtered air (FA) exposure for 4 h on gestational day (GD) 10.5, and evaluated for cardiac function via echocardiography on GD18.5. Echocardiography revealed a significant reduction in maternal stroke volume and ejection fraction in maternally exposed dams. To examine the impact of maternal O3 exposure on the maternal-fetal interface, placentae were analyzed by single-cell RNA sequencing analysis. Mid-gestational O3 exposure led to significant differential expression of 4021 transcripts compared with controls, and pericytes displayed the greatest transcriptional modulation. Pathway analysis identified extracellular matrix organization to be significantly altered after the exposure, with the greatest modifications in trophoblasts, pericytes, and endothelial cells. This study provides insights into potential molecular processes during pregnancy that may be altered due to the inhalation of environmental toxicants.
Collapse
Affiliation(s)
- Russell Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brenna Baird
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Siem Goitom
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Jamie Padilla
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kathryn Brayer
- Department of Molecular Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Melissa A Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Enrico R Barrozo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Curt Hines
- Department of Biochemistry & Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
25
|
Lekva T, Sundaram AYF, Roland MCP, Åsheim J, Michelsen AE, Norwitz ER, Aukrust P, Gilfillan GD, Ueland T. Platelet and mitochondrial RNA is decreased in plasma-derived extracellular vesicles in women with preeclampsia-an exploratory study. BMC Med 2023; 21:458. [PMID: 37996819 PMCID: PMC10666366 DOI: 10.1186/s12916-023-03178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) are increased in preeclampsia (PE) and are associated with severity and progression. We examined in this exploratory cohort study if the mRNAs and long noncoding RNAs (lncRNAs) in plasma-derived EVs were dysregulated in PE compared to normal pregnancy and display different temporal patterns during gestation. METHODS We isolated EVs from plasma at weeks 22-24 and 36-38 in women with and without PE (n=7 in each group) and performed RNA-seq, focusing on mRNAs and lncRNAs. We validated highly expressed mitochondrial and platelet-derived RNAs discovered from central pathways in 60 women with/without PE. We examined further one of the regulated RNAs, noncoding mitochondrially encoded tRNA alanine (MT-TA), in leukocytes and plasma to investigate its biomarker potential and association with clinical markers of PE. RESULTS We found abundant levels of platelet-derived and mitochondrial RNAs in EVs. Expression of these RNAs were decreased and lncRNAs increased in EVs from PE compared to without PE. These findings were further validated by qPCR for mitochondrial RNAs MT-TA, MT-ND2, MT-CYB and platelet-derived RNAs PPBP, PF4, CLU in EVs. Decreased expression of mitochondrial tRNA MT-TA in leukocytes at 22-24 weeks was strongly associated with the subsequent development of PE. CONCLUSIONS Platelet-derived and mitochondrial RNA were highly expressed in plasma EVs and were decreased in EVs isolated from women with PE compared to without PE. LncRNAs were mostly increased in PE. The MT-TA in leukocytes may be a useful biomarker for prediction and/or early detection of PE.
Collapse
Affiliation(s)
- Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Arvind Y Fm Sundaram
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - June Åsheim
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Gregor D Gilfillan
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
26
|
Liu X, Wang G, Huang H, Lv X, Si Y, Bai L, Wang G, Li Q, Yang W. Exploring maternal-fetal interface with in vitro placental and trophoblastic models. Front Cell Dev Biol 2023; 11:1279227. [PMID: 38033854 PMCID: PMC10682727 DOI: 10.3389/fcell.2023.1279227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The placenta, being a temporary organ, plays a crucial role in facilitating the exchange of nutrients and gases between the mother and the fetus during pregnancy. Any abnormalities in the development of this vital organ not only lead to various pregnancy-related disorders that can result in fetal injury or death, but also have long-term effects on maternal health. In vitro models have been employed to study the physiological features and molecular regulatory mechanisms of placental development, aiming to gain a detailed understanding of the pathogenesis of pregnancy-related diseases. Among these models, trophoblast stem cell culture and organoids show great promise. In this review, we provide a comprehensive overview of the current mature trophoblast stem cell models and emerging organoid models, while also discussing other models in a systematic manner. We believe that this knowledge will be valuable in guiding further exploration of the complex maternal-fetal interface.
Collapse
Affiliation(s)
- Xinlu Liu
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Gang Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Haiqin Huang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Xin Lv
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Yanru Si
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Lixia Bai
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Guohui Wang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Weiwei Yang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
27
|
Han M, Hu L, Wu D, Zhang Y, Li P, Zhao X, Zeng Y, Ren G, Hou Z, Pang Y, Zhao T, Zhong C. IL-21R-STAT3 signalling initiates a differentiation program in uterine tissue-resident NK cells to support pregnancy. Nat Commun 2023; 14:7109. [PMID: 37925507 PMCID: PMC10625623 DOI: 10.1038/s41467-023-42990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Tissue-resident Natural Killer (trNK) cells are crucial components of local immunity that activate rapidly upon infection. However, under steady state conditions, their responses are tightly controlled to prevent unwanted tissue damage. The mechanisms governing their differentiation and activation are not fully understood. Here, we characterise uterine trNK cells longitudinally during pregnancy by single cell RNA sequencing and find that the combined expression pattern of 4-1BB and CD55 defines their three distinct stages of differentiation in mice. Mechanistically, an IL-21R-STAT3 axis is essential for initiating the trNK cell differentiation. The fully differentiated trNK cells demonstrate enhanced functionality, which is necessary for remodelling spiral arteries in the decidua. We identify an apoptotic program that is specific to the terminal differentiation stage, which may preclude tissue damage by these highly activated trNK cells. In summary, uterine trNK cells become intensely active and effective during pregnancy, but tightly controlled via a differentiation program that also limits potential harm, suggesting an intricate mechanism for harnessing trNK cells in maintaining pregnancy.
Collapse
Affiliation(s)
- Mengwei Han
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Luni Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Di Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yime Zhang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xingyu Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tongbiao Zhao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
28
|
Su S, Huang Y, Luo W, Li S. The Value of Ultrasonic Elastography in Detecting Placental Stiffness for the Diagnosis of Preeclampsia: A Meta-Analysis. Diagnostics (Basel) 2023; 13:2894. [PMID: 37761261 PMCID: PMC10527587 DOI: 10.3390/diagnostics13182894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This meta-analysis evaluated the diagnostic value of ultrasonic elastography in detecting placental stiffness in the diagnosis of preeclampsia (PE). A systematic search was conducted in the EMBASE, Web of Science, Cochrane Library, Scopus database, and PubMed databases to identify studies published before June 2023 using ultrasonic elastography to diagnose PE. The sensitivity, specificity, and diagnostic odds ratio of ultrasonic elastography for diagnosing PE were calculated, and a summary receiver operating characteristic curve model was constructed. The degree of heterogeneity was estimated using the I2 statistic, and a meta-regression analysis was performed to explore its sources. A protocol was determined previously (PROSPERO: CRD42023443646). We included 1188 participants from 11 studies, including 190 patients with PE and 998 patients without PE as controls. Overall sensitivity and specificity of ultrasonic elastography in detecting placental stiffness for the diagnosis of PE were 89% (95% CI: 85-93) and 74% (95% CI: 51-89), respectively. The I2 values for sensitivity and specificity were 59% (95% CI: 29-89) and 96% (95% CI: 95-98), respectively. The area under the receiver operating characteristic curve was 0.90 (95% CI: 0.87-0.92). The meta-regression analysis showed no significant heterogeneity. Ultrasonic elastography exhibits good diagnostic accuracy for detecting placental stiffness and can serve as a non-invasive tool for differentially diagnosing PE.
Collapse
Affiliation(s)
- Shanshan Su
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; (S.S.); (Y.H.)
| | - Yanyan Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; (S.S.); (Y.H.)
- Department of Reproductive in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Weiwen Luo
- Department of Ultrasound, Zhangzhou Hospital, Zhangzhou 363000, China;
| | - Shaohui Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China; (S.S.); (Y.H.)
| |
Collapse
|
29
|
Llorca T, Ruiz-Magaña MJ, Martinez-Aguilar R, García-Valdeavero OM, Rodríguez-Doña L, Abadia-Molina AC, Ruiz-Ruiz C, Olivares EG. Decidualized human decidual stromal cells inhibit chemotaxis of activated T cells: a potential mechanism of maternal-fetal immune tolerance. Front Immunol 2023; 14:1223539. [PMID: 37680635 PMCID: PMC10481401 DOI: 10.3389/fimmu.2023.1223539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Background Numerous lines of evidence confirm that decidual stromal cells (DSCs) play a key role in maternal-fetal immune tolerance. Under the influence of progesterone and other hormones, the DSCs go through a process of differentiation (decidualization) during normal pregnancy. In mice, DSCs inhibit the expression of chemokines that attract abortigenic Th1 and Tc cells to the decidua. We have studied this phenomenon in humans. Methods We established human DSC lines and decidualized these cells in vitro with progesterone and cAMP. We determined the expression of the chemokines CXCL9, CXCL10 and CXCL11, whose receptor CXCR3 is expressed by Th1 and Tc cells, in undifferentiated DSCs and decidualized DSCs by qRT-PCR. Activated CD3+CXCR3+ cells, including CD4+ Th1 cells and CD8+ Tc cells, were induced in vitro. The migration capacity of these activated lymphocytes was investigated in Transwell chambers with conditioned media from undifferentiated and decidualized DSCs. Results We demonstrated that CXCL9 was not expressed by DSCs, whereas the expression of CXCL10 and CXCL11 was inhibited in decidualized cells. Conditioned media from decidualized cells significantly inhibited the migration of Th1 and Tc cells. We found that decidualized cells secrete factors of MW less than 6000-8000 Da, which actively inhibit the chemotaxis of these lymphocytes. Discussion These results confirm in humans that decidualization of DSCs inhibits the expression by these cells of chemokines that attract Th1 and Tc cells and induces the secretion by DSCs of factors that inhibit the chemotaxis of these lymphocytes, thus preventing the arrival of abortigenic T cells in the decidua.
Collapse
Affiliation(s)
- Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Maria Jose Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Rocio Martinez-Aguilar
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Olga María García-Valdeavero
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Lucia Rodríguez-Doña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Ana Clara Abadia-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| |
Collapse
|
30
|
Kaali S, Jack DW, Mujtaba MN, Chillrud SN, Ae-Ngibise KA, Kinney PL, Boamah Kaali E, Gennings C, Colicino E, Osei M, Wylie BJ, Agyei O, Quinn A, Asante KP, Lee AG. Identifying sensitive windows of prenatal household air pollution on birth weight and infant pneumonia risk to inform future interventions. ENVIRONMENT INTERNATIONAL 2023; 178:108062. [PMID: 37392730 PMCID: PMC10911234 DOI: 10.1016/j.envint.2023.108062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Prenatal household air pollution impairs birth weight and increases pneumonia risk however time-varying associations have not been elucidated and may have implications for the timing of public health interventions. METHODS The Ghana Randomized Air Pollution and Health Study (GRAPHS) enrolled 1,414 pregnant women from Kintampo, Ghana and measured personal carbon monoxide (CO) exposure four times over pregnancy. Birth weight was measured within 72-hours of birth. Fieldworkers performed weekly pneumonia surveillance and referred sick children to study physicians. The primary pneumonia outcome was one or more physician-diagnosed severe pneumonia episode in the first year of life. We employed reverse distributed lag models to examine time-varying associations between prenatal CO exposure and birth weight and infant pneumonia risk. RESULTS Analyses included n = 1,196 mother-infant pairs. In models adjusting for child sex; maternal age, body mass index (BMI), ethnicity and parity at enrollment; household wealth index; number of antenatal visits; and evidence of placental malaria, prenatal CO exposures from 15 to 20 weeks gestation were inversely associated with birth weight. Sex-stratified models identified a similar sensitive window in males and a window at 10-weeks gestation in females. In models adjusting for child sex, maternal age, BMI and ethnicity, household wealth index, gestational age at delivery and average postnatal child CO exposure, CO exposure during 34-39 weeks gestation were positively associated with severe pneumonia risk, especially in females. CONCLUSIONS Household air pollution exposures in mid- and late- gestation are associated with lower birth weight and higher pneumonia risk, respectively. These findings support the urgent need for deployment of clean fuel stove interventions beginning in early pregnancy.
Collapse
Affiliation(s)
- Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana.
| | - Darby W Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, 722 W 168(th) Street, New York, NY 10032, USA
| | - Mohammed N Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, USA
| | - Kenneth A Ae-Ngibise
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ellen Boamah Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Blair J Wylie
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Ashlinn Quinn
- Berkeley Air Monitoring Group, Fort Collins, CO, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Li Q, Li S, Ding J, Pang B, Li R, Cao H, Ling L. MALAT1 modulates trophoblast phenotype via miR-101-3p/VEGFA axis. Arch Biochem Biophys 2023:109692. [PMID: 37437834 DOI: 10.1016/j.abb.2023.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Preeclampsia is a potentially life-threatening condition that can arise due to poor placentation and consequent abnormal uterine spiral artery remodeling. Abnormal placentation, in turn, is associated with aberrant trophoblast cell proliferation and apoptosis. Here, we investigated the lncRNA MALAT1 in trophoblast proliferation during early-onset preeclampsia (ePE). MALAT1 levels were examined in placental tissue samples from ePE patients and control patients. The effects and underlying mechanism of MALAT1 on proliferation, migration, invasion and apoptosis were investigated in the first-trimester extravillous trophoblast HTR-8/SVneo cells and the human choriocarcinoma JAR cells. MALAT1 levels were decreased in the placental tissue samples of ePE patients compared with those of control patients, and the levels of MALAT1 were positively correlated with the neonate birth-weight. Knockdown of MALAT1 attenuated the cell viability, proliferation, migration, invasion and the cell cycle progression of trophoblasts, but promoted the apoptosis of trophoblasts. The MALAT1 knockdown promoted miR-101-3p upregulation and VEGFA downregulation. Inhibitor of miR-101-3p increased vascular endothelial growth factor A (VEGFA) expression, and miR-101-3p mimic inhibited VEGFA expression. Luciferase assays showed that miR-101-3p could bind to both MALAT1 and VEGFA. The MALAT1 knockdown-induced induction in the cell vitality and proliferation were attenuated by miR-101-3p inhibitor. We conclude that endogenous MALAT1 promotes proliferation, migration and invasion of trophoblasts by inhibiting the miR-101-3p expression and the subsequent VEGFA downregulation. The reduced MALAT1 level in placental tissue may be involved in the pathogenesis of the ePE.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Shuo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jin Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Bo Pang
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Ranran Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Hui Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
32
|
Zhang J, Chen WQ, Yang K, Wang ZX, Sun DL, Peng YY, Yu M, Wang SX, Guo Q. RBM25 induces trophoblast epithelial-mesenchymal transition and preeclampsia disorder by enhancing the positive feedback loop between Grhl2 and RBM25. Exp Biol Med (Maywood) 2023; 248:1267-1277. [PMID: 37728157 PMCID: PMC10621477 DOI: 10.1177/15353702231191199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/08/2023] [Indexed: 09/21/2023] Open
Abstract
Defects in migration and invasion caused by dysregulation of trophoblast epithelial-mesenchymal transformation (EMT) are one of the key factors in the pathogenesis of preeclampsia (PE). RNA-binding motif protein 25 (RBM25) is an RNA-binding protein involved in a variety of cellular processes, including cell proliferation, apoptosis, cell migration and invasion, and EMT. However, the expression and function of RBM25 in placental of PE remain unclear. In this study, we reveal that the expression of RBM25 is significantly elevated in PE placental tissue. RBM25 depletion and over-expression in trophoblast cells increase and decrease, respectively, cell migration and invasion by regulating EMT marker E-cadherin and Vimentin expression. Mechanistically, Grhl2 is involved in RBM25-regulated trophoblast cell migration, invasion, and EMT through RBM25-facilitated mRNA stabilization. Furthermore, the upregulation of Grhl2 enhances the expression of RBM25 through transcription and forms a positive feedback regulation in the progression of PE. These findings suggest that upregulation of RBM25 induces dysregulation of trophoblast EMT by enhancing positive feedback regulation of Grhl2 and RBM25, leading to defects in cell migration and invasion. Targeting this newly identified regulatory axis may provide benefits in the prevention and treatment of PE.
Collapse
Affiliation(s)
- Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Wen-qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing 100026, China
| | - Zhao-xi Wang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Dong-lan Sun
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Yuan-yuan Peng
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Mei Yu
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Shao-xiong Wang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| |
Collapse
|
33
|
Zhao X, Zhang Z, Zhu Q, Luo Y, Ye Q, Shi S, He X, Zhu J, Zhang D, Xia W, Zhang Y, Jiang L, Cui L, Ye Y, Xiang Y, Hu J, Zhang J, Lin CP. Modeling human ectopic pregnancies with trophoblast and vascular organoids. Cell Rep 2023; 42:112546. [PMID: 37224015 DOI: 10.1016/j.celrep.2023.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yurui Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuxiang Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Duo Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
34
|
Jiang X, Zhai J, Xiao Z, Wu X, Zhang D, Wan H, Xu Y, Qi L, Wang M, Yu D, Liu Y, Wu H, Sun R, Xia S, Yu K, Guo J, Wang H. Identifying a dynamic transcriptomic landscape of the cynomolgus macaque placenta during pregnancy at single-cell resolution. Dev Cell 2023; 58:806-821.e7. [PMID: 37054708 DOI: 10.1016/j.devcel.2023.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms in the primate placenta during gestation. Here, we present a single-cell transcriptome-wide view of the cynomolgus macaque placenta throughout gestation. Bioinformatics analyses and multiple validation experiments suggested that placental trophoblast cells exhibited stage-specific differences across gestation. Interactions between trophoblast cells and decidual cells also showed gestational stage-dependent differences. The trajectories of the villous core cells indicated that placental mesenchymal cells were derived from extraembryonic mesoderm (ExE.Meso) 1, whereas placental Hofbauer cells, erythrocytes, and endothelial cells were derived from ExE.Meso2. Comparative analyses of human and macaque placentas uncovered conserved features of placentation across species, and the discrepancies of extravillous trophoblast cells (EVTs) between human and macaque correlated to their differences in invasion patterns and maternal-fetal interactions. Our study provides a groundwork for elucidating the cellular basis of primate placentation.
Collapse
Affiliation(s)
- Xiangxiang Jiang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Jinglei Zhai
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhenyu Xiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xulun Wu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Haifeng Wan
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanhong Xu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Luqing Qi
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Meijiao Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dainan Yu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yawei Liu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hao Wu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Run Sun
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuwei Xia
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kunyuan Yu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jingtao Guo
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hongmei Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
35
|
Pankiewicz K, Issat T. Understanding the Role of Chemerin in the Pathophysiology of Pre-Eclampsia. Antioxidants (Basel) 2023; 12:antiox12040830. [PMID: 37107205 PMCID: PMC10135338 DOI: 10.3390/antiox12040830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chemerin is a multifaceted adipokine that is involved in multiple biological processes, including inflammation, angiogenesis, adipogenesis, and energy metabolism, as well as oxidative stress. There is a vast body of evidence for a crucial role of chemerin in the development of different cardiovascular diseases. Blood chemerin levels, as well as its placental expression, are elevated in patients with pre-eclampsia (PE) and correlate positively with the severity of the disease. This narrative review summarizes the current knowledge about the potential role of chemerin during PE development, with a particular focus on its involvement in oxidative stress and endothelial dysfunction.
Collapse
|
36
|
Shi M, Yang X, Sun L, Ding Y, Huang Z, Zhang P, Yang X, Li R, Wang G. Comparison of different modified operations in the reduced uteroplacental perfusion pressure rat model of preeclampsia. J Reprod Immunol 2023; 156:103815. [PMID: 36701883 DOI: 10.1016/j.jri.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Animal models are indispensable tools in studying the mechanisms underlying the diseases. Rat models with reduced uterine perfusion pressure (RUPP) were able to mimic the pathophysiological traits of placental ischemia and hypoxia in preeclampsia (PE). However, ischemic injury can lead to a cascade of damage to lower limb ischemia in RUPP. Therefore, the aim of our study was to compare three modified surgical procedures of reducing uteroplacental perfusion pressure, and to provide a reference for the recognition of different PE phenotypes in the future. MATERIAL AND METHODS To establish a specific uteroplacental malperfusion model of PE in rats, we bilaterally ligated uterine vessels (UU), ovarian vessels distal to ovarian branches (OO), or both (sRUPP) at 13.5 days post coitum. 21 Sprague-Dawley rats in total were used and were divided into four groups: Sham (n = 4), UU (n = 6), OO (n = 5) and sRUPP (n = 8). RESULTS The results showed that the OO and sRUPP groups could successfully mimic the phenotypes of PE while UU group not. Then, autophagy, apoptosis, and synthesis of unsaturated fatty acids were increased in both the OO and sRUPP groups compared with the Sham group, while inflammation were not statistically different. CONCLUSIONS The OO and sRUPP groups could successfully establish the rat model of PE while the UU group not. Notably, between the OO and sRUPP groups, the OO group has a higher fetal survival rate and might be more suitable for studying fetal-related questions, while the sRUPP group has a heavier phenotypic profile and is more suitable for studying maternal phenotypes related to PE.
Collapse
Affiliation(s)
- Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China.
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
37
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
38
|
Mu Z, Shen S, Tang L, Liu Y, Zhou Z, Lei L. Hyperin promotes proliferation, migration, and invasion of HTR-8/SVneo trophoblast cells via activation of JAK1/STAT3 pathway in recurrent spontaneous abortions. Heliyon 2023; 9:e12958. [PMID: 36747955 PMCID: PMC9898646 DOI: 10.1016/j.heliyon.2023.e12958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The proliferation of extravillous trophoblasts (EVT) and their further migration, invasion, and differentiation into the decidual and myometrial vasculature are vital for spiral artery remodeling. These physiological functions of EVT are also essential steps in the implantation of the human embryo and the formation of the placenta and are closely related to pregnancy maintenance and the occurrence of abortion. Hyperin is a flavonoid with anti-inflammatory, pro-proliferative, and anti-apoptotic properties. Consequently, we investigated the previously unexplored effects of hyperin on the proliferation, migration, and invasion of HTR-8/SVneo cells. Human extravillous trophoblast-derived HTR-8/SVneo cells were incubated with different concentrations of hyperin (0, 5, 10, 25, 50, and 100 μM) to observe the changes in cell proliferation, migration, invasive capacity, and pathway activation. Proliferation, migration, and invasion were promoted by activating the JAK1/STAT3 pathway in HTR-8/SVneo cells treated with hyperin. In addition, brepocitinib (PF-06700841) significantly inhibited the proliferation, migration, and invasion effects of hyperin on HTR-8/SVneo cells. In vivo experiments confirmed that hyperin reduces the embryo loss rate in recurrent spontaneous abortion (RSA) model mice. Furthermore, our study revealed that hyperin promoted the proliferation, migration, and invasion of HTR-8/SVneo cells via activation of the JAK1/STAT3 pathway, further improving pregnancy outcomes in RSA.
Collapse
Affiliation(s)
- Zhenni Mu
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Sinan Shen
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Li Tang
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yingdie Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ziwei Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Lei
- College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine, Changsha, China,Corresponding author.
| |
Collapse
|
39
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
40
|
Zhu Y, Liu X, Xu Y, Lin Y. Hyperglycemia disturbs trophoblast functions and subsequently leads to failure of uterine spiral artery remodeling. Front Endocrinol (Lausanne) 2023; 14:1060253. [PMID: 37091848 PMCID: PMC10113679 DOI: 10.3389/fendo.2023.1060253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Uterine spiral artery remodeling is necessary for fetal growth and development as well as pregnancy outcomes. During remodeling, trophoblasts invade the arteries, replace the endothelium and disrupt the vascular smooth muscle, and are strictly regulated by the local microenvironment. Elevated glucose levels at the fetal-maternal interface are associated with disorganized placental villi and poor placental blood flow. Hyperglycemia disturbs trophoblast proliferation and invasion via inhibiting the epithelial-mesenchymal transition, altering the protein expression of related proteases (MMP9, MMP2, and uPA) and angiogenic factors (VEGF, PIGF). Besides, hyperglycemia influences the cellular crosstalk between immune cells, trophoblast, and vascular cells, leading to the failure of spiral artery remodeling. This review provides insight into molecular mechanisms and signaling pathways of hyperglycemia that influence trophoblast functions and uterine spiral artery remodeling.
Collapse
Affiliation(s)
- Yueyue Zhu
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yi Lin,
| |
Collapse
|
41
|
Miller D, Garcia-Flores V, Romero R, Galaz J, Pique-Regi R, Gomez-Lopez N. Single-Cell Immunobiology of the Maternal-Fetal Interface. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1450-1464. [PMID: 36192116 PMCID: PMC9536179 DOI: 10.4049/jimmunol.2200433] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Pregnancy success requires constant dialogue between the mother and developing conceptus. Such crosstalk is facilitated through complex interactions between maternal and fetal cells at distinct tissue sites, collectively termed the "maternal-fetal interface." The emergence of single-cell technologies has enabled a deeper understanding of the unique processes taking place at the maternal-fetal interface as well as the discovery of novel pathways and immune and nonimmune cell types. Single-cell approaches have also been applied to decipher the cellular dynamics throughout pregnancy, in parturition, and in obstetrical syndromes such as recurrent spontaneous abortion, preeclampsia, and preterm labor. Furthermore, single-cell technologies have been used during the recent COVID-19 pandemic to evaluate placental viral cell entry and the impact of SARS-CoV-2 infection on maternal and fetal immunity. In this brief review, we summarize the current knowledge of cellular immunobiology in pregnancy and its complications that has been generated through single-cell investigations of the maternal-fetal interface.
Collapse
Affiliation(s)
- Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; and
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
42
|
Huang Z, Zhu L, Zhang Q, Zhao D, Yao J. Circular RNA hsa-circ-0005238 enhances trophoblast migration, invasion and suppresses apoptosis via the miR-370-3p/CDC25B axis. Front Med (Lausanne) 2022; 9:943885. [PMID: 36314002 PMCID: PMC9606333 DOI: 10.3389/fmed.2022.943885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Background Fetal growth restriction (FGR) is attributed to various maternal, fetal, and placental factors. Trophoblasts participate in the establishment and maintenance of pregnancy from implantation and placentation to providing nutrition to fetus. Studies have reported that impaired trophoblast invasion and proliferation are among factors driving development of FGR. Circular RNAs (circRNAs) can regulate trophoblast function. We assessed the significance of circRNAs underlying FGR development. Materials and methods Next generation sequencing (NGS) was carried out to quantify levels of circRNAs in placenta tissues with and without FGR. In vitro experiments including transfection, (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium) (MTS) assays, flow cytometry analyses, Transwell assays, wound healing assays, western blotting, qRT-PCR, dual-luciferase assays, immunofluorescence staining, and RIP assay were performed. Results There were 18 differentially expressed circRNAs between FGR placentas and uncomplicated pregnancies, while levels of hsa-circ-0005238 were markedly low in FGR placentas. Our in vitro experiments further revealed that hsa-circ-0005238 suppressed apoptosis and enhanced proliferation, migration, invasion of trophoblast cell lines. The hsa-miR-370-3p was identified as a direct target of hsa-circ-0005238. Mechanistically, hsa-miR-370-3p prevents invasion as well as migration of trophoblast cells by downregulating CDC25B. Conclusion The hsa-circ-0005238 modulates FGR pathogenesis by inhibiting trophoblast cell invasion and migration through sponging hsa-miR-370-3p. Hence, targeting this circRNA may be an attractive strategy for FGR treatment.
Collapse
Affiliation(s)
- Zhuomin Huang
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Litong Zhu
- Department of Gynecology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Quanfu Zhang
- Shenzhen Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Depeng Zhao
- Department of Reproductive Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China,Depeng Zhao,
| | - Jilong Yao
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China,*Correspondence: Jilong Yao,
| |
Collapse
|
43
|
de Vos ES, Koning AHJ, Steegers-Theunissen RPM, Willemsen SP, van Rijn BB, Steegers EAP, Mulders AGMGJ. Assessment of first-trimester utero-placental vascular morphology by 3D power Doppler ultrasound image analysis using a skeletonization algorithm: the Rotterdam Periconception Cohort. Hum Reprod 2022; 37:2532-2545. [PMID: 36125007 PMCID: PMC9627684 DOI: 10.1093/humrep/deac202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
STUDY QUESTION Can three-dimensional (3D) Power Doppler (PD) ultrasound and a skeletonization algorithm be used to assess first-trimester development of the utero-placental vascular morphology? SUMMARY ANSWER The application of 3D PD ultrasonography and a skeletonization algorithm facilitates morphologic assessment of utero-placental vascular development in the first trimester and reveals less advanced vascular morphologic development in pregnancies with placenta-related complications than in pregnancies without placenta-related complications. WHAT IS KNOWN ALREADY Suboptimal development of the utero-placental vasculature is one of the main contributors to the periconceptional origin of placenta-related complications. The nature and attribution of aberrant vascular structure and branching patterns remain unclear, as validated markers monitoring first-trimester utero-placental vascular morphologic development are lacking. STUDY DESIGN, SIZE, DURATION In this prospective observational cohort, 214 ongoing pregnancies were included before 10 weeks gestational age (GA) at a tertiary hospital between January 2017 and July 2018, as a subcohort of the ongoing Rotterdam Periconception Cohort study. PARTICIPANTS/MATERIALS, SETTING, METHODS By combining 3D PD ultrasonography and virtual reality, utero-placental vascular volume (uPVV) measurements were obtained at 7, 9 and 11 weeks GA. A skeletonization algorithm was applied to the uPVV measurements to generate the utero-placental vascular skeleton (uPVS), a network-like structure containing morphologic characteristics of the vasculature. Quantification of vascular morphology was performed by assigning a morphologic characteristic to each voxel in the uPVS (end-, vessel-, bifurcation- or crossing-point) and calculating total vascular network length. A Mann–Whitney U test was performed to investigate differences in morphologic development of the first-trimester utero-placental vasculature between pregnancies with and without placenta-related complications. Linear mixed models were used to estimate trajectories of the morphologic characteristics in the first trimester. MAIN RESULTS AND THE ROLE OF CHANCE All morphologic characteristics of the utero-placental vasculature increased significantly in the first trimester (P < 0.005). In pregnancies with placenta-related complications (n = 54), utero-placental vascular branching was significantly less advanced at 9 weeks GA (vessel points P = 0.040, bifurcation points P = 0.050, crossing points P = 0.020, total network length P = 0.023). Morphologic growth trajectories remained similar after adjustment for parity, conception mode, foetal sex and occurrence of placenta-related complications. LIMITATIONS, REASONS FOR CAUTION The tertiary setting of this prospective observational study provides high internal, but possibly limited external, validity. Extrapolation of the study’s findings should therefore be addressed with caution. WIDER IMPLICATIONS OF THE FINDINGS The uPVS enables assessment of morphologic development of the first-trimester utero-placental vasculature. Further investigation of this innovative methodology needs to determine its added value for the assessment of (patho-) physiological utero-placental vascular development. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the Department of Obstetrics and Gynecology of the Erasmus MC, University Medical Centre, Rotterdam, The Netherlands. There are no conflicts of interest. TRIAL REGISTRATION NUMBER Registered at the Dutch Trial Register (NTR6854).
Collapse
Affiliation(s)
- Eline S de Vos
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Anton H J Koning
- Department of Pathology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Biostatistics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bas B van Rijn
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Annemarie G M G J Mulders
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Porphyromonas gingivalis-mediated disruption in spiral artery remodeling is associated with altered uterine NK cell populations and dysregulated IL-18 and Htra1. Sci Rep 2022; 12:14799. [PMID: 36042379 PMCID: PMC9427787 DOI: 10.1038/s41598-022-19239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Impaired spiral artery remodeling (IRSA) underpins the great obstetrical syndromes. We previously demonstrated that intrauterine infection with the periodontal pathogen, Porphyromonas gingivalis, induces IRSA in rats. Since our previous studies only examined the end stage of arterial remodeling, the aim of this study was to identify the impact of P. gingivalis infection on the earlier stages of remodeling. Gestation day (GD) 11 specimens, a transition point between trophoblast-independent remodeling and the start of extravillous trophoblast invasion, were compared to late stage GD18 tissues. P. gingivalis was found in decidual stroma of GD11 specimens that already had reduced spiral artery remodeling defined as smaller arterial lumen size, increased retention of vascular smooth muscle, and decreased invasion by extravillous trophoblasts. At GD11, P. gingivalis-induced IRSA coincided with altered uterine natural killer (uNK) cell populations, decreased placental bed expression of interleukin-18 (IL-18) with increased production of temperature requirement A1 (Htra1), a marker of oxidative stress. By GD18, placental bed IL-18 and Htra1 levels, and uNK cell numbers were equivalent in control and infected groups. However, infected GD18 placental bed specimens had decreased TNF + T cells. These results suggest disturbances in placental bed decidual stroma and uNK cells are involved in P. gingivalis-mediated IRSA.
Collapse
|
45
|
Wei XW, Zhang YC, Wu F, Tian FJ, Lin Y. The role of extravillous trophoblasts and uterine NK cells in vascular remodeling during pregnancy. Front Immunol 2022; 13:951482. [PMID: 37408837 PMCID: PMC10319396 DOI: 10.3389/fimmu.2022.951482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 07/07/2023] Open
Abstract
Successful embryo implantation requires both a receptive endometrium and competent blastocysts. After implantation, the maternal decidua undergoes a series of changes, including uterine spiral artery (SA) remodeling to accommodate the fetus and provide nutrients and oxygen for the fetus to survive. Uterine spiral arteries transform from small-diameter, high-resistance arteries to large-diameter and low-resistance arteries during pregnancy. This transformation includes many changes, such as increased permeability and dilation of vessels, phenotypic switching and migration of vascular smooth muscle cells (VSMCs), transient loss of endothelial cells (ECs), endovascular invasion of extravillous trophoblasts (EVTs), and presence of intramural EVT, which are regulated by uterine NK (uNK) cells and EVTs. In this review, we mainly focus on the separate and combined roles of uNK cells and EVTs in uterine SA remodeling in establishing and maintaining pregnancy. New insight into related mechanisms will help us better understand the pathogenesis of pregnancy complications such as recurrent pregnancy loss (RPL) and preeclampsia (PE).
Collapse
Affiliation(s)
- Xiao-Wei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fu-Ju Tian
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front Cell Dev Biol 2022; 10:826053. [PMID: 35938162 PMCID: PMC9354654 DOI: 10.3389/fcell.2022.826053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Successful pregnancy requires the maternal immune system to tolerate the semi-allogeneic embryo. A good trophoblast function is also essential for successful embryo implantation and subsequent placental development. Chemokines are initially described in recruiting leukocytes. There are rich chemokines and chemokine receptor system at the maternal–fetal interface. Numerous studies have reported that they not only regulate trophoblast biological behaviors but also participate in the decidual immune response. At the same time, the chemokine system builds an important communication network between fetally derived trophoblast cells and maternally derived decidual cells. However, abnormal functions of chemokines or chemokine receptors are involved in a series of pregnancy complications. As growing evidence points to the roles of chemokines in pregnancy, there is a great need to summarize the available data on this topic. This review aimed to describe the recent research progress on the regulation and function of the main chemokines in pregnancy at the maternal–fetal interface. In addition, we also discussed the potential relationship between chemokines and pregnancy complications.
Collapse
Affiliation(s)
- Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| |
Collapse
|
47
|
Lei J, Zhao M, Li L, Ji B, Xu T, Sun M, Chen J, Qiu J, Gao Q. Research progress of placental vascular pathophysiological changes in pregnancy-induced hypertension and gestational diabetes mellitus. Front Physiol 2022; 13:954636. [PMID: 35928561 PMCID: PMC9343869 DOI: 10.3389/fphys.2022.954636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023] Open
Abstract
The placenta is a vital organ for fetal development, providing the fetus with nutrients, oxygen, and other important factors. Placenta is rich in blood vessels. Abnormal placental vascular function and blood circulation may lead to insufficient blood supply to the fetus in the uterus, leading to serious consequences such as pregnancy complications, fetal distress and even stillbirth. Pregnancy-induced hypertension (PIH) and gestational diabetes mellitus (GDM) are common complications of pregnancy. Recent studies report that pregnancy complications are often accompanied by changes in placental vascular structure and function. What are the physiological characteristics of human placental blood vessels? What are the pathological changes in the state of PIH and GDM? What are the relationships between these pathological changes and the occurrence of these pregnancy complications? Answers to these questions not only increase the understanding of placental vascular characteristics, but also provide important information for revealing the pathological mechanism of PIH and GDM. This article will summarize the research on the pathological changes of placental blood vessels in PIH and GDM, hoping to further unravel the physiological and pathological characteristics of placental blood vessels in the state of PIH and GDM, provide information for guiding clinical treatment for PIH and GDM.
Collapse
Affiliation(s)
- Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| | - Junlan Qiu
- Department of Oncology and Hematology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| |
Collapse
|
48
|
Guettler J, Forstner D, Gauster M. Maternal platelets at the first trimester maternal-placental interface - Small players with great impact on placenta development. Placenta 2022; 125:61-67. [PMID: 34920861 DOI: 10.1016/j.placenta.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
In human pregnancy, maternal platelet counts decrease with each trimester, reaching a reduction by approximately ten percent at term in uncomplicated cases and recover to the levels of the non-pregnant state a few weeks postpartum. The time when maternal platelets start to occur in the early human placenta most likely coincides with the appearance of loosely cohesive endovascular trophoblast plugs showing capillary-sized channels by mid first trimester. At that time, platelets accumulate in intercellular gaps of anchoring parts of trophoblast columns and start to adhere to the surface of placental villi and the chorionic plate. This is considered as normal process that contributes to placenta development by acting on both the extravillous- and the villous trophoblast compartment. Release of platelet cargo into intercellular gaps of anchoring cell columns may affect partial epithelial-to-mesenchymal transition and invasiveness of extravillous trophoblasts as well as deposition of fibrinoid in the basal plate. Activation of maternal platelets on the villous surface leads to perivillous fibrin-type fibrinoid deposition, contributing to the shaping of the developing placental villi and the intervillous space. In contrast, excess platelet activation at the villous surface leads to deregulation of the endocrine activity, sterile inflammation and local apoptosis of the syncytiotrophoblast. Platelets and their released cargo are adapted to pregnancy, and may be altered in high-risk pregnancies. Identification of different maternal platelet subpopulations, which show differential procoagulant ability and different response to anti-platelet therapy, are promising new future directions in deciphering the role of maternal platelets in human placenta physiology.
Collapse
Affiliation(s)
- Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology; Gottfried Schatz Research Center, Medical University of Graz; Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology; Gottfried Schatz Research Center, Medical University of Graz; Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology; Gottfried Schatz Research Center, Medical University of Graz; Graz, Austria.
| |
Collapse
|
49
|
Zhang M, Li J, Fu X, Zhang Y, Zhang T, Wu B, Han X, Gao S. Endometrial thickness is an independent risk factor of hypertensive disorders of pregnancy: a retrospective study of 13,458 patients in frozen-thawed embryo transfers. Reprod Biol Endocrinol 2022; 20:93. [PMID: 35765069 PMCID: PMC9238038 DOI: 10.1186/s12958-022-00965-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) are an important cause of maternal and fetal mortality, and its potential risk factors are still being explored. Endometrial thickness (EMT), as one of the important monitoring indicators of endometrial receptivity, has been confirmed to be related to the incidence of HDP in fresh embryo transfer. Our study was designed to investigate whether endometrial thickness is associated with the risk of hypertensive disorders of pregnancy in frozen-thawed embryo transfer (FET). METHODS This respective cohort study enrolled 13,458 women who received vitrified embryo transfer and had a singleton delivery in the Reproductive Hospital affiliated to Shandong University from January 2015 to December 2019. We set strict screening criteria and obtained the information from the hospital electronic medical system. Statistical methods including logistic regression analysis, receiver operating characteristic curve and restricted cubic spline were used to evaluate the relationship between endometrial thickness and the incidence of pregnancy-induced hypertension. RESULTS The incidences of HDP in a thin endometrial thickness group (< 0.8 cm) and a thick endometrial thickness group (> 1.2 cm) were significantly greater than in a reference group (0.8 cm-1.2 cm) (7.98 and 5.24% vs 4.59%, P < 0.001). A nonlinear relationship between endometrial thickness and risk of hypertensive disorders of pregnancy was examined by restricted cubic spline (P < 0.001). The thin endometrial thickness and thick endometrial thickness groups were significantly associated with the risk of HDP after adjusting for confounding variables by stepwise logistic regression analysis. Subsequently, subgroup logistic regression analysis based on endometrial preparation regimens showed that thin endometria were still significantly associated with a higher morbidity rate in the artificial cycle group, while in the natural cycle group, thick endometria were closely associated with increased morbidity. CONCLUSION Our study manifested that both the thin and thick endometria were associated with an increased risk of hypertensive disorders of pregnancy in frozen embryo transfer cycles. Reproductive clinicians should focus on adjusting endometrial thickness in different preparation regimens; and obstetricians should be mindful of the risk of hypertension during pregnancy, when women with thin (< 0.8 cm) or excessively thicker (> 1.2 cm) endometrial thickness achieve pregnancy through frozen-thawed embryo transfer.
Collapse
Affiliation(s)
- Meng Zhang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Li
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao Fu
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yiting Zhang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingjie Wu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyue Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Gao
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
50
|
Zhou D, Xu X, Liu Y, Liu H, Cheng X, Gu Y, Xu Y, Zhu L. MiR-195-5p facilitates the proliferation, migration, and invasion of human trophoblast cells by targeting FGF2. J Obstet Gynaecol Res 2022; 48:2122-2133. [PMID: 35716001 DOI: 10.1111/jog.15298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Preeclampsia (PE), the most significant adverse exposure to cardiovascular risk during pregnancy, is one of the three major factors contributing to maternal and fetal mortality and the leading cause of preterm birth. Recently, various miRNAs have been reported to participate in PE occurrence and development. Nevertheless, the regulatory impact of miR-195-5p in PE is still indistinct. METHODS Quantitative realtime-PCR (qRT-PCR), western blot, and fluorescence in situ hybridization (FISH) assay were performed to examine miR-195-5p and FGF2 expressions in PE serum samples or HTR-8/SVneo and TEV-1 cells. CCK8, flow cytometry, wound scratch, and transwell assays were conducted to determine cell viability, cycle, apoptosis, migration, and invasion. Dual-luciferase reporter assay unveiled the relationship between miR-195-5p and FGF2. Migration-related and invasion-related protein expressions were measured by western blot assay. RESULTS miR-195-5p was prominently downregulated while FGF2 was increased in serum samples from PE patients and hypoxia-treated human trophoblast cells. FGF2 was predicted as a downstream target of miR-195-5p and targeted association was verified by dual-luciferase reporter assay. Functional experiments elaborated that miR-195-5p could facilitate trophoblast cell proliferation and metastasis but hinder cell cycle and apoptosis. Inversely, overexpressing of FGF2 could reverse the effects of miR-195-5p on trophoblast cell growth. DISCUSSION miR-195-5p was decreased in PE serum samples and cell lines, serving as a potential biomarker in protecting PE exacerbation by targeting FGF2.
Collapse
Affiliation(s)
- Dachun Zhou
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Xiaoying Xu
- Department of Gynaecology and Obstetrics, Haian People's Hospital, Haian, Jiangsu Province, China
| | - Yuanlin Liu
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haiyun Liu
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Xiaoyan Cheng
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Yannan Gu
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Yuanyuan Xu
- Department of Ultrasound, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Lingling Zhu
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|