1
|
Yu CK, Stephenson CJ, Villamor TC, Dyba TG, Schulz BL, Fraser JA. Deciphering the functions of Spt20 in the SAGA complex: Implications for Cryptococcus neoformans virulence. Life Sci 2025; 368:123509. [PMID: 40023276 DOI: 10.1016/j.lfs.2025.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
AIMS The SAGA complex is a conserved transcriptional co-activator essential for eukaryotic gene regulation. In fungi of the Ascomycota, the core protein Spt20 contributes to the structure and function of SAGA. This study aimed to identify and characterize SPT20 in Cryptococcus neoformans, the WHO top-ranked critical priority group species on their Fungal Priority Pathogen list. MATERIALS AND METHODS Identification of C. neoformans SPT20 revealed the presence of a tRNA gene within its 5' UTR. Precisely deleting the SPT20 ORF preserved the tRNA gene while enabling analysis of Spt20 function. Phenotypic assays assessed growth under stress, capsule formation, and antifungal susceptibility. RT-qPCR divulged effects on transcriptional regulation of SAGA components, while Western blotting evaluated changes in histone acetylation and deubiquitination. A murine inhalation model assessed virulence. KEY FINDINGS Loss of SPT20 impaired growth under a number of stresses, influenced capsule formation, increased antifungal susceptibility, and disrupted expression of most genes encoding SAGA complex proteins. The mutant exhibited defects in several histone modifications as well as severely compromised virulence in mice. SIGNIFICANCE Characterization of SPT20 in C. neoformans has provided important insights into the role of this protein as a critical regulator of survival and virulence in this clinically important species.
Collapse
Affiliation(s)
- Chendi Katherine Yu
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Christina J Stephenson
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Tristan C Villamor
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Taylor G Dyba
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Yu CK, Stephenson CJ, Villamor TC, Dyba TG, Schulz BL, Fraser JA. SAGA Complex Subunit Hfi1 Is Important in the Stress Response and Pathogenesis of Cryptococcus neoformans. J Fungi (Basel) 2023; 9:1198. [PMID: 38132798 PMCID: PMC10744473 DOI: 10.3390/jof9121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The Spt-Ada-Gcn Acetyltransferase (SAGA) complex is a highly conserved co-activator found across eukaryotes. It is composed of a number of modules which can vary between species, but all contain the core module. Hfi1 (known as TADA1 in Homo sapiens) is one of the proteins that forms the core module, and has been shown to play an important role in maintaining complex structural integrity in both brewer's yeast and humans. In this study we successfully identified the gene encoding this protein in the important fungal pathogen, Cryptococcus neoformans, and named it HFI1. The hfi1Δ mutant is highly pleiotropic in vitro, influencing phenotypes, ranging from temperature sensitivity and melanin production to caffeine resistance and titan cell morphogenesis. In the absence of Hfi1, the transcription of several other SAGA genes is impacted, as is the acetylation and deubiquination of several histone residues. Importantly, loss of the gene significantly impacts virulence in a murine inhalation model of cryptococcosis. In summary, we have established that Hfi1 modulates multiple pathways that directly affect virulence and survival in C. neoformans, and provided deeper insight into the importance of the non-enzymatic components of the SAGA complex.
Collapse
Affiliation(s)
| | | | | | | | | | - James A. Fraser
- School of Chemistry & Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia; (C.K.Y.); (C.J.S.); (T.C.V.); (T.G.D.); (B.L.S.)
| |
Collapse
|
3
|
Yayli G, Bernardini A, Mendoza Sanchez PK, Scheer E, Damilot M, Essabri K, Morlet B, Negroni L, Vincent SD, Timmers HTM, Tora L. ATAC and SAGA co-activator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. Cell Rep 2023; 42:113099. [PMID: 37682711 PMCID: PMC10591836 DOI: 10.1016/j.celrep.2023.113099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
To understand the function of multisubunit complexes, it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here, we demonstrate that the core modules of ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription co-activator complexes, assemble co-translationally in the cytoplasm of mammalian cells. In addition, a SAGA complex containing all of its modules forms in the cytoplasm and acetylates non-histone proteins. In contrast, ATAC complex subunits cannot be detected in the cytoplasm of mammalian cells. However, an endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related co-activators, ATAC and SAGA, assemble using co-translational pathways, but their subcellular localization, cytoplasmic abundance, and functions are distinct.
Collapse
Affiliation(s)
- Gizem Yayli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Paulina Karen Mendoza Sanchez
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Karim Essabri
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - H T Marc Timmers
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
4
|
Yayli G, Bernardini A, Sanchez PKM, Scheer E, Damilot M, Essabri K, Morlet B, Negroni L, Vincent SD, Timmers HTM, Tora L. ATAC and SAGA coactivator complexes utilize co-translational assembly, but their cellular localization properties and functions are distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551787. [PMID: 37577620 PMCID: PMC10418265 DOI: 10.1101/2023.08.03.551787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
To understand the function of multisubunit complexes it is of key importance to uncover the precise mechanisms that guide their assembly. Nascent proteins can find and bind their interaction partners during their translation, leading to co-translational assembly. Here we demonstrate that the core modules of ATAC (ADA-Two-A-Containing) and SAGA (Spt-Ada-Gcn5-acetyltransferase), two lysine acetyl transferase-containing transcription coactivator complexes, assemble co-translationally in the cytoplasm of mammalian cells. In addition, SAGA complex containing all of its modules forms in the cytoplasm and acetylates non-histones proteins. In contrast, fully assembled ATAC complex cannot be detected in the cytoplasm of mammalian cells. However, endogenous ATAC complex containing two functional modules forms and functions in the nucleus. Thus, the two related coactivators, ATAC and SAGA, assemble by using co-translational pathways, but their subcellular localization, cytoplasmic abundance and functions are distinct.
Collapse
Affiliation(s)
- Gizem Yayli
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Andrea Bernardini
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Paulina Karen Mendoza Sanchez
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research, Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Karim Essabri
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - Stéphane D. Vincent
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| | - HT Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research, Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - László Tora
- Institut de Génétique et de Biologie Moleculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Medicale, U1258, Illkirch, France
- Universite de Strasbourg, Illkirch, France
| |
Collapse
|
5
|
Vasyliuk D, Felt J, Zhong ED, Berger B, Davis JH, Yip CK. Conformational landscape of the yeast SAGA complex as revealed by cryo-EM. Sci Rep 2022; 12:12306. [PMID: 35853968 PMCID: PMC9296673 DOI: 10.1038/s41598-022-16391-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Spt-Ada-Gcn5-Acetyltransferase (SAGA) is a conserved multi-subunit complex that activates RNA polymerase II-mediated transcription by acetylating and deubiquitinating nucleosomal histones and by recruiting TATA box binding protein (TBP) to DNA. The prototypical yeast Saccharomyces cerevisiae SAGA contains 19 subunits that are organized into Tra1, core, histone acetyltransferase, and deubiquitination modules. Recent cryo-electron microscopy studies have generated high-resolution structural information on the Tra1 and core modules of yeast SAGA. However, the two catalytical modules were poorly resolved due to conformational flexibility of the full assembly. Furthermore, the high sample requirement created a formidable barrier to further structural investigations of SAGA. Here, we report a workflow for isolating/stabilizing yeast SAGA and preparing cryo-EM specimens at low protein concentration using a graphene oxide support layer. With this procedure, we were able to determine a cryo-EM reconstruction of yeast SAGA at 3.1 Å resolution and examine its conformational landscape with the neural network-based algorithm cryoDRGN. Our analysis revealed that SAGA adopts a range of conformations with its HAT module and central core in different orientations relative to Tra1.
Collapse
Affiliation(s)
- Diana Vasyliuk
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Joeseph Felt
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ellen D Zhong
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph H Davis
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
6
|
Geng Q, Li H, Wang D, Sheng RC, Zhu H, Klosterman SJ, Subbarao KV, Chen JY, Chen FM, Zhang DD. The Verticillium dahliae Spt-Ada-Gcn5 Acetyltransferase Complex Subunit Ada1 Is Essential for Conidia and Microsclerotia Production and Contributes to Virulence. Front Microbiol 2022; 13:852571. [PMID: 35283850 PMCID: PMC8905346 DOI: 10.3389/fmicb.2022.852571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Verticillium dahliae is a destructive soil-borne pathogen of many economically important dicots. The genetics of pathogenesis in V. dahliae has been extensively studied. Spt-Ada-Gcn5 acetyltransferase complex (SAGA) is an ATP-independent multifunctional chromatin remodeling complex that contributes to diverse transcriptional regulatory functions. As members of the core module in the SAGA complex in Saccharomyces cerevisiae, Ada1, together with Spt7 and Spt20, play an important role in maintaining the integrity of the complex. In this study, we identified homologs of the SAGA complex in V. dahliae and found that deletion of the Ada1 subunit (VdAda1) causes severe defects in the formation of conidia and microsclerotia, and in melanin biosynthesis and virulence. The effect of VdAda1 on histone acetylation in V. dahliae was confirmed by western blot analysis. The deletion of VdAda1 resulted in genome-wide alteration of the V. dahliae transcriptome, including genes encoding transcription factors and secreted proteins, suggesting its prominent role in the regulation of transcription and virulence. Overall, we demonstrated that VdAda1, a member of the SAGA complex, modulates multiple physiological processes by regulating global gene expression that impinge on virulence and survival in V. dahliae.
Collapse
Affiliation(s)
- Qi Geng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan Wang
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - He Zhu
- National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, United States
| | - Krishna V Subbarao
- Department of Plant Pathology, c/o U.S. Agricultural Research Station, University of California, Davis, Salinas, CA, United States
| | - Jie-Yin Chen
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan-Dan Zhang
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Huang J, Dai W, Xiao D, Xiong Q, Liu C, Hu J, Ge F, Yu X, Li S. Acetylation-dependent SAGA complex dimerization promotes nucleosome acetylation and gene transcription. Nat Struct Mol Biol 2022; 29:261-273. [PMID: 35301489 DOI: 10.1038/s41594-022-00736-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Cells reprogram their transcriptomes to adapt to external conditions. The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is a highly conserved transcriptional coactivator that plays essential roles in cell growth and development, in part by acetylating histones. Here, we uncover an autoregulatory mechanism of the Saccharomyces cerevisiae SAGA complex in response to environmental changes. Specifically, the SAGA complex acetylates its Ada3 subunit at three sites (lysines 8, 14 and 182) that are dynamically deacetylated by Rpd3. The acetylated Ada3 lysine residues are bound by bromodomains within SAGA subunits Gcn5 and Spt7 that synergistically facilitate formation of SAGA homo-dimers. Ada3-mediated dimerization is enhanced when cells are grown under sucrose or under phosphate-starvation conditions. Once dimerized, SAGA efficiently acetylates nucleosomes, promotes gene transcription and enhances cell resistance to stress. Collectively, our work reveals a mechanism for regulation of SAGA structure and activity and provides insights into how cells adapt to environmental conditions.
Collapse
Affiliation(s)
- Junhua Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Wenjing Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Duncheng Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Qian Xiong
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
8
|
Spt20, a structural subunit of the SAGA complex, regulates biofilm formation, asexual development, and virulence of Aspergillus fumigatus. Appl Environ Microbiol 2021; 88:e0153521. [PMID: 34669434 DOI: 10.1128/aem.01535-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) plays an important role in mediating adhesion, biofilm formation, and virulence in the pathogenic fungus Aspergillus fumigatus. Previous work showed that in A. fumigatus, the Lim-domain binding protein PtaB can form a complex with the sequence-specific transcription factor SomA for regulating GAG biosynthesis, biofilm formation, and asexual development. However, transcriptional co-activators required for biofilm formation in A. fumigatus remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae transcriptional co-activator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a regulator of biofilm formation and asexual development in A. fumigatus. The loss of spt20 caused severe defects in GAG biosynthesis, biofilm formation, conidiation, and virulence of A. fumigatus. RNA-sequence data demonstrated that Spt20 positively regulates the expression of GAG biosynthesis genes uge3 and agd3, developmental regulator medA, and genes involved in the conidiation pathway. Moreover, more than 10 subunits of the SAGA complex (known from yeast) could be immunoprecipitated with Spt20, suggesting that Spt20 acts as a structural subunit of the SAGA complex. Furthermore, distinct modules of SAGA regulate GAG biosynthesis, biofilm formation, and asexual development in A. fumigatus to varying degrees. In summary, the novel biofilm regulator Spt20 is reported, which plays a crucial role in the regulation of fungal asexual development, GAG biosynthesis, and virulence of A. fumigatus. These findings expand knowledge on the regulatory circuits of the SAGA complex relevant for biofilm formation and asexual development of A. fumigatus. IMPORTANCE Eukaryotic transcription is regulated by a large number of proteins, ranging from sequence-specific DNA binding factors to transcriptional co-activators (chromatin regulators and the general transcription machinery) and their regulators. Previous research indicated that the sequence-specific complex SomA/PtaB regulates biofilm formation and asexual development of Aspergillus fumigatus. However, transcriptional co-activators working with sequence-specific transcription factors to regulate A. fumigatus biofilm formation remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a novel regulator of biofilm formation and asexual development of A. fumigatus. Loss of spt20 caused severe defects in galactosaminogalactan (GAG) production, conidiation, and virulence. Moreover, nearly all modules of the SAGA complex were required for biofilm formation and asexual development of A. fumigatus. These results establish the SAGA complex as a transcriptional co-activator required for biofilm formation and asexual development of A. fumigatus.
Collapse
|
9
|
Stanek TJ, Gennaro VJ, Tracewell MA, Di Marcantonio D, Pauley KL, Butt S, McNair C, Wang F, Kossenkov AV, Knudsen KE, Butt T, Sykes SM, McMahon SB. The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. EMBO J 2021; 40:e102509. [PMID: 34155658 PMCID: PMC8365265 DOI: 10.15252/embj.2019102509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.
Collapse
Affiliation(s)
- Timothy J Stanek
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Victoria J Gennaro
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Mason A Tracewell
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Kristen L Pauley
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Sabrina Butt
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Christopher McNair
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | | | - Karen E Knudsen
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Stephen M Sykes
- Blood Cell Development and Function ProgramFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Steven B McMahon
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
10
|
Peng H, Zhang S, Peng Y, Zhu S, Zhao X, Zhao X, Yang S, Liu G, Dong Y, Gan X, Li Q, Zhang X, Pei H, Chen X. Yeast Bromodomain Factor 1 and Its Human Homolog TAF1 Play Conserved Roles in Promoting Homologous Recombination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100753. [PMID: 34056863 PMCID: PMC8336524 DOI: 10.1002/advs.202100753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Indexed: 05/12/2023]
Abstract
Histone acetylation is a key histone post-translational modification that shapes chromatin structure, dynamics, and function. Bromodomain (BRD) proteins, the readers of acetyl-lysines, are located in the center of the histone acetylation-signaling network. How they regulate DNA repair and genome stability remains poorly understood. Here, a conserved function of the yeast Bromodomain Factor 1 (Bdf1) and its human counterpart TAF1 is reported in promoting DNA double-stranded break repair by homologous recombination (HR). Depletion of either yeast BDF1 or human TAF1, or disruption of their BRDs impairs DNA end resection, Replication Protein A (RPA) and Rad51 loading, and HR repair, causing genome instability and hypersensitivity to DNA damage. Mechanistically, it is shown that Bdf1 preferentially binds the DNA damage-induced histone H4 acetylation (H4Ac) via the BRD motifs, leading to its chromatin recruitment. Meanwhile, Bdf1 physically interacts with RPA, and this interaction facilitates RPA loading in the chromatin context and the subsequent HR repair. Similarly, TAF1 also interacts with H4Ac or RPA. Thus, Bdf1 and TAF1 appear to share a conserved mechanism in linking the HR repair to chromatin acetylation in preserving genome integrity.
Collapse
Affiliation(s)
- Haoyang Peng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Simin Zhang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Yihan Peng
- Department of Biochemistry and Molecular MedicineGeorge Washington University School of Medicine and Health ScienceWashingtonDC20037USA
| | - Shuangyi Zhu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Xin Zhao
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Xiaocong Zhao
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Shuangshuang Yang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life Sciences and Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Guangxue Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Yang Dong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life Sciences and Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100871China
| | - Xinghua Zhang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Huadong Pei
- Department of Biochemistry and Molecular MedicineGeorge Washington University School of Medicine and Health ScienceWashingtonDC20037USA
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life Sciences and the Institute for Advanced StudiesWuhan UniversityWuhan430072China
| |
Collapse
|
11
|
Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis. J Biol Chem 2021; 297:100727. [PMID: 33933457 PMCID: PMC8217685 DOI: 10.1016/j.jbc.2021.100727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
The human fungal pathogen Candida albicans responds to iron deprivation by a global transcriptome reconfiguration known to be controlled by the transcriptional regulators Hap43 (also known as Cap2), Sef1, and the trimeric Hap2-Hap3-Hap5 complex. However, the relative roles of these regulators are not known. To dissect this system, we focused on the FRP1 and ACO1 genes, which are induced and repressed, respectively, under iron deprivation conditions. Chromatin immunoprecipitation assays showed that the trimeric HAP complex and Sef1 are recruited to both FRP1 and ACO1 promoters. While the HAP complex occupancy at the FRP1 promoter was Sef1-dependent, occupancy of Sef1 was not dependent on the HAP complex. Furthermore, iron deprivation elicited histone H3-Lys9 hyperacetylation and Pol II recruitment mediated by the trimeric HAP complex and Sef1 at the FRP1 promoter. In contrast, at the ACO1 promoter, the HAP trimeric complex and Hap43 promoted histone deacetylation and also limited Pol II recruitment under iron deprivation conditions. Mutational analysis showed that the SAGA subunits Gcn5, Spt7, and Spt20 are required for C. albicans growth in iron-deficient medium and for H3-K9 acetylation and transcription from the FRP1 promoter. Thus, the trimeric HAP complex promotes FRP1 transcription by stimulating H3K9Ac and Pol II recruitment and, along with Hap43, functions as a repressor of ACO1 by maintaining a deacetylated promoter under iron-deficient conditions. Thus, a regulatory network involving iron-responsive transcriptional regulators and the SAGA histone modifying complex functions as a molecular switch to fine-tune tight control of iron homeostasis gene expression in C. albicans.
Collapse
|
12
|
Soffers JHM, Workman JL. The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. Genes Dev 2021; 34:1287-1303. [PMID: 33004486 PMCID: PMC7528701 DOI: 10.1101/gad.341156.120] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, Soffers and Workman discuss the initial discovery of the canonical SAGA complex, the subsequent studies that have shaped our view on the internal organization of its subunits into modules, and the latest structural work that visualizes the modules and provides insights into their function. There are many large protein complexes involved in transcription in a chromatin context. However, recent studies on the SAGA coactivator complex are generating new paradigms for how the components of these complexes function, both independently and in concert. This review highlights the initial discovery of the canonical SAGA complex 23 years ago, our evolving understanding of its modular structure and the relevance of its modular nature for its coactivator function in gene regulation.
Collapse
Affiliation(s)
- Jelly H M Soffers
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| |
Collapse
|
13
|
Grant PA, Winston F, Berger SL. The biochemical and genetic discovery of the SAGA complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194669. [PMID: 33338653 DOI: 10.1016/j.bbagrm.2020.194669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
One of the major advances in our understanding of gene regulation in eukaryotes was the discovery of factors that regulate transcription by controlling chromatin structure. Prominent among these discoveries was the demonstration that Gcn5 is a histone acetyltransferase, establishing a direct connection between transcriptional activation and histone acetylation. This breakthrough was soon followed by the purification of a protein complex that contains Gcn5, the SAGA complex. In this article, we review the early genetic and biochemical experiments that led to the discovery of SAGA and the elucidation of its multiple activities.
Collapse
Affiliation(s)
- Patrick A Grant
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States of America
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Department of Biology, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
14
|
Nuño-Cabanes C, García-Molinero V, Martín-Expósito M, Gas ME, Oliete-Calvo P, García-Oliver E, de la Iglesia-Vayá M, Rodríguez-Navarro S. SAGA-CORE subunit Spt7 is required for correct Ubp8 localization, chromatin association and deubiquitinase activity. Epigenetics Chromatin 2020; 13:46. [PMID: 33115507 PMCID: PMC7594455 DOI: 10.1186/s13072-020-00367-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Histone H2B deubiquitination is performed by numerous deubiquitinases in eukaryotic cells including Ubp8, the catalytic subunit of the tetrameric deubiquitination module (DUBm: Ubp8; Sus1; Sgf11; Sgf73) of the Spt-Ada-Gcn5 acetyltransferase (SAGA). Ubp8 is linked to the rest of SAGA through Sgf73 and is activated by the adaptors Sus1 and Sgf11. It is unknown if DUBm/Ubp8 might also work in a SAGA-independent manner. Results Here we report that a tetrameric DUBm is assembled independently of the SAGA–CORE components SPT7, ADA1 and SPT20. In the absence of SPT7, i.e., independent of the SAGA complex, Ubp8 and Sus1 are poorly recruited to SAGA-dependent genes and to chromatin. Notably, cells lacking Spt7 or Ada1, but not Spt20, show lower levels of nuclear Ubp8 than wild-type cells, suggesting a possible role for SAGA–CORE subunits in Ubp8 localization. Last, deletion of SPT7 leads to defects in Ubp8 deubiquitinase activity in in vivo and in vitro assays. Conclusions Collectively, our studies show that the DUBm tetrameric structure can form without a complete intact SAGA–CORE complex and that it includes full-length Sgf73. However, subunits of this SAGA–CORE influence DUBm association with chromatin, its localization and its activity.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain.,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Varinia García-Molinero
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Manuel Martín-Expósito
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain.,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - María-Eugenia Gas
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Paula Oliete-Calvo
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Encar García-Oliver
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Brain Connectivity Lab. Joint Unit FISABIO & Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain. .,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|
15
|
Ben-Shem A, Papai G, Schultz P. Architecture of the multi-functional SAGA complex and the molecular mechanism of holding TBP. FEBS J 2020; 288:3135-3147. [PMID: 32946670 DOI: 10.1111/febs.15563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
In eukaryotes, transcription of protein encoding genes is initiated by the controlled deposition of the TATA-box binding protein TBP onto gene promoters, followed by the ordered assembly of a pre-initiation complex. The SAGA co-activator is a 19-subunit complex that stimulates transcription by the action of two chromatin-modifying enzymatic modules, a transcription activator binding module, and by delivering TBP. Recent cryo electron microscopy structures of yeast SAGA with bound nucleosome or TBP reveal the architecture of the different functional domains of the co-activator. An octamer of histone fold domains is found at the core of SAGA. This octamer, which deviates considerably from the symmetrical analogue forming the nucleosome, establishes a peripheral site for TBP binding where steric hindrance represses interaction with spurious DNA. The structures point to a mechanism for TBP delivery and release from SAGA that requires TFIIA and whose efficiency correlates with the affinity of DNA to TBP. These results provide a structural basis for understanding specific TBP delivery onto gene promoters and the role played by SAGA in regulating gene expression. The properties of the TBP delivery machine harboured by SAGA are compared with the TBP loading device present in the TFIID complex and show multiple similitudes.
Collapse
Affiliation(s)
- Adam Ben-Shem
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Université de Strasbourg, France.,Equipe labellisée Ligue Contre le Cancer, France
| | - Gabor Papai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Université de Strasbourg, France.,Equipe labellisée Ligue Contre le Cancer, France
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Université de Strasbourg, France.,Equipe labellisée Ligue Contre le Cancer, France
| |
Collapse
|
16
|
Shao W, Ding Z, Zheng ZZ, Shen JJ, Shen YX, Pu J, Fan YJ, Query CC, Xu YZ. Prp5-Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription. Nucleic Acids Res 2020; 48:5799-5813. [PMID: 32399566 PMCID: PMC7293005 DOI: 10.1093/nar/gkaa311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/08/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023] Open
Abstract
Transcription and pre-mRNA splicing are coupled to promote gene expression and regulation. However, mechanisms by which transcription and splicing influence each other are still under investigation. The ATPase Prp5p is required for pre-spliceosome assembly and splicing proofreading at the branch-point region. From an open UV mutagenesis screen for genetic suppressors of prp5 defects and subsequent targeted testing, we identify components of the TBP-binding module of the Spt–Ada–Gcn5 Acetyltransferase (SAGA) complex, Spt8p and Spt3p. Spt8Δ and spt3Δ rescue the cold-sensitivity of prp5-GAR allele, and prp5 mutants restore growth of spt8Δ and spt3Δ strains on 6-azauracil. By chromatin immunoprecipitation (ChIP), we find that prp5 alleles decrease recruitment of RNA polymerase II (Pol II) to an intron-containing gene, which is rescued by spt8Δ. Further ChIP-seq reveals that global effects on Pol II-binding are mutually rescued by prp5-GAR and spt8Δ. Inhibited splicing caused by prp5-GAR is also restored by spt8Δ. In vitro assays indicate that Prp5p directly interacts with Spt8p, but not Spt3p. We demonstrate that Prp5p's splicing proofreading is modulated by Spt8p and Spt3p. Therefore, this study reveals that interactions between the TBP-binding module of SAGA and the spliceosomal ATPase Prp5p mediate a balance between transcription initiation/elongation and pre-spliceosome assembly.
Collapse
Affiliation(s)
- Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zeng-Zhang Zheng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ji-Jia Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jia Pu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Fan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, NY 10461, USA
| | - Yong-Zhen Xu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
17
|
What do the structures of GCN5-containing complexes teach us about their function? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194614. [PMID: 32739556 DOI: 10.1016/j.bbagrm.2020.194614] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. It involves the assembly of general transcription factors and RNA polymerase II into a functional pre-initiation complex at core promoters. The degree of chromatin compaction controls the accessibility of the transcription machinery to template DNA. Co-activators have critical roles in this process by actively regulating chromatin accessibility. Many transcriptional coactivators are multisubunit complexes, organized into distinct structural and functional modules and carrying multiple regulatory activities. The first nuclear histone acetyltransferase (HAT) characterized was General Control Non-derepressible 5 (Gcn5). Gcn5 was subsequently identified as a subunit of the HAT module of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, which is an experimental paradigm for multifunctional co-activators. We know today that Gcn5 is the catalytic subunit of multiple distinct co-activator complexes with specific functions. In this review, we summarize recent advances in the structure of Gcn5-containing co-activator complexes, most notably SAGA, and discuss how these new structural insights contribute to better understand their functions.
Collapse
|
18
|
Cheon Y, Kim H, Park K, Kim M, Lee D. Dynamic modules of the coactivator SAGA in eukaryotic transcription. Exp Mol Med 2020; 52:991-1003. [PMID: 32616828 PMCID: PMC8080568 DOI: 10.1038/s12276-020-0463-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
SAGA (Spt-Ada-Gcn5 acetyltransferase) is a highly conserved transcriptional coactivator that consists of four functionally independent modules. Its two distinct enzymatic activities, histone acetylation and deubiquitylation, establish specific epigenetic patterns on chromatin and thereby regulate gene expression. Whereas earlier studies emphasized the importance of SAGA in regulating global transcription, more recent reports have indicated that SAGA is involved in other aspects of gene expression and thus plays a more comprehensive role in regulating the overall process. Here, we discuss recent structural and functional studies of each SAGA module and compare the subunit compositions of SAGA with related complexes in yeast and metazoans. We discuss the regulatory role of the SAGA deubiquitylating module (DUBm) in mRNA surveillance and export, and in transcription initiation and elongation. The findings suggest that SAGA plays numerous roles in multiple stages of transcription. Further, we describe how SAGA is related to human disease. Overall, in this report, we illustrate the newly revealed understanding of SAGA in transcription regulation and disease implications for fine-tuning gene expression. A protein that helps add epigenetic information to genome, SAGA, controls many aspects of gene activation, potentially making it a target for cancer therapies. To fit inside the tiny cell nucleus, the genome is tightly packaged, and genes must be unpacked before they can be activated. Known to be important in genome opening, SAGA has now been shown to also play many roles in gene activation. Daeyoup Lee at the KAIST, Daejeon, South Korea, and co-workers have reviewed recent discoveries about SAGA’s structure, function, and roles in disease. They report that SAGA’s complex (19 subunits organized into four modules) allows it to play so many roles, genome opening, initiating transcription, and efficiently exporting mRNAs. Its master role means that malfunction of SAGA may be linked to many diseases.
Collapse
Affiliation(s)
- Youngseo Cheon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Harim Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Kyubin Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
19
|
Papai G, Frechard A, Kolesnikova O, Crucifix C, Schultz P, Ben-Shem A. Structure of SAGA and mechanism of TBP deposition on gene promoters. Nature 2020; 577:711-716. [PMID: 31969704 DOI: 10.1038/s41586-020-1944-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/19/2019] [Indexed: 11/09/2022]
Abstract
SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.
Collapse
Affiliation(s)
- Gabor Papai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Alexandre Frechard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Olga Kolesnikova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Corinne Crucifix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| | - Adam Ben-Shem
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Equipe labellisée Ligue Contre le Cancer, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
20
|
Wang H, Dienemann C, Stützer A, Urlaub H, Cheung ACM, Cramer P. Structure of the transcription coactivator SAGA. Nature 2020; 577:717-720. [PMID: 31969703 PMCID: PMC6994259 DOI: 10.1038/s41586-020-1933-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/27/2019] [Indexed: 01/13/2023]
Abstract
Gene transcription by RNA polymerase II is regulated by activator proteins that recruit the coactivator complexes SAGA (Spt-Ada-Gcn5-acetyltransferase)1,2 and transcription factor IID (TFIID)2-4. SAGA is required for all regulated transcription5 and is conserved among eukaryotes6. SAGA contains four modules7-9: the activator-binding Tra1 module, the core module, the histone acetyltransferase (HAT) module and the histone deubiquitination (DUB) module. Previous studies provided partial structures10-14, but the structure of the central core module is unknown. Here we present the cryo-electron microscopy structure of SAGA from the yeast Saccharomyces cerevisiae and resolve the core module at 3.3 Å resolution. The core module consists of subunits Taf5, Sgf73 and Spt20, and a histone octamer-like fold. The octamer-like fold comprises the heterodimers Taf6-Taf9, Taf10-Spt7 and Taf12-Ada1, and two histone-fold domains in Spt3. Spt3 and the adjacent subunit Spt8 interact with the TATA box-binding protein (TBP)2,7,15-17. The octamer-like fold and its TBP-interacting region are similar in TFIID, whereas Taf5 and the Taf6 HEAT domain adopt distinct conformations. Taf12 and Spt20 form flexible connections to the Tra1 module, whereas Sgf73 tethers the DUB module. Binding of a nucleosome to SAGA displaces the HAT and DUB modules from the core-module surface, allowing the DUB module to bind one face of an ubiquitinated nucleosome.
Collapse
Affiliation(s)
- Haibo Wang
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Alexandra Stützer
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Göttingen, Germany
| | - Alan C M Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, UK
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
21
|
Harris MT, Jeffers V, Martynowicz J, True JD, Mosley AL, Sullivan WJ. A novel GCN5b lysine acetyltransferase complex associates with distinct transcription factors in the protozoan parasite Toxoplasma gondii. Mol Biochem Parasitol 2019; 232:111203. [PMID: 31381949 DOI: 10.1016/j.molbiopara.2019.111203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 07/31/2019] [Indexed: 01/18/2023]
Abstract
Toxoplasma gondii is a protozoan parasite that has a tremendous impact on human health and livestock. High seroprevalence among humans and other animals is facilitated by the conversion of rapidly proliferating tachyzoites into latent bradyzoites that are housed in tissue cysts, which allow transmission through predation. Epigenetic mechanisms contribute to the regulation of gene expression events that are crucial in both tachyzoites as well as their development into bradyzoites. Acetylation of histones is one of the critical histone modifications that is linked to active gene transcription. Unlike most early-branching eukaryotes, Toxoplasma possesses two GCN5 homologues, one of which, GCN5b, is essential for parasite viability. Surprisingly, GCN5b does not associate with most of the well-conserved proteins found in the GCN5 complexes of other eukaryotes. Of particular note is that GCN5b interacts with multiple putative transcription factors that have plant-like DNA-binding domains denoted as AP2. To understand the function of GCN5b and its role(s) in epigenetic gene regulation of stage switching, we performed co-immunoprecipitation of GCN5b under normal and bradyzoite induction conditions. We report the greatest resolution of the GCN5b complex to date under these various culture conditions. Moreover, reciprocal co-IPs were performed with distinct GCN5b-interacting AP2 factors (AP2IX-7 and AP2XII-4) to delineate the interactomes of each putative transcription factor. Our findings suggest that GCN5b is associated with at least two distinct complexes that are characterized by two different pairs of AP2 factors, and implicate up to four AP2 proteins to be involved with GCN5b-mediated gene regulation.
Collapse
Affiliation(s)
- Michael T Harris
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Victoria Jeffers
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jennifer Martynowicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jason D True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
22
|
Nabirochkina EN, Kurshakova MM, Georgieva SG, Kopytova DV. The role of SAGA in the transcription and export of mRNA. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SAGA/TFTC, which is a histone acetyltransferase complex, plays an important role in the regulation of transcription. We have identified that the metazoan TFTC/STAGA complexes had histone H2A and H2B deubiquitinase activity that is carried out by a DUBm (deubiquitination module). We studied the DUBm of SAGA in Drosophila melanogaster and identified Drosophila homologs of yeast DUBm components. Two subunits of DUBm (Sus1/ENY2 and Sgf11) were shown to have functions separate from DUBm function. Thus, Sus1/ENY2 was shown to be present in several different complexes. Sgf11 was found to be associated with the cap-binding complex (CBC) and recruited onto growing messenger ribonucleic acid (mRNA). Also, we have shown that Sgf11 interacted with the TREX-2/AMEX mRNA export complex and was essential for mRNA export from the nucleus. Immunostaining of the polytene chromosomes of Drosophila larvae revealed that Sgf11 is present at the sites of localization of snRNA genes. It was also found in immunostaining experiments that dPbp45, the subunit of the PBP complex, the key player in the snRNA transcription process, is associated not only with the snRNA gene localization sites, but with other sites of active transcription by PolII. We also revealed that Sgf11 was present at many active transcription sites in interbands and puffs on polytene chromosomes, Sgf11 was localized at all Brf1 (the component of the RNA polymerase III basal transcription complex) sites. We concluded that SAGA coactivated transcription of both the PolII and PolIII-dependent snRNA genes.
Collapse
|
23
|
Multiple Evolutionarily Conserved Domains of Cap2 Are Required for Promoter Recruitment and Iron Homeostasis Gene Regulation. mSphere 2018; 3:3/4/e00370-18. [PMID: 30068562 PMCID: PMC6070739 DOI: 10.1128/msphere.00370-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is required for growth and metabolism by virtually all organisms. The human fungal pathogen Candida albicans has evolved multiple strategies to acquire iron. The Cap2/Hap43 transcriptional regulator, essential for robust virulence of C. albicans, controls iron homeostasis gene expression by promoter binding and repression of iron utilization genes. The expression of iron uptake genes is also dependent on Cap2, although Cap2 was not recruited to its promoters. Cap2, bearing the conserved bipartite HAP4L-bZIP domain, also contains multiple blocks of amino acids that form the highly conserved carboxyl-terminal region. In this study, we sought to identify the requirements of the different domains for Cap2 function. We constructed a series of mutants bearing either point mutations or deletions in the conserved domains and examined Cap2 activity. Deletion of the highly conserved extreme C-terminal region did not impair expression of Cap2 mutant protein but impaired cell growth and expression of iron homeostasis genes under iron-depleted conditions. Mutations in the amino-terminal HAP4L and basic leucine zipper (bZIP) domains also impaired growth and gene expression. Furthermore, chromatin immunoprecipitation (ChIP) assays showed that the HAP4L domain and the bZIP domain are both essential for Cap2 recruitment to ACO1 and CYC1 promoters. Unexpectedly, the C-terminal conserved region was also essential for Cap2 promoter recruitment. Thus, our results suggest that Cap2 employs multiple evolutionarily conserved domains, including the C-terminal domain for its transcriptional activity.IMPORTANCE Iron is an essential micronutrient for living cells. Candida albicans, the predominant human fungal pathogen, thrives under diverse environments with vastly different iron levels in the mammalian host. Therefore, to tightly control iron homeostasis, C. albicans has evolved a set of transcriptional regulators that cooperate to either upregulate or downregulate transcription of iron uptake genes or iron utilization genes. Cap2/Hap43, a critical transcriptional regulator, contains multiple conserved protein domains. In this study, we carried out mutational analyses to identify the functional roles of the conserved protein domains in Cap2. Our results show that the bZIP, HAP4L, and the C-terminal domain are each required for Cap2 transcriptional activity. Thus, Cap2 employs multiple, disparate protein domains for regulation of iron homeostasis in C. albicans.
Collapse
|
24
|
Mittal C, Culbertson SJ, Shogren-Knaak MA. Distinct requirements of linker DNA and transcriptional activators in promoting SAGA-mediated nucleosome acetylation. J Biol Chem 2018; 293:13736-13749. [PMID: 30054274 DOI: 10.1074/jbc.ra118.004487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) family of transcriptional coactivators are prototypical nucleosome acetyltransferase complexes that regulate multiple steps in gene transcription. The size and complexity of both the SAGA enzyme and the chromatin substrate provide numerous opportunities for regulating the acetylation process. To better probe this regulation, here we developed a bead-based nucleosome acetylation assay to characterize the binding interactions and kinetics of acetylation with different nucleosomal substrates and the full SAGA complex purified from budding yeast (Saccharomyces cerevisiae). We found that SAGA-mediated nucleosome acetylation is stimulated up to 9-fold by DNA flanking the nucleosome, both by facilitating the binding of SAGA and by accelerating acetylation turnover. This stimulation required that flanking DNA is present on both sides of the nucleosome and that one side is >15 bp long. The Gal4-VP16 transcriptional activator fusion protein could also augment nucleosome acetylation up to 5-fold. However, contrary to our expectations, this stimulation did not appear to occur by stabilizing the binding of SAGA toward nucleosomes containing an activator-binding site. Instead, increased acetylation turnover by SAGA stimulated nucleosome acetylation. These results suggest that the Gal4-VP16 transcriptional activator directly stimulates acetylation via a dual interaction with both flanking DNA and SAGA. Altogether, these findings uncover several critical mechanisms of SAGA regulation by chromatin substrates.
Collapse
Affiliation(s)
- Chitvan Mittal
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Sannie J Culbertson
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Michael A Shogren-Knaak
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
25
|
Berg MD, Genereaux J, Karagiannis J, Brandl CJ. The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. G3 (BETHESDA, MD.) 2018; 8:1943-1957. [PMID: 29626083 PMCID: PMC5982823 DOI: 10.1534/g3.118.200288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022]
Abstract
Tra1 is an essential component of the SAGA/SLIK and NuA4 complexes in S. cerevisiae, recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members (e.g., Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity. We identified three conserved arginine residues in Tra1 that reside proximal or within the cleft between the N- and C-terminal subdomains of the PI3K domain. To establish a function for Tra1's PI3K domain and specifically the cleft region, we characterized a tra1 allele where these three arginine residues are mutated to glutamine. The half-life of the Tra1[Formula: see text] protein is reduced but its steady state level is maintained at near wild-type levels by a transcriptional feedback mechanism. The tra1[Formula: see text] allele results in slow growth under stress and alters the expression of genes also regulated by other components of the SAGA complex. Tra1[Formula: see text] is less efficiently transported to the nucleus than the wild-type protein. Likely related to this, Tra1[Formula: see text] associates poorly with SAGA/SLIK and NuA4. The ratio of Spt7SLIK to Spt7SAGA increases in the tra1[Formula: see text] strain and truncated forms of Spt20 become apparent upon isolation of SAGA/SLIK. Intragenic suppressor mutations of tra1[Formula: see text] map to the cleft region further emphasizing its importance. We propose that the PI3K domain of Tra1 is directly or indirectly important for incorporating Tra1 into SAGA and NuA4 and thus the biosynthesis and/or stability of the intact complexes.
Collapse
Affiliation(s)
- Matthew D Berg
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| | - Jim Karagiannis
- Department of Biology, Western University, London, Ontario, Canada N6A5B7
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada N6A5C1
| |
Collapse
|
26
|
Dahiya R, Natarajan K. Mutational analysis of TAF6 revealed the essential requirement of the histone-fold domain and the HEAT repeat domain for transcriptional activation. FEBS J 2018; 285:1491-1510. [PMID: 29485702 DOI: 10.1111/febs.14423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022]
Abstract
TAF6, bearing the histone H4-like histone-fold domain (HFD), is a subunit of the core TAF module in TFIID and SAGA transcriptional regulatory complexes. We isolated and characterized several yeast TAF6 mutants bearing amino acid substitutions in the HFD, the middle region or the HEAT repeat domain. The TAF6 mutants were highly defective for transcriptional activation by the Gcn4 and Gal4 activators. CHIP assays showed that the TAF6-HFD and the TAF6-HEAT domain mutations independently abrogated the promoter occupancy of TFIID and SAGA complex in vivo. We employed genetic and biochemical assays to identify the relative contributions of the TAF6 HFD and HEAT domains. First, the temperature-sensitive phenotype of the HEAT domain mutant was suppressed by overexpression of the core TAF subunits TAF9 and TAF12, as well as TBP. The HFD mutant defect, however, was suppressed by TAF5 but not by TAF9, TAF12 or TBP. Second, the HEAT mutant but not the HFD mutant was defective for growth in the presence of transcription elongation inhibitors. Third, coimmunoprecipitation assays using yeast cell extracts indicated that the specific TAF6 HEAT domain residues are critical for the interaction of core TAF subunits with the SAGA complex but not with TFIID. The specific HFD residues in TAF6, although required for heterodimerization between TAF6 and TAF9 recombinant proteins, were dispensable for association of the core TAF subunits with TFIID and SAGA in yeast cell extracts. Taken together, the results of our studies have uncovered the non-overlapping requirement of the evolutionarily conserved HEAT domain and the HFD in TAF6 for transcriptional activation.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Krishnamurthy Natarajan
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
27
|
Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex. Nat Commun 2018; 9:1147. [PMID: 29559617 PMCID: PMC5861120 DOI: 10.1038/s41467-018-03504-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/19/2018] [Indexed: 01/06/2023] Open
Abstract
The NuA4/TIP60 acetyltransferase complex is required for gene regulation, DNA repair and cell cycle progression. The limited structural information impeded understanding of NuA4/TIP60 assembly and regulatory mechanism. Here, we report the 4.7 Å cryo-electron microscopy (cryo-EM) structure of a NuA4/TIP60 TEEAA assembly (Tra1, Eaf1, Eaf5, actin and Arp4) and the 7.6 Å cryo-EM structure of a TEEAA-piccolo assembly (Esa1, Epl1, Yng2 and Eaf6). The Tra1 and Eaf1 constitute the assembly scaffold. The Eaf1 SANT domain tightly binds to the LBE and FATC domains of Tra1 by ionic interactions. The actin/Arp4 peripherally associates with Eaf1 HSA domain. The Eaf5/7/3 (TINTIN) and piccolo modules largely pack against the FAT and HEAT repeats of Tra1 and their association depends on Eaf1 N-terminal and HSA regions, respectively. These structures elucidate the detailed architecture and molecular interactions between NuA4 subunits and offer exciting insights into the scaffolding and regulatory mechanisms of Tra1 pseudokinase. The NuA4 histone acetyltransferase complex is important for gene regulation, DNA repair processes and cell cycle progression. Here the authors give molecular insights into the NuA4 complex by presenting the cryo-EM structures of the NuA4 TEEAA (Tra1, Eaf1, Eaf5, actin, and Arp4) and TEEAA-piccolo NuA4 assemblies.
Collapse
|
28
|
Zeng P, Wang Y, Zheng Y, Song X, Yin Y. Cancer‑testis antigen HCA587/MAGEC2 interacts with the general transcription coactivator TAF9 in cancer cells. Mol Med Rep 2017; 17:3226-3231. [PMID: 29257297 DOI: 10.3892/mmr.2017.8260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma-associated antigen 587/melanoma antigen gene (HCA587/MAGEC2) is a cancer‑testis antigen, which is highly expressed in various types of tumors, but not in normal tissues with the exception of male germ‑line cells. HCA587/MAGEC2 has been previously recognized as a tumor‑specific target for immunotherapy; however, its biological functions have been relatively understudied. To investigate the function of HCA587/MAGEC2, the amino acid sequence of HCA587/MAGEC2 was analyzed by bioinformatics and it was demonstrated that HCA587/MAGEC2 contains a 9‑amino acid transactivation domain which may mediate the interaction of most transcription factors with TATA‑box binding protein associated factor 9 (TAF9), a general transcription coactivator. Co‑immunoprecipitation experiments revealed that HCA587/MAGEC2 interacted with TAF9 in transfected 293T and in A375 melanoma cells endogenously expressing HCA587/MAGEC2, and confirmed the endogenous interaction of HCA587/MAGEC2 and TAF9 within cells. Endogenous HCA587/MAGEC2 and TAF9 were demonstrated to be co‑localized principally in the nucleus of tumor cells using immunofluorescence. Glutathione-S-transferase pull‑down experiments demonstrated that HCA587/MAGEC2 interacts with TAF9 directly and the conserved region in the TAF9 may becrucial for HCA587/MAGEC2 binding. The present study demonstrated that the cancer‑testis antigen HCA587/MAGEC2 directly interacted with TAF9, which may provide novel information for identifying the oncogenic functions of HCA587/MAGEC2 in tumor cells.
Collapse
Affiliation(s)
- Pumei Zeng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yutian Zheng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
29
|
Structure of the transcription activator target Tra1 within the chromatin modifying complex SAGA. Nat Commun 2017; 8:1556. [PMID: 29146944 PMCID: PMC5691046 DOI: 10.1038/s41467-017-01564-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription co-activator complex SAGA is recruited to gene promoters by sequence-specific transcriptional activators and by chromatin modifications to promote pre-initiation complex formation. The yeast Tra1 subunit is the major target of acidic activators such as Gal4, VP16, or Gcn4 but little is known about its structural organization. The 430 kDa Tra1 subunit and its human homolog the transformation/transcription domain-associated protein TRRAP are members of the phosphatidyl 3-kinase-related kinase (PIKK) family. Here, we present the cryo-EM structure of the entire SAGA complex where the major target of activator binding, the 430 kDa Tra1 protein, is resolved with an average resolution of 5.7 Å. The high content of alpha-helices in Tra1 enabled tracing of the majority of its main chain. Our results highlight the integration of Tra1 within the major epigenetic regulator SAGA. The transcription co-activator complex SAGA is recruited to promoters by transcriptional activators and promotes the formation of the pre-initiation complex. Here, the authors present the cryo-EM structure of the SAGA complex and resolve the major target of activator binding, the 430 kDa Tra1 protein.
Collapse
|
30
|
Helmlinger D, Tora L. Sharing the SAGA. Trends Biochem Sci 2017; 42:850-861. [PMID: 28964624 PMCID: PMC5660625 DOI: 10.1016/j.tibs.2017.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. Co-activators establish transcriptionally competent promoter architectures and chromatin signatures to allow the formation of the pre-initiation complex (PIC), comprising RNA polymerase II (Pol II) and general transcription factors (GTFs). Many GTFs and co-activators are multisubunit complexes, in which individual components are organized into functional modules carrying specific activities. Recent advances in affinity purification and mass spectrometry analyses have revealed that these complexes often share functional modules, rather than containing unique components. This observation appears remarkably prevalent for chromatin-modifying and remodeling complexes. Here, we use the modular organization of the evolutionary conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) complex as a paradigm to illustrate how co-activators share and combine a relatively limited set of functional tools.
Collapse
Affiliation(s)
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
31
|
Laboucarié T, Detilleux D, Rodriguez-Mias RA, Faux C, Romeo Y, Franz-Wachtel M, Krug K, Maček B, Villén J, Petersen J, Helmlinger D. TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability. EMBO Rep 2017; 18:2197-2218. [PMID: 29079657 DOI: 10.15252/embr.201744942] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Gene expression regulation is essential for cells to adapt to changes in their environment. Co-activator complexes have well-established roles in transcriptional regulation, but less is known about how they sense and respond to signaling cues. We have previously shown that, in fission yeast, one such co-activator, the SAGA complex, controls gene expression and the switch from proliferation to differentiation in response to nutrient availability. Here, using a combination of genetic, biochemical, and proteomic approaches, we show that SAGA responds to nutrients through the differential phosphorylation of its Taf12 component, downstream of both the TORC1 and TORC2 pathways. Taf12 phosphorylation increases early upon starvation and is controlled by the opposing activities of the PP2A phosphatase, which is activated by TORC1, and the TORC2-activated Gad8AKT kinase. Mutational analyses suggest that Taf12 phosphorylation prevents cells from committing to differentiation until starvation reaches a critical level. Overall, our work reveals that SAGA is a direct target of nutrient-sensing pathways and has uncovered a mechanism by which TORC1 and TORC2 converge to control gene expression and cell fate decisions.
Collapse
Affiliation(s)
| | | | | | - Céline Faux
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Yves Romeo
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | | | | | - Boris Maček
- Proteome Center Tübingen, Tuebingen, Germany
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, School of Medicine, Faculty of Health Science, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
32
|
Kassem S, Villanyi Z, Collart MA. Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA. Nucleic Acids Res 2017; 45:1186-1199. [PMID: 28180299 PMCID: PMC5388395 DOI: 10.1093/nar/gkw1059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 11/13/2022] Open
Abstract
Acetylation of histones regulates gene expression in eukaryotes. In the yeast Saccharomyces cerevisiae it depends mainly upon the ADA and SAGA histone acetyltransferase complexes for which Gcn5 is the catalytic subunit. Previous screens have determined that global acetylation is reduced in cells lacking subunits of the Ccr4–Not complex, a global regulator of eukaryotic gene expression. In this study we have characterized the functional connection between the Ccr4–Not complex and SAGA. We show that SAGA mRNAs encoding a core set of SAGA subunits are tethered together for co-translational assembly of the encoded proteins. Ccr4–Not subunits bind SAGA mRNAs and promote the co-translational assembly of these subunits. This is needed for integrity of SAGA. In addition, we determine that a glycolytic enzyme, the glyceraldehyde-3-phosphate dehydrogenase Tdh3, a prototypical moonlighting protein, is tethered at this site of Ccr4–Not-dependent co-translational SAGA assembly and functions as a chaperone.
Collapse
Affiliation(s)
- Sari Kassem
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Zoltan Villanyi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Díaz-Santín LM, Lukoyanova N, Aciyan E, Cheung AC. Cryo-EM structure of the SAGA and NuA4 coactivator subunit Tra1 at 3.7 angstrom resolution. eLife 2017; 6:28384. [PMID: 28767037 PMCID: PMC5576489 DOI: 10.7554/elife.28384] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/31/2017] [Indexed: 01/30/2023] Open
Abstract
Coactivator complexes SAGA and NuA4 stimulate transcription by post-translationally modifying chromatin. Both complexes contain the Tra1 subunit, a highly conserved 3744-residue protein from the Phosphoinositide 3-Kinase-related kinase (PIKK) family and a direct target for multiple sequence-specific activators. We present the Cryo-EM structure of Saccharomyces cerevsisae Tra1 to 3.7 Å resolution, revealing an extensive network of alpha-helical solenoids organized into a diamond ring conformation and is strikingly reminiscent of DNA-PKcs, suggesting a direct role for Tra1 in DNA repair. The structure was fitted into an existing SAGA EM reconstruction and reveals limited contact surfaces to Tra1, hence it does not act as a molecular scaffold within SAGA. Mutations that affect activator targeting are distributed across the Tra1 structure, but also cluster within the N-terminal Finger region, indicating the presence of an activator interaction site. The structure of Tra1 is a key milestone in deciphering the mechanism of multiple coactivator complexes. Inside our cells, histone proteins package and condense DNA so that it can fit into the cell nucleus. However, this also switches off the genes, since the machines that read and interpret them can no longer access the underlying DNA. Turning genes on requires specific enzymes that chemically modify the histone proteins to regain access to the DNA. This must be carefully controlled, otherwise the ‘wrong’ genes can be activated, causing undesired effects and endangering the cell. Histone modifying enzymes often reside in large protein complexes. Two well-known examples are the SAGA and NuA4 complexes. Both have different roles during gene activation, but share a protein called Tra1. This protein enables SAGA and NuA4 to act on specific genes by binding to ‘activator proteins’ that are found on the DNA. Tra1 is one of the biggest proteins in the cell, but its size makes it difficult to study and until now, its structure was unknown. To determine the structure of Tra1, Díaz-Santín et al. extracted the protein from baker’s yeast, and examined it using electron microscopy. The structure of Tra1 resembled a diamond ring with multiple protein domains that correspond to a band, setting and a centre stone. The structure was detailed enough so that Díaz-Santín et al. could locate various mutations that affect the role of Tra1. These locations are likely to be direct interfaces to the ‘activator proteins’. Moreover, the study showed that Tra1 was similar to another protein that repairs damaged DNA. These results suggest that Tra1 not only works as an activator target, but may also have a role in repairing damaged DNA, and might even connect these two processes. Yeast Tra1 is also very similar to its human counterpart, which has been shown to stimulate cells to become cancerous. Further studies based on these results may help us understand how cancer begins.
Collapse
Affiliation(s)
- Luis Miguel Díaz-Santín
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Natasha Lukoyanova
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, United Kingdom
| | - Emir Aciyan
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, United Kingdom
| | - Alan Cm Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, United Kingdom.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, United Kingdom
| |
Collapse
|
34
|
Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3. Appl Biochem Biotechnol 2017; 184:155-167. [PMID: 28656551 DOI: 10.1007/s12010-017-2531-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/04/2017] [Indexed: 10/19/2022]
Abstract
Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h-1) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.
Collapse
|
35
|
Characterizing the molecular architectures of chromatin-modifying complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1613-1622. [PMID: 28652207 DOI: 10.1016/j.bbapap.2017.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
36
|
Sinha I, Kumar S, Poonia P, Sawhney S, Natarajan K. Functional specialization of two paralogous TAF12 variants by their selective association with SAGA and TFIID transcriptional regulatory complexes. J Biol Chem 2017; 292:6047-6055. [PMID: 28275052 PMCID: PMC5391738 DOI: 10.1074/jbc.c116.768549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
TATA box-binding protein (TBP)-associated factors (TAFs), evolutionarily conserved from yeast to humans, play a central role during transcription initiation. A subset of TAF proteins is shared in transcription factor II D (TFIID) and SAGA transcription regulatory complexes. Although higher eukaryotes contain multiple TAF variants that specify tissue- and developmental stage-specific organization of TFIID or SAGA complexes, in unicellular genomes, however, each TAF is encoded by a single gene. Surprisingly, we found that the genome of Candida albicans, the predominant human fungal pathogen, contains two paralogous TAF12 genes, CaTAF12L and CaTAF12, encoding H2B-like histone-fold domain-containing variants. Of the available fungal genome sequences, only seven other closely related diploid pathogenic Candida genomes encode the two TAF12 paralogs. Using affinity purifications from C. albicans cell extracts, we demonstrate that CaTAF12L uniquely associates with the SAGA complex and CaTAF12 associates with the TFIID complex. We further show that CaTAF12, but not CaTAF12L, is essential for C. albicans growth. Conditional depletion of the two TAF12 variant proteins caused distinct cellular and colony phenotypes. Together our results define a specialized organization of the TAF12 variants and non-redundant roles for the two TAF12 variants in the unicellular C. albicans genome.
Collapse
Affiliation(s)
- Ishani Sinha
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shambhu Kumar
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Poonia
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonal Sawhney
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Krishnamurthy Natarajan
- From the Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
37
|
Kamata K, Shinmyozu K, Nakayama JI, Hatashita M, Uchida H, Oki M. Four domains of Ada1 form a heterochromatin boundary through different mechanisms. Genes Cells 2016; 21:1125-1136. [PMID: 27647735 DOI: 10.1111/gtc.12421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/14/2016] [Indexed: 01/21/2023]
Abstract
In eukaryotic cells, there are two chromatin states, silenced and active, and the formation of a so-called boundary plays a critical role in demarcating these regions; however, the mechanisms underlying boundary formation are not well understood. In this study, we focused on S. cerevisiae ADA1, a gene previously shown to encode a protein with a robust boundary function. Ada1 is a component of the histone modification complex Spt-Ada-Gcn5-acetyltransferase (SAGA) and the SAGA-like (SLIK) complex, and it helps to maintain the integrity of these complexes. Domain analysis showed that four relatively small regions of Ada1 (Region I; 66-75 aa, II; 232-282 aa, III; 416-436 aa and IV; 476-488 aa) have a boundary function. Among these, Region II could form an intact SAGA complex, whereas the other regions could not. Investigation of cellular factors that interact with these small regions identified a number of proteasome-associated proteins. Interestingly, the boundary functions of Region II and Region III were affected by depletion of Ump1, a maturation and assembly factor of the 20S proteasome. These results suggest that the boundary function of Ada1 is functionally linked to proteasome processes and that the four relatively small regions in ADA1 form a boundary via different mechanisms.
Collapse
Affiliation(s)
- Kazuma Kamata
- Department of Applied Chemistry Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo, Fukui, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Jun-Ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Masanori Hatashita
- Research and Development Department, Wakasa Wan Energy Research Center, Tsuruga, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo, Fukui, Japan
| | - Masaya Oki
- Department of Applied Chemistry Biotechnology, Graduate School of Engineering, University of Fukui, Bunkyo, Fukui, Japan. .,Life Science Innovation Center, University of Fukui, Bunkyo, Fukui, Japan. .,PRESTO, Japan Science and Technology Agency (JST), Honcho Kawaguchi, Saitama, Japan.
| |
Collapse
|
38
|
Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae. Genetics 2016; 203:1693-707. [PMID: 27317677 DOI: 10.1534/genetics.116.189506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023] Open
Abstract
Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability.
Collapse
|
39
|
Ravarani CNJ, Chalancon G, Breker M, de Groot NS, Babu MM. Affinity and competition for TBP are molecular determinants of gene expression noise. Nat Commun 2016; 7:10417. [PMID: 26832815 PMCID: PMC4740812 DOI: 10.1038/ncomms10417] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
Abstract
Cell-to-cell variation in gene expression levels (noise) generates phenotypic diversity and is an important phenomenon in evolution, development and disease. TATA-box binding protein (TBP) is an essential factor that is required at virtually every eukaryotic promoter to initiate transcription. While the presence of a TATA-box motif in the promoter has been strongly linked with noise, the molecular mechanism driving this relationship is less well understood. Through an integrated analysis of multiple large-scale data sets, computer simulation and experimental validation in yeast, we provide molecular insights into how noise arises as an emergent property of variable binding affinity of TBP for different promoter sequences, competition between interaction partners to bind the same surface on TBP (to either promote or disrupt transcription initiation) and variable residence times of TBP complexes at a promoter. These determinants may be fine-tuned under different conditions and during evolution to modulate eukaryotic gene expression noise.
Collapse
Affiliation(s)
- Charles N J Ravarani
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guilhem Chalancon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
40
|
Durand A, Bonnet J, Fournier M, Chavant V, Schultz P. Mapping the deubiquitination module within the SAGA complex. Structure 2015; 22:1553-9. [PMID: 25441028 DOI: 10.1016/j.str.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/25/2022]
Abstract
The molecular organization of the yeast transcriptional coactivator Spt-Ada-Gcn5 acetyltransferase (SAGA) was analyzed by single-particle electron microscopy. Complete or partial deletion of the Sgf73 subunit disconnects the deubiquitination (DUB) module from SAGA and favors in our conditions the cleavage of the C-terminal ends of the Spt7 subunit and the loss of the Spt8 subunit. The structural comparison of the wild-type SAGA with two deletion mutants positioned the DUB module and enabled the fitting of the available atomic models. The localization of the DUB module close to Gcn5 defines a chromatin-binding interface within SAGA, which could be demonstrated by the binding of nucleosome core particles. The TATA-box binding protein (TBP)-interacting subunit Spt8 was found to be located close to the DUB but in a different domain than Spt3, also known to contact TBP. A flexible protein arm brings both subunits close enough to interact simultaneously with TBP.
Collapse
|
41
|
Kurabe N, Murakami S, Tashiro F. SGF29 and Sry pathway in hepatocarcinogenesis. World J Biol Chem 2015; 6:139-147. [PMID: 26322172 PMCID: PMC4549758 DOI: 10.4331/wjbc.v6.i3.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/31/2015] [Accepted: 07/02/2015] [Indexed: 02/05/2023] Open
Abstract
Deregulated c-Myc expression is a hallmark of many human cancers. We have recently identified a role of mammalian homolog of yeast SPT-ADA-GCN5-acetyltransferas (SAGA) complex component, SAGA-associated factor 29 (SGF29), in regulating the c-Myc overexpression. Here, we discuss the molecular nature of SFG29 in SPT3-TAF9-GCN5-acetyltransferase complex, a counterpart of yeast SAGA complex, and the mechanism through which the elevated SGF29 expression contribute to oncogenic potential of c-Myc in hepatocellularcarcinoma (HCC). We propose that the upstream regulation of SGF29 elicited by sex-determining region Y (Sry) is also augmented in HCC. We hypothesize that c-Myc elevation driven by the deregulated Sry and SGF29 pathway is implicated in the male specific acquisition of human HCCs.
Collapse
|
42
|
Nguyen-Huynh NT, Sharov G, Potel C, Fichter P, Trowitzsch S, Berger I, Lamour V, Schultz P, Potier N, Leize-Wagner E. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex. Protein Sci 2015; 24:1232-46. [PMID: 25753033 DOI: 10.1002/pro.2676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/04/2023]
Abstract
Understanding the way how proteins interact with each other to form transient or stable protein complexes is a key aspect in structural biology. In this study, we combined chemical cross-linking with mass spectrometry to determine the binding stoichiometry and map the protein-protein interaction network of a human SAGA HAT subcomplex. MALDI-MS equipped with high mass detection was used to follow the cross-linking reaction using bis[sulfosuccinimidyl] suberate (BS3) and confirm the heterotetrameric stoichiometry of the specific stabilized subcomplex. Cross-linking with isotopically labeled BS3 d0-d4 followed by trypsin digestion allowed the identification of intra- and intercross-linked peptides using two dedicated search engines: pLink and xQuest. The identified interlinked peptides suggest a strong network of interaction between GCN5, ADA2B and ADA3 subunits; SGF29 is interacting with GCN5 and ADA3 but not with ADA2B. These restraint data were combined to molecular modeling and a low-resolution interacting model for the human SAGA HAT subcomplex could be proposed, illustrating the potential of an integrative strategy using cross-linking and mass spectrometry for addressing the structural architecture of multiprotein complexes.
Collapse
Affiliation(s)
- Nha-Thi Nguyen-Huynh
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Grigory Sharov
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Clément Potel
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Pélagie Fichter
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Simon Trowitzsch
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Imre Berger
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Valérie Lamour
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Patrick Schultz
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Noëlle Potier
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| |
Collapse
|
43
|
Abstract
Precise regulation of gene expression programs during embryo development requires cooperation between transcriptional factors and histone-modifying enzymes, such as the Gcn5 histone acetyltransferase. Gcn5 functions within a multi-subunit complex, called SAGA, that is recruited to specific genes through interactions with sequence-specific DNA-binding proteins to aid in gene activation. Although the transcriptional programs regulated by SAGA in embryos are not well defined, deletion of either Gcn5 or USP22, the catalytic subunit of a deubiquitinase module in SAGA, leads to early embryonic lethality. Here, we review the known functions of Gcn5, USP22 and associated proteins during development and discuss how these functions might be related to human disease states, including cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Wang
- Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | | |
Collapse
|
44
|
Setiaputra D, Ross JD, Lu S, Cheng DT, Dong MQ, Yip CK. Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex. J Biol Chem 2015; 290:10057-70. [PMID: 25713136 DOI: 10.1074/jbc.m114.624684] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 01/28/2023] Open
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex is a highly conserved, 19-subunit histone acetyltransferase complex that activates transcription through acetylation and deubiquitination of nucleosomal histones in Saccharomyces cerevisiae. Because SAGA has been shown to display conformational variability, we applied gradient fixation to stabilize purified SAGA and systematically analyzed this flexibility using single-particle EM. Our two- and three-dimensional studies show that SAGA adopts three major conformations, and mutations of specific subunits affect the distribution among these. We also located the four functional modules of SAGA using electron microscopy-based labeling and transcriptional activator binding analyses and show that the acetyltransferase module is localized in the most mobile region of the complex. We further comprehensively mapped the subunit interconnectivity of SAGA using cross-linking mass spectrometry, revealing that the Spt and Taf subunits form the structural core of the complex. These results provide the necessary restraints for us to generate a model of the spatial arrangement of all SAGA subunits. According to this model, the chromatin-binding domains of SAGA are all clustered in one face of the complex that is highly flexible. Our results relate information of overall SAGA structure with detailed subunit level interactions, improving our understanding of its architecture and flexibility.
Collapse
Affiliation(s)
- Dheva Setiaputra
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - James D Ross
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Shan Lu
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Derrick T Cheng
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Meng-Qiu Dong
- the National Institute of Biological Sciences, Beijing 102206, China
| | - Calvin K Yip
- From the Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| |
Collapse
|
45
|
Moraga F, Aquea F. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:865. [PMID: 26528322 PMCID: PMC4604261 DOI: 10.3389/fpls.2015.00865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/30/2015] [Indexed: 05/07/2023]
Abstract
Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.
Collapse
Affiliation(s)
- Felipe Moraga
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- *Correspondence: Felipe Aquea
| |
Collapse
|
46
|
Bonnet J, Wang CY, Baptista T, Vincent SD, Hsiao WC, Stierle M, Kao CF, Tora L, Devys D. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes Dev 2014; 28:1999-2012. [PMID: 25228644 PMCID: PMC4173158 DOI: 10.1101/gad.250225.114] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SAGA coactivator complex contains distinct chromatin-modifying activities and is recruited by DNA-bound activators to regulate the expression of a subset of genes. Bonnet et al. discovered that SAGA acetylates the promoters and deubiquitinates the transcribed region of all expressed genes. SAGA also plays a critical role for RNA polymerase II recruitment at all expressed genes. This study uncovers a new function for SAGA as a bona fide cofactor for all RNA polymerase II transcription. The SAGA (Spt–Ada–Gcn5 acetyltransferase) coactivator complex contains distinct chromatin-modifying activities and is recruited by DNA-bound activators to regulate the expression of a subset of genes. Surprisingly, recent studies revealed little overlap between genome-wide SAGA-binding profiles and changes in gene expression upon depletion of subunits of the complex. As indicators of SAGA recruitment on chromatin, we monitored in yeast and human cells the genome-wide distribution of histone H3K9 acetylation and H2B ubiquitination, which are respectively deposited or removed by SAGA. Changes in these modifications after inactivation of the corresponding enzyme revealed that SAGA acetylates the promoters and deubiquitinates the transcribed region of all expressed genes. In agreement with this broad distribution, we show that SAGA plays a critical role for RNA polymerase II recruitment at all expressed genes. In addition, through quantification of newly synthesized RNA, we demonstrated that SAGA inactivation induced a strong decrease of mRNA synthesis at all tested genes. Analysis of the SAGA deubiquitination activity further revealed that SAGA acts on the whole transcribed genome in a very fast manner, indicating a highly dynamic association of the complex with chromatin. Thus, our study uncovers a new function for SAGA as a bone fide cofactor for all RNA polymerase II transcription.
Collapse
Affiliation(s)
- Jacques Bonnet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Chen-Yi Wang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tiago Baptista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Wei-Chun Hsiao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; UMR7104, Centre National de la Recherche Scientifique, 67404 Illkirch, France; U964, Institut National de la Santé et de la Recherche Médicale, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, Cedex, France;
| |
Collapse
|
47
|
Ginsburg DS, Anlembom TE, Wang J, Patel SR, Li B, Hinnebusch AG. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3. J Biol Chem 2014; 289:32656-70. [PMID: 25301943 DOI: 10.1074/jbc.m114.585588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cotranscriptional methylation of histone H3 lysines 4 and 36 by Set1 and Set2, respectively, stimulates interaction between nucleosomes and histone deacetylase complexes to block cryptic transcription in budding yeast. We previously showed that loss of all H3K4 and H3K36 methylation in a set1Δset2Δ mutant reduces interaction between native nucleosomes and the NuA4 lysine acetyltransferase (KAT) complex. We now provide evidence that NuA4 preferentially binds H3 tails mono- and dimethylated on H3K4 and di- and trimethylated on H3K36, an H3 methylation pattern distinct from that recognized by the RPD3C(S) and Hos2/Set3 histone deacetylase complexes (HDACs). Loss of H3K4 or H3K36 methylation in set1Δ or set2Δ mutants reduces NuA4 interaction with bulk nucleosomes in vitro and in vivo, and reduces NuA4 occupancy of transcribed coding sequences at particular genes. We also provide evidence that NuA4 acetylation of lysine residues in the histone H4 tail stimulates SAGA interaction with nucleosomes and its recruitment to coding sequences and attendant acetylation of histone H3 in vivo. Thus, H3 methylation exerts opposing effects of enhancing nucleosome acetylation by both NuA4 and SAGA as well as stimulating nucleosome deacetylation by multiple HDACs to maintain the proper level of histone acetylation in transcribed coding sequences.
Collapse
Affiliation(s)
- Daniel S Ginsburg
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548,
| | | | - Jianing Wang
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Sanket R Patel
- From the Biomedical Sciences Department, LIU Post, Brookville, New York 11548
| | - Bing Li
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Alan G Hinnebusch
- the Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
48
|
Han Y, Luo J, Ranish J, Hahn S. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 2014; 33:2534-46. [PMID: 25216679 DOI: 10.15252/embj.201488638] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The conserved transcription coactivator SAGA is comprised of several modules that are involved in activator binding, TBP binding, histone acetylation (HAT) and deubiquitination (DUB). Crosslinking and mass spectrometry, together with genetic and biochemical analyses, were used to determine the molecular architecture of the SAGA-TBP complex. We find that the SAGA Taf and Taf-like subunits form a TFIID-like core complex at the center of SAGA that makes extensive interactions with all other SAGA modules. SAGA-TBP binding involves a network of interactions between subunits Spt3, Spt8, Spt20, and Spt7. The HAT and DUB modules are in close proximity, and the DUB module modestly stimulates HAT function. The large activator-binding subunit Tra1 primarily connects to the TFIID-like core via its FAT domain. These combined results were used to derive a model for the arrangement of the SAGA subunits and its interactions with TBP. Our results provide new insight into SAGA function in gene regulation, its structural similarity with TFIID, and functional interactions between the SAGA modules.
Collapse
Affiliation(s)
- Yan Han
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Biological Physics, Structure and Design Program, University of Washington, Seattle, WA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
49
|
Vogl T, Thallinger GG, Zellnig G, Drew D, Cregg JM, Glieder A, Freigassner M. Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression. N Biotechnol 2014; 31:538-52. [PMID: 24594271 DOI: 10.1016/j.nbt.2014.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 01/13/2023]
Abstract
Membrane proteins are the largest group of human drug targets and are also used as biocatalysts. However, due to their complexity, efficient expression remains a bottleneck for high level production. In recent years, the methylotrophic yeast Pichia pastoris has emerged as one of the most commonly used expression systems for membrane protein production. Here, we have analysed the transcriptomes of P. pastoris strains producing different classes of membrane proteins (mitochondrial, ER/Golgi and plasma membrane localized) to understand the cellular response and to identify targets to engineer P. pastoris towards an improved chassis for membrane protein production. Microarray experiments revealed varying transcriptional responses depending on the enzymatic activity, subcellular localization and physiological role of the membrane proteins. While an alternative oxidase evoked primarily a response within the mitochondria, the overexpression of transporters entering the secretory pathway had a wide effect on lipid metabolism and induced the upregulation of the UPR (unfolded protein response) transcription factor Hac1p. Coexpression of P. pastoris endogenous HAC1 increased the levels of ER-resident membrane proteins 1.5- to 2.1-fold. Subsequent transcriptome analysis of HAC1 coexpression revealed an upregulation of the folding machinery correlating with an expansion of the ER membrane capacity, thus boosting membrane protein production. Hence, our study has helped to elucidate the cellular response of P. pastoris to the expression of different classes of membrane proteins and led specifically to new insights into the effect of PpHac1p on membrane proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14/5, 8010 Graz, Austria; Omics Center Graz, Stiftingtalstrasse 24, 8036 Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Guenther Zellnig
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - David Drew
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James M Cregg
- Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711, USA
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Maria Freigassner
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria.
| |
Collapse
|
50
|
Dimeric structure of p300/CBP associated factor. BMC STRUCTURAL BIOLOGY 2014; 14:2. [PMID: 24423233 PMCID: PMC3897949 DOI: 10.1186/1472-6807-14-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/10/2014] [Indexed: 12/30/2022]
Abstract
Background p300/CBP associating factor (PCAF, also known as KAT2B for lysine acetyltransferase 2B) is a catalytic subunit of megadalton metazoan complex ATAC (Ada-Two-A containing complex) for acetylation of histones. However, relatively little is known about the regulation of the enzymatic activity of PCAF. Results Here we present two dimeric structures of the PCAF acetyltransferase (HAT) domain. These dimerizations are mediated by either four-helical hydrophobic interactions or a ß-sheet extension. Our chemical cross-linking experiments in combined with site-directed mutagenesis demonstrated that the PCAF HAT domain mainly forms a dimer in solution through one of the observed interfaces. The results of maltose binding protein (MBP)-pulldown, co-immunoprecipitation and multiangle static light scattering experiments further indicated that PCAF dimeric state is detectable and may possibly exist in vivo. Conclusions Taken together, our structural and biochemical studies indicate that PCAF appears to be a dimer in its functional ATAC complex.
Collapse
|