1
|
Tsunada J, Eliades SJ. Frontal-auditory cortical interactions and sensory prediction during vocal production in marmoset monkeys. Curr Biol 2025:S0960-9822(25)00393-8. [PMID: 40250436 DOI: 10.1016/j.cub.2025.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/20/2025] [Accepted: 03/28/2025] [Indexed: 04/20/2025]
Abstract
The control of speech and vocal production involves the calculation of error between the intended vocal output and the resulting auditory feedback. This model has been supported by evidence that the auditory cortex (AC) is suppressed immediately before and during vocal production yet remains sensitive to differences between vocal output and altered auditory feedback. This suppression has been suggested to be the result of top-down signals about the intended vocal output, potentially originating from frontal cortical (FC) areas. However, whether FC is the source of suppressive and predictive signaling to AC during vocalization remains unknown. Here, we simultaneously recorded neural activity from both AC and FC of marmoset monkeys during self-initiated vocalizations. We found increases in neural activity in both brain areas from 1 to 0.5 s before vocal production (early pre-vocal period), specifically changes in both multi-unit activity and theta-band power. Connectivity analysis using Granger causality demonstrated that FC sends directed signaling to AC during this early pre-vocal period. Importantly, early pre-vocal activity correlated with both vocalization-induced suppression in AC as well as the structure and acoustics of subsequent calls, such as fundamental frequency. Furthermore, bidirectional auditory-frontal interactions emerged during experimentally altered vocal feedback and predicted subsequent compensatory vocal behavior. These results suggest that FC communicates with AC during vocal production, with frontal-to-auditory signals that may reflect the transmission of sensory prediction information before vocalization and bidirectional signaling during vocalization suggestive of error detection that could drive feedback-dependent vocal control.
Collapse
Affiliation(s)
- Joji Tsunada
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 0208550, Iwate, Japan.
| | - Steven J Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Biondi M, Marino M, Mantini D, Spironelli C. Brain Structural Alterations Underlying Mood-Related Deficits in Schizophrenia. Biomedicines 2025; 13:736. [PMID: 40149712 PMCID: PMC11939877 DOI: 10.3390/biomedicines13030736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Schizophrenia (SZ) is a complex psychiatric disorder characterized by neurodegenerative processes, but the structural brain alterations associated with its progression remain poorly understood. This study investigated structural brain changes in SZ, particularly in the fronto-temporal and limbic regions, and explored their relationship with symptom severity, with a focus on mood- and emotion-related symptoms. Methods: We analyzed structural MRI data from 74 SZ patients and 91 healthy controls (HCs) using voxel-based morphometry (VBM) to compare whole-brain grey matter volumes (GMVs). The analysis focused on the fronto-temporal and limbic regions, and correlations between GMV and symptom severity were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Generalized Psychopathology (GP) scale. Results: SZ patients exhibited significant reductions in GMV in the fronto-temporal and limbic regions, including the dorsolateral prefrontal cortex (dlPFC) and the temporal pole, compared to HCs. Notably, a significant positive association was found between GMV in the right inferior temporal gyrus (ITG) and the severity of generalized psychopathology, as well as with anxiety, depression, mannerisms, and unusual thought content. Further post hoc analysis identified a specific cluster of mood-related symptoms contributing to the GP scale, which correlated with GMV changes in the right ITG. Conclusions: Our findings provide new evidence of structural brain alterations in SZ, particularly in the fronto-temporal and limbic regions, suggesting a progressive neurodegenerative pattern. The role of the right ITG in mood- and emotion-related symptoms requires further exploration, as it could offer insights into SZ pathophysiology and aid in distinguishing SZ from other mood-related disorders.
Collapse
Affiliation(s)
- Margherita Biondi
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy;
| | - Marco Marino
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium;
| | - Chiara Spironelli
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy;
- Department of General Psychology, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
3
|
Whitford TJ, Spencer KM, Godwin M, Hirano Y, Chung LKH, Vodovozov W, Griffiths O, Harris AWF, Le Pelley ME, Jack BN. Gamma and Theta/Alpha-Band Oscillations in the Electroencephalogram Distinguish the Content of Inner Speech. eNeuro 2025; 12:ENEURO.0297-24.2025. [PMID: 39843220 PMCID: PMC11810546 DOI: 10.1523/eneuro.0297-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Inner speech refers to the silent production of language in one's mind. As a purely mental action without obvious physical manifestations, inner speech has been notoriously difficult to quantify. To address this issue, the present study repurposed the phenomenon of speaking-induced suppression, wherein overt speech has been consistently shown to elicit reduced auditory evoked potentials compared with externally generated speech, as well as changes in oscillatory activity in gamma and theta frequency bands. Given the functional similarities between inner and overt speech, we used an established experimental protocol to investigate whether similar metrics could be used to distinguish the content of inner speech. Healthy participants (n = 129) produced an inner syllable at a precisely specified time. An audible syllable was concurrently presented which either matched or mismatched the content of the inner syllable. The results revealed that Match and Mismatch conditions could be differentiated on the basis of their evoked oscillations in the gamma, theta, and alpha bands. Notably, there was a gamma-band oscillation in the vicinity of the P2 that differed between the Match and Mismatch conditions, suggesting that "late" gamma-band activity may index consciously perceived expectancy violations, or cognitive prediction errors. Regarding the auditory evoked potentials, the N1 component was suppressed in the Match condition while the P2 component was suppressed in the Mismatch condition, replicating previous findings. This study provides support for the existence of "inner speaking-induced suppression", and demonstrates that inner syllables can be differentiated based on their influence on the electroencephalographic activity elicited by simultaneously-presented audible syllables.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, New South Wales 2145, Australia
| | - Kevin M Spencer
- Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02130
| | - Marianthe Godwin
- School of Psychology, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Yoji Hirano
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Lawrence Kin-Hei Chung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong 999077, Hong Kong SAR, China
| | - Wadim Vodovozov
- Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, New York 11004
| | - Oren Griffiths
- School of Psychology, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Anthony W F Harris
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, New South Wales 2145, Australia
- Speciality of Psychiatry, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mike E Le Pelley
- School of Psychology, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Canberra 0200, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Grent-'t-Jong T, Dheerendra P, Fusar-Poli P, Gross J, Gumley AI, Krishnadas R, Muckli LF, Uhlhaas PJ. Entrainment of neural oscillations during language processing in Early-Stage schizophrenia. Neuroimage Clin 2024; 44:103695. [PMID: 39536523 PMCID: PMC11602575 DOI: 10.1016/j.nicl.2024.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Impairments in language processing in schizophrenia (ScZ) are a central aspect of the disorder but the underlying pathophysiology mechanisms are unclear. In the current study, we tested the hypothesis that neural oscillations are impaired during speech tracking in early-stage ScZ and in participants at clinical high-risk for psychosis (CHR-P). METHOD Magnetoencephalography (MEG) was used in combination with source reconstructed time-series to examine delta and theta-band entrainment during continuous speech. Participants were presented with a 5-minute audio recording during which they either attened to the story or word level. MEG-data were obtained from n = 22 CHR-P participants, n = 23 early-stage ScZ-patients, and n = 44 healthy controls (HC). Data were analysed with a Mutual Information (MI) approach to compute statistical dependence between the MEG and auditory signal, thus estimating individual speech-tracking ability. MEG-activity was reconstructed in a language network (bilateral inferior frontal cortex [F3T; Broca's], superior temporal areas [STS3, STS4; Wernicke's areas], and primary auditory cortex [bilateral HES; Heschl's gyrus]). MEG-data were correlated with clinical symptoms. RESULTS Theta-band entrainment in left Heschl's gyrus, averaged across groups, was significantly lower in the STORY compared to WORD condition (p = 0.022), and averaged over conditions, significantly lower in CHR-Ps (p = 0.045), but intact in early ScZ patients (p = 0.303), compared to controls. Correlation analyses between MEG data and symptom indicated that lower theta-band tracking in CHR-Ps was linked to the severity of perceptual abnormalities (p = 0.018). CONCLUSION Our results show that CHR-P participants involve impairments in theta-band entrainment during speech tracking in left primary auditory cortex while higher-order speech processing areas were intact. Moreover, the severity of aberrant perceptual experiences in CHR-P participants correlated with deficits in theta-band entrainment. Together, these findings highlight the possibility that neural oscillations during language processing could reveal fundamental abnormalities in speech processing which may constitute candidate biomarkers for early detection and diagnosis of ScZ.
Collapse
Affiliation(s)
- Tineke Grent-'t-Jong
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | | | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, King's College London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Italy; Outreach and Support in South-London (OASIS) service, South London and Maudlsey (SLaM) NHS Foundation Trust, UK; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | | | | | - Lars F Muckli
- School of Psychology and Neuroscience, University of Glasgow, UK
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany; School of Psychology and Neuroscience, University of Glasgow, UK.
| |
Collapse
|
5
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Hernández-García M, Fernández-Linsenbarth I, Díez Á, Roig-Herrero A, Osorio-Iriarte E, Molina V. Corollary discharge and anomalous self-experiences in schizophrenia and bipolar disorder: A specificity analysis. Clin Neurophysiol 2024; 166:87-95. [PMID: 39137502 DOI: 10.1016/j.clinph.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE The Corollary Discharge (CD) mechanism inhibits self-generated speech sound perception, appearing disrupted in schizophrenia and potentially contributing to Anomalous Self-Experiences (ASEs). However, it remains unclear if this alteration and its correlation with ASEs extend to other psychotic disorders. METHODS Electroencephalography was used to study the N1 Event-Related Potential (ERP) as an index of CD-mediated suppression in the auditory cortex across thirty-five participants with schizophrenia, twenty-six with bipolar disorder, and thirty healthy controls. Auditory N1 was elicited by two conditions: real-time listening to self-pronounced vowels while speaking through connected microphone and earphones (listen/talk -or talk condition in previous literature-) and passive listening to the same previously recorded self-uttered vowels (listen/no talk -or listen condition-). RESULTS N1 ERP amplitude was lower in the listen/talk condition compared to listen/no talk across all groups. However, N1 suppression was significantly reduced in schizophrenia, with bipolar patients showing intermediate attenuation between both groups (i.e., non-significantly different from controls). Furthermore, N1 suppression inversely correlated with ASEs severity only in schizophrenia. CONCLUSIONS Dysfunction of the CD mechanism may be a defining feature of schizophrenia, where it is connected to ASEs. SIGNIFICANCE These results corroborate previous findings linking auditory N1 ERP suppression with disrupted CD mechanism in schizophrenia, but not in bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Spain
| | - Alejandro Roig-Herrero
- Psychiatry Department, School of Medicine, University of Valladolid, Spain; Imaging Processing Laboratory, University of Valladolid, Spain
| | | | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Spain; Psychiatry Service, University Clinical Hospital of Valladolid, Spain.
| |
Collapse
|
6
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Hernández-García M, Fernández-Linsenbarth I, Díez Á, Fondevila Estevez S, Castaño C, Muñoz F, Sanz-Fuentenebro J, Roig-Herrero A, Molina V. Corollary Discharge Dysfunction as a Possible Substrate of Anomalous Self-experiences in Schizophrenia. Schizophr Bull 2024; 50:1137-1146. [PMID: 37951230 PMCID: PMC11349017 DOI: 10.1093/schbul/sbad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
BACKGROUND AND HYPOTHESIS Corollary discharge mechanism suppresses the conscious auditory sensory perception of self-generated speech and attenuates electrophysiological markers such as the auditory N1 Event-Related Potential (ERP) during Electroencephalographic (EEG) recordings. This phenomenon contributes to self-identification and seems to be altered in people with schizophrenia. Therefore, its alteration could be related to the anomalous self-experiences (ASEs) frequently found in these patients. STUDY DESIGN To analyze corollary discharge dysfunction as a possible substrate of ASEs, we recorded EEG ERP from 43 participants with schizophrenia and 43 healthy controls and scored ASEs with the 'Inventory of Psychotic-Like Anomalous Self-Experiences' (IPASE). Positive and negative symptoms were also scored with the 'Positive and Negative Syndrome Scale for Schizophrenia' (PANSS) and with the 'Brief Negative Symptom Scale' (BNSS) respectively. The N1 components were elicited by two task conditions: (1) concurrent listening to self-pronounced vowels (talk condition) and (2) subsequent non-concurrent listening to the same previously self-uttered vowels (listen condition). STUDY RESULTS The amplitude of the N1 component elicited by the talk condition was lower compared to the listen condition in people with schizophrenia and healthy controls. However, the difference in N1 amplitude between both conditions was significantly higher in controls than in schizophrenia patients. The values of these differences in patients correlated significantly and negatively with the IPASE, PANSS, and BNSS scores. CONCLUSIONS These results corroborate previous data relating auditory N1 ERP amplitude with altered corollary discharge mechanisms in schizophrenia and support corollary discharge dysfunction as a possible underpinning of ASEs in this illness.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | | | | | - Francisco Muñoz
- UCM-ISCIII Center for Human Evolution and Behaviour, Madrid, Spain
- Psychobiology and Behavioural Sciences Methods Department, Complutense University of Madrid, Madrid, Spain
| | | | - Alejandro Roig-Herrero
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Imaging Processing Laboratory, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Psychiatry Service, University Clinical Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
7
|
Sancho ML, Ellis CA, Miller RL, Calhoun VD. Identifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039893 DOI: 10.1109/embc53108.2024.10781959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The diagnosis of schizophrenia (SZ) can be challenging due to its diverse symptom presentation. As such, many studies have sought to identify diagnostic biomarkers of SZ using explainable machine learning methods. However, the generalizability of identified biomarkers in many machine learning-based studies is highly questionable given that most studies only analyze explanations from a small number of models. In this study, we present (1) a novel feature interaction-based explainability approach and (2) several new approaches for summarizing multi-model explanations. We implement our approach within the context of electroencephalogram (EEG) spectral power data. We further analyze both training and test set explanations with the goal of extracting generalizable insights from the models. Importantly, our analyses identify effects of SZ upon the α, β, and θ frequency bands, the left hemisphere of the brain, and interhemispheric interactions across a majority of cross-validation folds. We hope that our analysis will provide helpful insights into SZ and inspire the development of robust approaches for identifying neuropsychiatric disorder biomarkers from explainable machine learning models.
Collapse
|
8
|
Sancho ML, Ellis CA, Miller RL, Calhoun VD. Identifying Reproducibly Important EEG Markers of Schizophrenia with an Explainable Multi-Model Deep Learning Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579600. [PMID: 38405889 PMCID: PMC10888920 DOI: 10.1101/2024.02.09.579600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The diagnosis of schizophrenia (SZ) can be challenging due to its diverse symptom presentation. As such, many studies have sought to identify diagnostic biomarkers of SZ using explainable machine learning methods. However, the generalizability of identified biomarkers in many machine learning-based studies is highly questionable given that most studies only analyze explanations from a small number of models. In this study, we present (1) a novel feature interaction-based explainability approach and (2) several new approaches for summarizing multi-model explanations. We implement our approach within the context of electroencephalogram (EEG) spectral power data. We further analyze both training and test set explanations with the goal of extracting generalizable insights from the models. Importantly, our analyses identify effects of SZ upon the α, β, and θ frequency bands, the left hemisphere of the brain, and interhemispheric interactions across a majority of folds. We hope that our analysis will provide helpful insights into SZ and inspire the development of robust approaches for identifying neuropsychiatric disorder biomarkers from explainable machine learning models.
Collapse
Affiliation(s)
- Martina Lapera Sancho
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, and Emory University Atlanta, USA
| | - Charles A Ellis
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, and Emory University Atlanta, USA
| | - Robyn L Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, and Emory University Atlanta, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University, Georgia Institute of Technology, and Emory University Atlanta, USA
| |
Collapse
|
9
|
Orepic P, Bernasconi F, Faggella M, Faivre N, Blanke O. Robotically-induced auditory-verbal hallucinations: combining self-monitoring and strong perceptual priors. Psychol Med 2024; 54:569-581. [PMID: 37779256 DOI: 10.1017/s0033291723002222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Inducing hallucinations under controlled experimental conditions in non-hallucinating individuals represents a novel research avenue oriented toward understanding complex hallucinatory phenomena, avoiding confounds observed in patients. Auditory-verbal hallucinations (AVH) are one of the most common and distressing psychotic symptoms, whose etiology remains largely unknown. Two prominent accounts portray AVH either as a deficit in auditory-verbal self-monitoring, or as a result of overly strong perceptual priors. METHODS In order to test both theoretical models and evaluate their potential integration, we developed a robotic procedure able to induce self-monitoring perturbations (consisting of sensorimotor conflicts between poking movements and corresponding tactile feedback) and a perceptual prior associated with otherness sensations (i.e. feeling the presence of a non-existing another person). RESULTS Here, in two independent studies, we show that this robotic procedure led to AVH-like phenomena in healthy individuals, quantified as an increase in false alarm rate in a voice detection task. Robotically-induced AVH-like sensations were further associated with delusional ideation and to both AVH accounts. Specifically, a condition with stronger sensorimotor conflicts induced more AVH-like sensations (self-monitoring), while, in the otherness-related experimental condition, there were more AVH-like sensations when participants were detecting other-voice stimuli, compared to detecting self-voice stimuli (strong-priors). CONCLUSIONS By demonstrating an experimental procedure able to induce AVH-like sensations in non-hallucinating individuals, we shed new light on AVH phenomenology, thereby integrating self-monitoring and strong-priors accounts.
Collapse
Affiliation(s)
- Pavo Orepic
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melissa Faggella
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Nathan Faivre
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Tsunada J, Eliades SJ. Frontal-Auditory Cortical Interactions and Sensory Prediction During Vocal Production in Marmoset Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577656. [PMID: 38352422 PMCID: PMC10862695 DOI: 10.1101/2024.01.28.577656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The control of speech and vocal production involves the calculation of error between the intended vocal output and the resulting auditory feedback. Consistent with this model, recent evidence has demonstrated that the auditory cortex is suppressed immediately before and during vocal production, yet is still sensitive to differences between vocal output and altered auditory feedback. This suppression has been suggested to be the result of top-down signals containing information about the intended vocal output, potentially originating from motor or other frontal cortical areas. However, whether such frontal areas are the source of suppressive and predictive signaling to the auditory cortex during vocalization is unknown. Here, we simultaneously recorded neural activity from both the auditory and frontal cortices of marmoset monkeys while they produced self-initiated vocalizations. We found increases in neural activity in both brain areas preceding the onset of vocal production, notably changes in both multi-unit activity and local field potential theta-band power. Connectivity analysis using Granger causality demonstrated that frontal cortex sends directed signaling to the auditory cortex during this pre-vocal period. Importantly, this pre-vocal activity predicted both vocalization-induced suppression of the auditory cortex as well as the acoustics of subsequent vocalizations. These results suggest that frontal cortical areas communicate with the auditory cortex preceding vocal production, with frontal-auditory signals that may reflect the transmission of sensory prediction information. This interaction between frontal and auditory cortices may contribute to mechanisms that calculate errors between intended and actual vocal outputs during vocal communication.
Collapse
Affiliation(s)
- Joji Tsunada
- Chinese Institute for Brain Research, Beijing, China
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Steven J. Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
11
|
Idei H, Yamashita Y. Elucidating multifinal and equifinal pathways to developmental disorders by constructing real-world neurorobotic models. Neural Netw 2024; 169:57-74. [PMID: 37857173 DOI: 10.1016/j.neunet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Vigorous research has been conducted to accumulate biological and theoretical knowledge about neurodevelopmental disorders, including molecular, neural, computational, and behavioral characteristics; however, these findings remain fragmentary and do not elucidate integrated mechanisms. An obstacle is the heterogeneity of developmental pathways causing clinical phenotypes. Additionally, in symptom formations, the primary causes and consequences of developmental learning processes are often indistinguishable. Herein, we review developmental neurorobotic experiments tackling problems related to the dynamic and complex properties of neurodevelopmental disorders. Specifically, we focus on neurorobotic models under predictive processing lens for the study of developmental disorders. By constructing neurorobotic models with predictive processing mechanisms of learning, perception, and action, we can simulate formations of integrated causal relationships among neurodynamical, computational, and behavioral characteristics in the robot agents while considering developmental learning processes. This framework has the potential to bind neurobiological hypotheses (excitation-inhibition imbalance and functional disconnection), computational accounts (unusual encoding of uncertainty), and clinical symptoms. Developmental neurorobotic approaches may serve as a complementary research framework for integrating fragmented knowledge and overcoming the heterogeneity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hayato Idei
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
12
|
Chew QH, Jia S, Sim K. Cerebellar Dysfunction and Relationship With Psychopathology, Cognitive Functioning, Resilience, and Coping in Schizophrenia. J Nerv Ment Dis 2023; 211:876-880. [PMID: 37890027 DOI: 10.1097/nmd.0000000000001706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
ABSTRACT In this study, we examined the cerebellar dysfunction in schizophrenia by evaluating the clinical, cognitive, resilience, and coping correlates of cerebellar signs (CSs) in 162 subjects (63 patients with schizophrenia and 99 healthy controls). The presence of CS was evaluated based on six clinical tests. Measures to assess the severity of psychopathology, cognitive functioning, resilience, and frequency of coping strategies used were included. Patients had more CS than controls. Patients with more CS were older, had more severe psychopathology, had poorer performance on Brief Assessment of Cognition for Schizophrenia token motor task, and used less self-distraction as a coping strategy than those with fewer CS. Patients without CS used less self-blame coping at higher level of resilience. The association of less self-distraction with more CS may be related to cognitive inflexibility as a result of cerebellar dysfunction. Greater attentiveness to the presence of CS in schizophrenia patients may aid in better management of their psychotic condition.
Collapse
Affiliation(s)
- Qian Hui Chew
- Research Division, Institute of Mental Health, Singapore
| | - Shuhong Jia
- Ambulatory Services/Nursing, Institute of Mental Health, Singapore
| | | |
Collapse
|
13
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Fondevila Estevez S, Fernández-Linsenbarth I, Díez Á, Molina V. Corollary discharge function in healthy controls: Evidence about self-speech and external speech processing. Eur J Neurosci 2023; 58:3705-3713. [PMID: 37635264 DOI: 10.1111/ejn.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
As we speak, corollary discharge mechanisms suppress the auditory conscious perception of the self-generated voice in healthy subjects. This suppression has been associated with the attenuation of the auditory N1 component. To analyse this corollary discharge phenomenon (agency and ownership), we registered the event-related potentials of 42 healthy subjects. The N1 and P2 components were elicited by spoken vowels (talk condition; agency), by played-back vowels recorded with their own voice (listen-self condition; ownership) and by played-back vowels recorded with an external voice (listen-other condition). The N1 amplitude elicited by the talk condition was smaller compared with the listen-self and listen-other conditions. There were no amplitude differences in N1 between listen-self and listen-other conditions. The P2 component did not show differences between conditions. Additionally, a peak latency analysis of N1 and P2 components between the three conditions showed no differences. These findings corroborate previous results showing that the corollary discharge mechanisms dampen sensory responses to self-generated speech (agency experience) and provide new neurophysiological evidence about the similarities in the processing of played-back vowels with our own voice (ownership experience) and with an external voice.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
- Psychiatry Service, University Clinical Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
14
|
Prieto-Alcántara M, Ibáñez-Molina A, Crespo-Cobo Y, Molina R, Soriano MF, Iglesias-Parro S. Alpha and gamma EEG coherence during on-task and mind wandering states in schizophrenia. Clin Neurophysiol 2023; 146:21-29. [PMID: 36495599 DOI: 10.1016/j.clinph.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/12/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Electroencephalographic (EEG) coherence is one of the most relevant physiological measures used to detect abnormalities in patients with schizophrenia. The present study applies a task-related EEG coherence approach to understand cognitive processing in patients with schizophrenia and healthy controls. METHODS EEG coherence for alpha and gamma frequency bands was analyzed in a group of patients with schizophrenia and a group of healthy controls during the performance of an ecological task of sustained attention. We compared EEG coherence when participants presented externally directed cognitive states (On-Task) and when they presented cognitive distraction episodes (Mind-Wandering). RESULTS Results reflect cortical differences between groups (higher coherence for schizophrenia in the frontocentral and fronto-temporal regions, and higher coherence for healthy-controls in the postero-central regions), especially in the On-Task condition for the alpha band, compared to Mind-Wandering episodes. Few individual differences in gamma coherence were found. CONCLUSIONS The current study provides evidence of neurophysiological differences underlying different cognitive states in schizophrenia and healthy controls. SIGNIFICANCE Differences between groups may reflect inhibitory processes necessary for the successful processing of information, especially in the alpha band, given its role in cortical inhibition processes. Patients may activate compensatory inhibitory mechanisms when performing the task, reflected in increased coherence in fronto-temporal regions.
Collapse
Affiliation(s)
| | | | | | - Rosa Molina
- Psychology Department, University of Jaén, 23071 Jaén, Spain
| | | | | |
Collapse
|
15
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
16
|
Griffiths O, Jack BN, Pearson D, Elijah R, Mifsud N, Han N, Libesman S, Rita Barreiros A, Turnbull L, Balzan R, Le Pelley M, Harris A, Whitford TJ. Disrupted auditory N1, theta power and coherence suppression to willed speech in people with schizophrenia. Neuroimage Clin 2023; 37:103290. [PMID: 36535137 PMCID: PMC9792888 DOI: 10.1016/j.nicl.2022.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The phenomenon of sensory self-suppression - also known as sensory attenuation - occurs when a person generates a perceptible stimulus (such as a sound) by performing an action (such as speaking). The sensorimotor control system is thought to actively predict and then suppress the vocal sound in the course of speaking, resulting in lowered cortical responsiveness when speaking than when passively listening to an identical sound. It has been hypothesized that auditory hallucinations in schizophrenia result from a reduction in self-suppression due to a disruption of predictive mechanisms required to anticipate and suppress a specific, self-generated sound. It has further been hypothesized that this suppression is evident primarily in theta band activity. Fifty-one people, half of whom had a diagnosis of schizophrenia, were asked to repeatedly utter a single syllable, which was played back to them concurrently over headphones while EEG was continuously recorded. In other conditions, recordings of the same spoken syllables were played back to participants while they passively listened, or were played back with their onsets preceded by a visual cue. All participants experienced these conditions with their voice artificially shifted in pitch and also with their unaltered voice. Suppression was measured using event-related potentials (N1 component), theta phase coherence and power. We found that suppression was generally reduced on all metrics in the patient sample, and when voice alteration was applied. We additionally observed reduced theta coherence and power in the patient sample across all conditions. Visual cueing affected theta coherence only. In aggregate, the results suggest that sensory self-suppression of theta power and coherence is disrupted in schizophrenia.
Collapse
Affiliation(s)
- Oren Griffiths
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia; Flinders Institute for Mental Health and Wellbeing, Adelaide, Australia.
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Canberra, Australia
| | | | - Ruth Elijah
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Nathan Mifsud
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Nathan Han
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Sol Libesman
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Ana Rita Barreiros
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia; Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Luke Turnbull
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia
| | - Ryan Balzan
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia; Flinders Institute for Mental Health and Wellbeing, Adelaide, Australia
| | | | - Anthony Harris
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia; Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Thomas J Whitford
- Specialty of Psychiatry, The University of Sydney, Faculty of Medicine and Health, The University of Sydney, Australia
| |
Collapse
|
17
|
Zhang M, Force RB, Walker C, Ahn S, Jarskog LF, Frohlich F. Alpha transcranial alternating current stimulation reduces depressive symptoms in people with schizophrenia and auditory hallucinations: a double-blind, randomized pilot clinical trial. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:114. [PMID: 36566277 PMCID: PMC9789318 DOI: 10.1038/s41537-022-00321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022]
Abstract
People with schizophrenia exhibit reduced alpha oscillations and frontotemporal coordination of brain activity. Alpha oscillations are associated with top-down inhibition. Reduced alpha oscillations may fail to censor spurious endogenous activity, leading to auditory hallucinations. Transcranial alternating current stimulation (tACS) at the alpha frequency was shown to enhance alpha oscillations in people with schizophrenia and may thus be a network-based treatment for auditory hallucinations. We conducted a double-blind, randomized, placebo-controlled pilot clinical trial to examine the efficacy of 10-Hz tACS in treating auditory hallucinations in people with schizophrenia. 10-Hz tACS was administered in phase at the dorsolateral prefrontal cortex and the temporoparietal junction with a return current at Cz. Patients were randomized to receive tACS or sham for five consecutive days during the treatment week (40 min/day), followed by a maintenance period, during which participants received weekly tACS (40 min/visit) or sham. tACS treatment reduced general psychopathology (p < 0.05, Cohen's d = -0.690), especially depression (p < 0.005, Cohen's d = -0.806), but not auditory hallucinations. tACS treatment increased alpha power in the target region (p < 0.05), increased the frequency of peak global functional connectivity towards 10 Hz (p < 0.05), and reduced left-right frontal functional connectivity (p < 0.005). Importantly, changes in brain functional connectivity significantly correlated with symptom improvement (p < 0.05). Daily 10 Hz-tACS increased alpha power and altered alpha-band functional connectivity. Successful target engagement reduced depression and other general psychopathology symptoms, but not auditory hallucinations. Considering existing research of 10Hz tACS as a treatment for major depressive disorder, our study demonstrates its transdiagnostic potential for treating depression.
Collapse
Affiliation(s)
- Mengsen Zhang
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA
| | - Rachel B. Force
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA
| | - Christopher Walker
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Sangtae Ahn
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.258803.40000 0001 0661 1556School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea
| | - L. Fredrik Jarskog
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Flavio Frohlich
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Neurology, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
18
|
Hemispheric lateralization of semantic processing before and after aripiprazole treatment in first-episode psychosis or ultra-high risk state. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:108. [PMID: 36463251 PMCID: PMC9719558 DOI: 10.1038/s41537-022-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Abstract
Whether aberrant language-related lateralization can be improved after antipsychotic treatment in drug-free patients with first-episode psychosis or ultra-high risk state is little known. We aimed to investigate the improvement in lateralization of semantic processing after antipsychotic treatment and associated clinical and cognitive changes. Twenty-one drug-free patients with first-episode psychosis or ultra-high risk state underwent functional magnetic resonance imaging with a semantic task, neuropsychological testing, and clinical assessments with the Positive and Negative Syndrome Scale before and after 6 weeks of aripiprazole treatment. A lateralization index of the region of interest, i.e., inferior frontal gyrus, was calculated and correlated with the behavioral indices of the semantic task, Positive and Negative Syndrome Scale scores, and language-related neuropsychological test scores. After treatment, the lateralization index of the inferior frontal gyrus was significantly increased, which was related to reduced activation of the right inferior frontal gyrus. The increase in the lateralization index was significantly associated with the increase in verbal fluency score. A higher baseline accuracy of the semantic task was associated with a higher post-treatment lateralization index of the inferior frontal gyrus and greater improvement of the total score and positive subscore of the Positive and Negative Syndrome Scale. Our findings indicated aripiprazole treatment significantly increased semantic processing-related lateralization in the inferior frontal gyrus in drug-free patients with first-episode psychosis or ultra-high risk state. A higher baseline accuracy might predict a higher post-treatment lateralization index and greater symptom improvement.
Collapse
|
19
|
Riddle J, Frohlich F. Mental Activity as the Bridge between Neural Biomarkers and Symptoms of Psychiatric Illness. Clin EEG Neurosci 2022:15500594221112417. [PMID: 35861807 DOI: 10.1177/15500594221112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Research Domain Criteria (RDoC) initiative challenges researchers to build neurobehavioral models of psychiatric illness with the hope that such models identify better targets that will yield more effective treatment. However, a guide for building such models was not provided and symptom heterogeneity within Diagnostic Statistical Manual categories has hampered progress in identifying endophenotypes that underlie mental illness. We propose that the best chance to discover viable biomarkers and treatment targets for psychiatric illness is to investigate a triangle of relationships: severity of a specific psychiatric symptom that correlates to mental activity that correlates to a neural activity signature. We propose that this is the minimal model complexity required to advance the field of psychiatry. With an understanding of how neural activity relates to the experience of the patient, a genuine understanding for how treatment imparts its therapeutic effect is possible. After the discovery of this three-fold relationship, causal testing is required in which the neural activity pattern is directly enhanced or suppressed to provide causal, instead of just correlational, evidence for the biomarker. We suggest using non-invasive brain stimulation (NIBS) as these techniques provide tools to precisely manipulate spatial and temporal activity patterns. We detail how this approach enabled the discovery of two orthogonal electroencephalography (EEG) activity patterns associated with anhedonia and anxiosomatic symptoms in depression that can serve as future treatment targets. Altogether, we propose a systematic approach for building neurobehavioral models for dimensional psychiatry.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Neurology, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biomedical Engineering, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, 6797University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Visual P300 as a neurophysiological correlate of symptomatic improvement by a virtual reality-based computer AT system in patients with auditory verbal hallucinations: A Pilot study. J Psychiatr Res 2022; 151:261-271. [PMID: 35512620 DOI: 10.1016/j.jpsychires.2022.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Previous comparative trials showed that virtual reality (VR) therapies achieved larger effects than gold-standard cognitive-behavioral therapy (CBT) on overall auditory verbal hallucinations (AVHs). However, no trial has examined the corresponding underlying electrophysiological mechanisms. We performed a pilot randomized comparative trial evaluating the efficacy of a virtual reality-based computer AT system (CATS) over CBT for schizophrenia (SCZ) patients with treatment-resistant AVHs and explored these potential electrophysiological changes via the visual P300 component. Patients (CATS, n = 32; CBT, n = 33) completed the clinical assessments pre- and post-interventions and at 12-week follow-up. The visual P300 were measured before and after both therapies. The analysis of changes in psychiatric symptoms used linear mixed-effects models, and the P300 response in temporal and time-frequency domains was analyzed with repeated-measures analysis of variance. There was no interaction effect between change in clinical symptoms and treatment group. However, several statistically significant within-group improvements were found for CATS and CBT over time. AVH improved significantly after both treatments, as measured with the Psychotic Symptom Rating Scales-Auditory Hallucinations (PSYRATS-AH) sub-scores. Especially for the CATS group, omnipotence beliefs, anxiety symptoms, self-esteem, and quality of life also remained improved at the 12-week follow-up. Moreover, P300 amplitude had a significant interaction effect and correlation with AVH response. Overall, our analysis did not demonstrate general clinical superiority of CATS over CBT, but CATS improved refractory AVH in SCZ patients, likely by increasing P300 amplitude. These findings support the continued development of CATS for persistent AVH and suggest further trials to clarify the neurological effects of CATS.
Collapse
|
21
|
Fouladirad S, Chen LV, Roes M, Chinchani A, Percival C, Khangura J, Zahid H, Moscovitz A, Arreaza L, Wun C, Sanford N, Balzan R, Moritz S, Menon M, Woodward TS. Functional brain networks underlying probabilistic reasoning and delusions in schizophrenia. Psychiatry Res Neuroimaging 2022; 323:111472. [PMID: 35405574 DOI: 10.1016/j.pscychresns.2022.111472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/20/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Delusions in schizophrenia are false beliefs that are assigned certainty and not afforded the scrutiny that normally gives rise to doubt, even under conditions of weak evidence. The goal of the current functional magnetic resonance imaging (fMRI) study is to identify the brain network(s) involved in gathering information under conditions of weak evidence, in people with schizophrenia experiencing delusions. fMRI activity during probabilistic reasoning in people with schizophrenia experiencing delusions (n = 29) compared to people with schizophrenia not experiencing delusions (n = 41) and healthy controls (n = 41) was observed when participants made judgments based on evidence that weakly or strongly matched (or mismatched) with the focal hypothesis. A brain network involved in visual attention was strongly elicited for conditions of weak evidence for healthy controls and patients not experiencing delusions, but this increase was absent for patients experiencing delusions. This suggests that the state associated with delusions manifests in fMRI as reduced activity in an early visual attentional process whereby weak evidence is incorrectly stamped as conclusive, manifestating as a feeling of fluency and misplaced certainty, short-circuiting the search for evidence, and providing a candidate neural process for 'seeding' delusions.
Collapse
Affiliation(s)
- Saman Fouladirad
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Linda V Chen
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Meighen Roes
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Abhijit Chinchani
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Percival
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Khangura
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Hafsa Zahid
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Aly Moscovitz
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Leonardo Arreaza
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Charlotte Wun
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Sanford
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Balzan
- College of Education, Psychology & Social Work, Flinders University, Adelaide, SA, Australia
| | - Steffen Moritz
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Biagianti B, Bigoni D, Maggioni E, Brambilla P. Can neuroimaging-based biomarkers predict response to cognitive remediation in patients with psychosis? A state-of-the-art review. J Affect Disord 2022; 305:196-205. [PMID: 35283181 DOI: 10.1016/j.jad.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cognitive Remediation (CR) is designed to halt the pathological neural systems that characterize major psychotic disorders (MPD), and its main objective is to improve cognitive functioning. The magnitude of CR-induced cognitive gains greatly varies across patients with MPD, with up to 40% of patients not showing gains in global cognitive performance. This is likely due to the high degree of heterogeneity in neural activation patterns underlying cognitive endophenotypes, and to inter-individual differences in neuroplastic potential, cortical organization and interaction between brain systems in response to learning. Here, we review studies that used neuroimaging to investigate which biomarkers could potentially serve as predictors of treatment response to CR in MPD. METHODS This systematic review followed the PRISMA guidelines. An electronic database search (Embase, Elsevier; Scopus, PsycINFO, APA; PubMed, APA) was conducted in March 2021. peer-reviewed, English-language studies were included if they reported data for adults aged 18+ with MPD, reported findings from randomized controlled trials or single-arm trials of CR; and presented neuroimaging data. RESULTS Sixteen studies were included and eight neuroimaging-based biomarkers were identified. Auditory mismatch negativity (3 studies), auditory steady-state response (1), gray matter morphology (3), white matter microstructure (1), and task-based fMRI (7) can predict response to CR. Efference copy corollary/discharge, resting state, and thalamo-cortical connectivity (1) require further research prior to being implemented. CONCLUSIONS Translational research on neuroimaging-based biomarkers can help elucidate the mechanisms by which CR influences the brain's functional architecture, better characterize psychotic subpopulations, and ultimately deliver CR that is optimized and personalized.
Collapse
Affiliation(s)
- Bruno Biagianti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Davide Bigoni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Prats C, Fatjó-Vilas M, Penzol MJ, Kebir O, Pina-Camacho L, Demontis D, Crespo-Facorro B, Peralta V, González-Pinto A, Pomarol-Clotet E, Papiol S, Parellada M, Krebs MO, Fañanás L. Association and epistatic analysis of white matter related genes across the continuum schizophrenia and autism spectrum disorders: The joint effect of NRG1-ErbB genes. World J Biol Psychiatry 2022; 23:208-218. [PMID: 34338147 DOI: 10.1080/15622975.2021.1939155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Schizophrenia-spectrum disorders (SSD) and Autism spectrum disorders (ASD) are neurodevelopmental disorders that share clinical, cognitive, and genetic characteristics, as well as particular white matter (WM) abnormalities. In this study, we aimed to investigate the role of a set of oligodendrocyte/myelin-related (OMR) genes and their epistatic effect on the risk for SSD and ASD. METHODS We examined 108 SNPs in a set of 22 OMR genes in 1749 subjects divided into three independent samples (187 SSD trios, 915 SSD cases/control, and 91 ASD trios). Genetic association and gene-gene interaction analyses were conducted with PLINK and MB-MDR, and permutation procedures were implemented in both. RESULTS Some OMR genes showed an association trend with SSD, while after correction, the ones that remained significantly associated were MBP, ERBB3, and AKT1. Significant gene-gene interactions were found between (i) NRG1*MBP (perm p-value = 0.002) in the SSD trios sample, (ii) ERBB3*AKT1 (perm p-value = 0.001) in the SSD case-control sample, and (iii) ERBB3*QKI (perm p-value = 0.0006) in the ASD trios sample. DISCUSSION Our results suggest the implication of OMR genes in the risk for both SSD and ASD and highlight the role of NRG1 and ERBB genes. These findings are in line with the previous evidence and may suggest pathophysiological mechanisms related to NRG1/ERBBs signalling in these disorders.
Collapse
Affiliation(s)
- C Prats
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fatjó-Vilas
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - M J Penzol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - O Kebir
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - L Pina-Camacho
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Aarhus, Denmark
| | - B Crespo-Facorro
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,University Hospital Virgen del Rocio, IbiS Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - V Peralta
- Gerencia de Salud Mental, Servicio Navarro de Salud-Osasunbidea, Pamplona, Navarra, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNa), Pamplona, Navarra, Spain
| | - A González-Pinto
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune, Vitoria, Spain
| | - E Pomarol-Clotet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - S Papiol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - M Parellada
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - M O Krebs
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - L Fañanás
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
24
|
Leyrolle Q, Decoeur F, Dejean C, Brière G, Leon S, Bakoyiannis I, Baroux E, Sterley TL, Bosch-Bouju C, Morel L, Amadieu C, Lecours C, St-Pierre MK, Bordeleau M, De Smedt-Peyrusse V, Séré A, Schwendimann L, Grégoire S, Bretillon L, Acar N, Joffre C, Ferreira G, Uricaru R, Thebault P, Gressens P, Tremblay ME, Layé S, Nadjar A. N-3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia 2022; 70:50-70. [PMID: 34519378 DOI: 10.1002/glia.24088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France
| | | | - Stephane Leon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Emilie Baroux
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Tony-Lee Sterley
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Lydie Morel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Camille Amadieu
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec City, Québec, Canada
| | | | - Alexandran Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | | | - Stephane Grégoire
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lionel Bretillon
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Raluca Uricaru
- CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
| | | | | | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, Québec City, Québec, Canada.,Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Agnes Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France.,Université de Bordeaux, INSERM, Magendie, U1215, F-3300, Bordeaux, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
25
|
Hirano Y, Uhlhaas PJ. Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 2021; 75:358-368. [PMID: 34558155 DOI: 10.1111/pcn.13300] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
There is now consistent evidence that neural oscillation at low- and high-frequencies constitute an important aspect of the pathophysiology of schizophrenia. Specifically, impaired rhythmic activity may underlie the deficit to generate coherent cognition and behavior, leading to the characteristic symptoms of psychosis and cognitive deficits. Importantly, the generating mechanisms of neural oscillations are relatively well-understood and thus enable the targeted search for the underlying circuit impairments and novel treatment targets. In the following review, we will summarize and assess the evidence for aberrant rhythmic activity in schizophrenia through evaluating studies that have utilized Electro/Magnetoencephalography to examine neural oscillations during sensory and cognitive tasks as well as during resting-state measurements. These data will be linked to current evidence from post-mortem, neuroimaging, genetics, and animal models that have implicated deficits in GABAergic interneurons and glutamatergic neurotransmission in oscillatory deficits in schizophrenia. Finally, we will highlight methodological and analytical challenges as well as provide recommendations for future research.
Collapse
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Narihara I, Kitajo K, Namba H, Sotoyama H, Inaba H, Watanabe D, Nawa H. Rat call-evoked electrocorticographic responses and intercortical phase synchrony impaired in a cytokine-induced animal model for schizophrenia. Neurosci Res 2021; 175:62-72. [PMID: 34699860 DOI: 10.1016/j.neures.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022]
Abstract
Patients with schizophrenia exhibit impaired performance in tone-matching or voice discrimination tests. However, there is no animal model recapitulating these pathophysiological traits. Here, we tested the representation of auditory recognition deficits in an animal model of schizophrenia. We established a rat model for schizophrenia using a perinatal challenge of epidermal growth factor (EGF), exposed adult rats to 55 kHz sine tones, rat calls (50-60 kHz), or reversely played calls, analyzed electrocorticography (ECoG) of the auditory and frontal cortices. Grand averages of event-related responses (ERPs) in the auditory cortex showed between-group size differences in the P1 component, whereas the P2 component differed among sound stimulus types. In EGF model rats, gamma band amplitudes were decreased in the auditory cortex and were enhanced in the frontal cortex with sine stimulus. The model rats also exhibited a reduction in rat call-triggered intercortical phase synchrony in the beta range. Risperidone administration restored normal phase synchrony. These findings suggest that perinatal exposure to the cytokine impairs tone/call recognition processes in these neocortices. In conjunction with previous studies using this model, our findings indicate that perturbations in ErbB/EGF signaling during development exert a multiscale impact on auditory functions at the cellular, circuit, and cognitive levels.
Collapse
Affiliation(s)
- Itaru Narihara
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan; Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Keiichi Kitajo
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan; Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hiroyoshi Inaba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan; Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan.
| |
Collapse
|
27
|
Implications for Early Diagnosis and Treatment in Schizophrenia Due to Correlation between Auditory Perceptual Deficits and Cognitive Impairment. J Clin Med 2021; 10:jcm10194557. [PMID: 34640571 PMCID: PMC8509531 DOI: 10.3390/jcm10194557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
It is indicated that auditory perception deficits are present in schizophrenia and related to formal thought disorder. The purpose of the present study was to investigate the association of auditory deficits with cognitive impairment in schizophrenia. An experimental group of 50 schizophrenia patients completed a battery of auditory processing evaluation and a neuropsychological battery of tests. Correlations between neuropsychological battery scores and auditory processing scores were examined. Cognitive impairment was correlated with auditory processing deficits in schizophrenia patients. All neuropsychological test scores were significantly correlated with at least one auditory processing test score. Our findings support the coexistence of auditory processing disorder, severe cognitive impairment, and formal thought disorder in a subgroup of schizophrenia patients. This may have important implications in schizophrenia research, as well as in early diagnosis and nonpharmacological treatment of the disorder.
Collapse
|
28
|
Richards SE, Hughes ME, Woodward TS, Rossell SL, Carruthers SP. External speech processing and auditory verbal hallucinations: A systematic review of functional neuroimaging studies. Neurosci Biobehav Rev 2021; 131:663-687. [PMID: 34517037 DOI: 10.1016/j.neubiorev.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
It has been documented that individuals who hear auditory verbal hallucinations (AVH) exhibit diminished capabilities in processing external speech. While functional neuroimaging studies have attempted to characterise the cortical regions and networks facilitating these deficits in a bid to understand AVH, considerable methodological heterogeneity has prevented a consensus being reached. The current systematic review investigated the neurobiological underpinnings of external speech processing deficits in voice-hearers in 38 studies published between January 1990 to June 2020. AVH-specific deviations in the activity and lateralisation of the temporal auditory regions were apparent when processing speech sounds, words and sentences. During active or affective listening tasks, functional connectivity changes arose within the language, limbic and default mode networks. However, poor study quality and lack of replicable results plague the field. A detailed list of recommendations has been provided to improve the quality of future research on this topic.
Collapse
Affiliation(s)
- Sophie E Richards
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia.
| | - Matthew E Hughes
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia
| | - Todd S Woodward
- Department of Psychiatry, University of British Colombia, Vancouver, BC, Canada; BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, VIC, 3122, Australia
| |
Collapse
|
29
|
Yang SS, Mack NR, Shu Y, Gao WJ. Prefrontal GABAergic Interneurons Gate Long-Range Afferents to Regulate Prefrontal Cortex-Associated Complex Behaviors. Front Neural Circuits 2021; 15:716408. [PMID: 34322002 PMCID: PMC8313241 DOI: 10.3389/fncir.2021.716408] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/11/2023] Open
Abstract
Prefrontal cortical GABAergic interneurons (INs) and their innervations are essential for the execution of complex behaviors such as working memory, social behavior, and fear expression. These behavior regulations are highly dependent on primary long-range afferents originating from the subcortical structures such as mediodorsal thalamus (MD), ventral hippocampus (vHPC), and basolateral amygdala (BLA). In turn, the regulatory effects of these inputs are mediated by activation of parvalbumin-expressing (PV) and/or somatostatin expressing (SST) INs within the prefrontal cortex (PFC). Here we review how each of these long-range afferents from the MD, vHPC, or BLA recruits a subset of the prefrontal interneuron population to exert precise control of specific PFC-dependent behaviors. Specifically, we first summarize the anatomical connections of different long-range inputs formed on prefrontal GABAergic INs, focusing on PV versus SST cells. Next, we elaborate on the role of prefrontal PV- and SST- INs in regulating MD afferents-mediated cognitive behaviors. We also examine how prefrontal PV- and SST- INs gate vHPC afferents in spatial working memory and fear expression. Finally, we discuss the possibility that prefrontal PV-INs mediate fear conditioning, predominantly driven by the BLA-mPFC pathway. This review will provide a broad view of how multiple long-range inputs converge on prefrontal interneurons to regulate complex behaviors and novel future directions to understand how PFC controls different behaviors.
Collapse
Affiliation(s)
- Sha-Sha Yang
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Nancy R. Mack
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Yousheng Shu
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
30
|
Arora M, Knott VJ, Labelle A, Fisher DJ. Alterations of Resting EEG in Hallucinating and Nonhallucinating Schizophrenia Patients. Clin EEG Neurosci 2021; 52:159-167. [PMID: 33074718 DOI: 10.1177/1550059420965385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Auditory hallucinations (AHs) are a common symptom of schizophrenia and contribute significantly to disease burden. Research on schizophrenia and AHs is limited and fails to adequately address the effect of AHs on resting EEG in patients with schizophrenia. This study assessed changes in frequency bands (delta, theta, alpha, beta) of resting EEG taken from hallucinating patients (n = 12), nonhallucinating patients (n = 11), and healthy controls (n = 12). Delta and theta activity were unaffected by AHs but differed between patients with schizophrenia and healthy controls. Alpha activity was affected by AHs: nonhallucinators had more alpha activity than hallucinators and healthy controls. Additionally, beta activity was inversely related to trait measures of AHs. These findings contribute to the literature of resting eyes closed EEG recordings of schizophrenia and AHs, and indicate the role of delta, theta, alpha, and beta as markers for schizophrenia and auditory hallucinations.
Collapse
Affiliation(s)
- Madhav Arora
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
| | - Verner J Knott
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Alain Labelle
- Faculty of Medicine, 6363University of Ottawa, Ottawa, Ontario, Canada
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Derek J Fisher
- The 26624Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Hamilton A, Northoff G. Abnormal ERPs and Brain Dynamics Mediate Basic Self Disturbance in Schizophrenia: A Review of EEG and MEG Studies. Front Psychiatry 2021; 12:642469. [PMID: 33912085 PMCID: PMC8072007 DOI: 10.3389/fpsyt.2021.642469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Interest in disordered sense of self in schizophrenia has recently re-emerged in the literature. It has been proposed that there is a basic self disturbance, underlying the diagnostic symptoms of schizophrenia, in which the person's sense of being a bounded individual continuous through time loses stability. This disturbance has been documented phenomenologically and at the level of cognitive tasks. However, the neural correlates of basic self disorder in schizophrenia are poorly understood. Methods: A search of PubMed was used to identify studies on self and schizophrenia that reported EEG or MEG data. Results: Thirty-three studies were identified, 32 using EEG and one using MEG. Their operationalizations of the self were divided into six paradigms: self-monitoring for errors, proprioception, self-other integration, self-referential processing, aberrant salience, and source monitoring. Participants with schizophrenia were less accurate on self-referential processing tasks and had slower response times across most studies. Event-related potential amplitudes differed across many early and late components, with reduced N100 suppression in source monitoring paradigms being the most replicated finding. Several studies found differences in one or more frequency band, but no coherent overall finding emerged in this area. Various other measures of brain dynamics also showed differences in single studies. Only some of the study designs were adequate to establish a causal relationship between the self and EEG or MEG measures. Conclusion: The broad range of changes suggests a global self disturbance at the neuronal level, possibly carried over from the resting state. Further studies that successfully isolate self-related effects are warranted to better understand the temporal-dynamic and spatial-topographic basis of self disorder and its relationship to basic self disturbance on the phenomenological level.
Collapse
Affiliation(s)
- Arthur Hamilton
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Roach BJ, Ford JM, Loewy RL, Stuart BK, Mathalon DH. Theta Phase Synchrony Is Sensitive to Corollary Discharge Abnormalities in Early Illness Schizophrenia but Not in the Psychosis Risk Syndrome. Schizophr Bull 2021; 47:415-423. [PMID: 32793958 PMCID: PMC7965080 DOI: 10.1093/schbul/sbaa110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prior studies have shown that the auditory N1 event-related potential component elicited by self-generated vocalizations is reduced relative to played back vocalizations, putatively reflecting a corollary discharge mechanism. Schizophrenia patients and psychosis risk syndrome (PRS) youth show deficient N1 suppression during vocalization, consistent with corollary discharge dysfunction. Because N1 is an admixture of theta (4-7 Hz) power and phase synchrony, we examined their contributions to N1 suppression during vocalization, as well as their sensitivity, relative to N1, to corollary discharge dysfunction in schizophrenia and PRS individuals. METHODS Theta phase and power values were extracted from electroencephalography data acquired from PRS youth (n = 71), early illness schizophrenia patients (ESZ; n = 84), and healthy controls (HCs; n = 103) as they said "ah" (Talk) and then listened to the playback of their vocalizations (Listen). A principal component analysis extracted theta intertrial coherence (ITC; phase consistency) and event-related spectral power, peaking in the N1 latency range. Talk-Listen suppression scores were analyzed. RESULTS Talk-Listen suppression was greater for theta ITC (Cohen's d = 1.46) than for N1 in HC (d = 0.63). Both were deficient in ESZ, but only N1 suppression was deficient in PRS. When deprived of variance shared with theta ITC suppression, N1 suppression no longer differentiated ESZ and PRS individuals from HC. Deficits in theta ITC suppression were correlated with delusions (P = .007) in ESZ. Theta power suppression did not differentiate groups. CONCLUSIONS Theta ITC-suppression during vocalization is a more sensitive index of corollary discharge-mediated auditory cortical suppression than N1 suppression and is more sensitive to corollary discharge dysfunction in ESZ than in PRS individuals.
Collapse
Affiliation(s)
- Brian J Roach
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
| | - Judith M Ford
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
- Department of Psychiatry, University of California, San Francisco, CA
| | - Rachel L Loewy
- Department of Psychiatry, University of California, San Francisco, CA
| | - Barbara K Stuart
- Department of Psychiatry, University of California, San Francisco, CA
| | - Daniel H Mathalon
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
- Department of Psychiatry, University of California, San Francisco, CA
| |
Collapse
|
33
|
Thakkar KN, Mathalon DH, Ford JM. Reconciling competing mechanisms posited to underlie auditory verbal hallucinations. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190702. [PMID: 33308062 PMCID: PMC7741078 DOI: 10.1098/rstb.2019.0702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Perception is not the passive registration of incoming sensory data. Rather, it involves some analysis by synthesis, based on past experiences and context. One adaptive consequence of this arrangement is imagination-the ability to richly simulate sensory experiences, interrogate and manipulate those simulations, in service of action and decision making. In this paper, we will discuss one possible cost of this adaptation, namely hallucinations-perceptions without sensory stimulation, which characterize serious mental illnesses like schizophrenia, but which also occur in neurological illnesses, and-crucially for the present piece-are common also in the non-treatment-seeking population. We will draw upon a framework for imagination that distinguishes voluntary from non-voluntary experiences and explore the extent to which the varieties and features of hallucinations map onto this distinction, with a focus on auditory-verbal hallucinations (AVHs)-colloquially, hearing voices. We will propose that sense of agency for the act of imagining is key to meaningfully dissecting different forms and features of AVHs, and we will outline the neural, cognitive and phenomenological sequelae of this sense. We will conclude that a compelling unifying framework for action, perception and belief-predictive processing-can incorporate observations regarding sense of agency, imagination and hallucination. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Katharine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Department of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, MI, USA
| | - Daniel H. Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| | - Judith M. Ford
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Mental Health Service, Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| |
Collapse
|
34
|
Villafaina S, Fuentes-García JP, Cano-Plasencia R, Gusi N. Neurophysiological Differences Between Women With Fibromyalgia and Healthy Controls During Dual Task: A Pilot Study. Front Psychol 2020; 11:558849. [PMID: 33250807 PMCID: PMC7672184 DOI: 10.3389/fpsyg.2020.558849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background Women with FM have a reduced ability to perform two simultaneous tasks. However, the impact of dual task (DT) on the neurophysiological response of women with FM has not been studied. Objective To explore both the neurophysiological response and physical performance of women with FM and healthy controls while performing a DT (motor–cognitive). Design Cross-sectional study. Methods A total of 17 women with FM and 19 age- and sex-matched healthy controls (1:1 ratio) were recruited. The electroencephalographic (EEG) activity was recorded while participants performed two simultaneous tasks: a motor (30 seconds arm-curl test) and a cognitive (remembering three unrelated words). Theta (4–7 Hz), alpha (8–12 Hz), and beta (13–30) frequency bands were analyzed by using EEGLAB. Results Significant differences were obtained in the healthy control group between single task (ST) and DT in the theta, alpha, and beta frequency bands (p-value < 0.05). Neurophysiological differences between ST and DT were not found in women with FM. In addition, between-group differences were found in the alpha and beta frequency bands between healthy and FM groups, with lower values of beta and alpha in the FM group. Therefore, significant group∗condition interactions were detected in the alpha and beta frequency bands. Regarding physical condition performance, between groups, analyses showed that women with FM obtained significantly worse results in the arm curl test than healthy controls, in both ST and DT. Conclusion Women with FM showed the same electrical brain activity pattern during ST and DT conditions, whereas healthy controls seem to adapt their brain activity to task commitment. This is the first study that investigates the neurophysiological response of women with FM while simultaneously performing a motor and a cognitive task.
Collapse
Affiliation(s)
- Santos Villafaina
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | | | - Ricardo Cano-Plasencia
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.,Clinical Neurophysiology, San Pedro de Alcántara Hospital, Cáceres, Spain
| | - Narcis Gusi
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| |
Collapse
|
35
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
36
|
Chen C, Wang GH, Wu SH, Zou JL, Zhou Y, Wang HL. Abnormal Local Activity and Functional Dysconnectivity in Patients with Schizophrenia Having Auditory Verbal Hallucinations. Curr Med Sci 2020; 40:979-984. [PMID: 33123911 DOI: 10.1007/s11596-020-2271-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Auditory verbal hallucination (AVH) is emphasized as a pathological hallmark of schizophrenia. Neuroimaging studies provide evidence linking AVH to overlapping functional abnormalities in distributed networks. However, no clear conclusion has still been reached. This study aimed to further explore the brain activity of patients with schizophrenia having AVH from both local activity (LA) and functional connectivity (FC) insights, while excluding confounding factors from other positive symptoms. A total of 42 patients with AVH (AVH patients group, APG), 26 without AVH (non-AVH patients group, NPG), and 82 normal controls (NC) underwent resting-state functional magnetic resonance imaging (fMRI). LA measures, including regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF), and FC measures were evaluated to understand the neuroimaging mechanism of AVH. APG showed increased ReHo and fALFF in the bilateral putamen (Put) compared with NPG and NC. FC analysis (using bilateral putamen as seeds) revealed that all patients showed abnormal FC of multiple resting-state network regions, including the anterior and post cingulate cortex, middle frontal gyrus, inferior parietal gyrus, and left angular gyrus. Interestingly, APG showed significantly decreased FC of insula extending to the superior temporal gyrus and inferior frontal gyrus compared with NPG and NC. The present findings suggested a significant correlation of abnormal LA and dysfunctional putamen-auditory cortical connectivity with the neuropathological mechanism of AVH, providing evidence for the functional disconnection hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Institute of Neurology and Psychiatry Research, Wuhan, 430060, China
| | - Shi-Hao Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ji-Lin Zou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuan Zhou
- Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Ling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
37
|
Wang J, Wang X, Wang X, Zhang H, Zhou Y, Chen L, Li Y, Wu L. Increased EEG coherence in long-distance and short-distance connectivity in children with autism spectrum disorders. Brain Behav 2020; 10:e01796. [PMID: 32815287 PMCID: PMC7559606 DOI: 10.1002/brb3.1796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a complex and prevalent neurodevelopmental disorder characterized by deficits in social communication and social interaction as well as repetitive behaviors. Alterations in function connectivity are widely recognized in recent electroencephalogram (EEG) studies. However, most studies have not reached consistent conclusions, which could be due to the developmental nature and the heterogeneity of ASD. METHODS Here, EEG coherence analysis was used in a cohort of children with ASD (n = 13) and matched typically developing controls (TD, n = 15) to examine the functional connectivity characteristics in long-distance and short-distance electrode pairs. Subsequently, we explore the association between the connectivity strength of coherence and symptom severity in children with ASD. RESULTS Compared with TD group, individuals with ASD showed increased coherence in short-distance electrode pairs in the right temporal-parietal region (delta, alpha, beta bands), left temporal-parietal region (all frequency bands), occipital region (theta, alpha, beta bands), right central-parietal region (delta, alpha, beta bands), and the prefrontal region (only beta band). In the long-distance coherence analysis, the ASD group showed increased coherence in bilateral frontal region, temporal region, parietal region, and frontal-occipital region in alpha and beta bands. The strength of such connections was associated with symptom severity. DISCUSSION Our study indicates that abnormal connectivity patterns in neuroelectrophysiology may be of critical importance to acknowledge the underlying brain mechanism.
Collapse
Affiliation(s)
- Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Xiaomin Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Xuelai Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Zhang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Yong Zhou
- Heilongjiang Province Center for Disease Control and Prevention, Harbin, China
| | - Lei Chen
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Yutong Li
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Adams RA, Bush D, Zheng F, Meyer SS, Kaplan R, Orfanos S, Marques TR, Howes OD, Burgess N. Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain 2020; 143:1261-1277. [PMID: 32236540 PMCID: PMC7174039 DOI: 10.1093/brain/awaa035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Frontotemporal dysconnectivity is a key pathology in schizophrenia. The specific nature of this dysconnectivity is unknown, but animal models imply dysfunctional theta phase coupling between hippocampus and medial prefrontal cortex (mPFC). We tested this hypothesis by examining neural dynamics in 18 participants with a schizophrenia diagnosis, both medicated and unmedicated; and 26 age, sex and IQ matched control subjects. All participants completed two tasks known to elicit hippocampal-prefrontal theta coupling: a spatial memory task (during magnetoencephalography) and a memory integration task. In addition, an overlapping group of 33 schizophrenia and 29 control subjects underwent PET to measure the availability of GABAARs expressing the α5 subunit (concentrated on hippocampal somatostatin interneurons). We demonstrate-in the spatial memory task, during memory recall-that theta power increases in left medial temporal lobe (mTL) are impaired in schizophrenia, as is theta phase coupling between mPFC and mTL. Importantly, the latter cannot be explained by theta power changes, head movement, antipsychotics, cannabis use, or IQ, and is not found in other frequency bands. Moreover, mPFC-mTL theta coupling correlated strongly with performance in controls, but not in subjects with schizophrenia, who were mildly impaired at the spatial memory task and no better than chance on the memory integration task. Finally, mTL regions showing reduced phase coupling in schizophrenia magnetoencephalography participants overlapped substantially with areas of diminished α5-GABAAR availability in the wider schizophrenia PET sample. These results indicate that mPFC-mTL dysconnectivity in schizophrenia is due to a loss of theta phase coupling, and imply α5-GABAARs (and the cells that express them) have a role in this process.
Collapse
Affiliation(s)
- Rick A Adams
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Division of Psychiatry, University College London, 149 Tottenham Court Road, London, W1T 7NF, UK.,Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5EH, UK.,Centre for Medical Image Computing, Department of Computer Science, University College London, Malet Place, London, WC1E 7JE, UK.,Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK
| | - Daniel Bush
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Fanfan Zheng
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, 100190 Beijing, China
| | - Sofie S Meyer
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Raphael Kaplan
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.,Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stelios Orfanos
- South West London and St George's Mental Health NHS Trust, Springfield University Hospital, 61 Glenburnie Rd, London SW17 7DJ, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Tiago Reis Marques
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 8AF, UK
| | - Oliver D Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 8AF, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK.,Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.,Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
39
|
Kim M, Lee TH, Hwang WJ, Lee TY, Kwon JS. Auditory P300 as a Neurophysiological Correlate of Symptomatic Improvement by Transcranial Direct Current Stimulation in Patients With Schizophrenia: A Pilot Study. Clin EEG Neurosci 2020; 51:252-258. [PMID: 30474393 DOI: 10.1177/1550059418815228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. The reduced amplitude, prolonged latency, and increased intertrial variability of auditory P300 have been consistently reported in relation to the symptomatic severity of schizophrenia. This study investigated whether auditory P300 event-related potentials can be used as an objective indicator of symptomatic improvement by transcranial direct current stimulation (tDCS) in patients with schizophrenia. Methods. Ten patients with schizophrenia received 20 minutes of 2-mA tDCS twice a day for 5 consecutive weekdays. The anode was placed over the left dorsolateral prefrontal cortex, and the cathode was placed over the left temporo-parietal cortex. The Positive and Negative Syndrome Scale (PANSS) and the auditory P300 were measured for each participant at baseline and after the completion of the tDCS applications. Results. The participants showed significant improvement in the positive and negative symptoms as indexed by change in the PANSS scores by the tDCS. The P300 amplitude, latency, and intertrial variability did not statistically significantly differ after the tDCS application. However, a significant association was observed between the reduced P300 intertrial variability and improvement in the positive symptoms by tDCS. In addition, the changes in both the P300 latency and intertrial variability were significantly correlated with reduced negative symptoms after the tDCS application. Conclusions. Although this pilot study is limited by the small sample size and lack of a sham control, the results suggest that auditory P300 may be a putative marker reflecting the effect of tDCS on the positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tak Hyung Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
40
|
Hirano S, Spencer KM, Onitsuka T, Hirano Y. Language-Related Neurophysiological Deficits in Schizophrenia. Clin EEG Neurosci 2020; 51:222-233. [PMID: 31741393 DOI: 10.1177/1550059419886686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe psychiatric disorder that affects all aspects of one's life with several cognitive and social dysfunctions. However, there is still no objective and universal index for diagnosis and treatment of this disease. Many researchers have studied language processing in schizophrenia since most of the patients show symptoms related to language processing, such as thought disorder, auditory verbal hallucinations, or delusions. Electroencephalography (EEG) and magnetoencephalography (MEG) with millisecond order high temporal resolution, have been applied to reveal the abnormalities in language processing in schizophrenia. The aims of this review are (a) to provide an overview of recent findings in language processing in schizophrenia with EEG and MEG using neurophysiological indices, providing insights into underlying language related pathophysiological deficits in this disease and (b) to emphasize the advantage of EEG and MEG in research on language processing in schizophrenia.
Collapse
Affiliation(s)
- Shogo Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Interneuron NMDA Receptor Ablation Induces Hippocampus-Prefrontal Cortex Functional Hypoconnectivity after Adolescence in a Mouse Model of Schizophrenia. J Neurosci 2020; 40:3304-3317. [PMID: 32205341 DOI: 10.1523/jneurosci.1897-19.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/07/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022] Open
Abstract
Although the etiology of schizophrenia is still unknown, it is accepted to be a neurodevelopmental disorder that results from the interaction of genetic vulnerabilities and environmental insults. Although schizophrenia's pathophysiology is still unclear, postmortem studies point toward a dysfunction of cortical interneurons as a central element. It has been suggested that alterations in parvalbumin-positive interneurons in schizophrenia are the consequence of a deficient signaling through NMDARs. Animal studies demonstrated that early postnatal ablation of the NMDAR in corticolimbic interneurons induces neurobiochemical, physiological, behavioral, and epidemiological phenotypes related to schizophrenia. Notably, the behavioral abnormalities emerge only after animals complete their maturation during adolescence and are absent if the NMDAR is deleted during adulthood. This suggests that interneuron dysfunction must interact with development to impact on behavior. Here, we assess in vivo how an early NMDAR ablation in corticolimbic interneurons impacts on mPFC and ventral hippocampus functional connectivity before and after adolescence. In juvenile male mice, NMDAR ablation results in several pathophysiological traits, including increased cortical activity and decreased entrainment to local gamma and distal hippocampal theta rhythms. In addition, adult male KO mice showed reduced ventral hippocampus-mPFC-evoked potentials and an augmented low-frequency stimulation LTD of the pathway, suggesting that there is a functional disconnection between both structures in adult KO mice. Our results demonstrate that early genetic abnormalities in interneurons can interact with postnatal development during adolescence, triggering pathophysiological mechanisms related to schizophrenia that exceed those caused by NMDAR interneuron hypofunction alone.SIGNIFICANCE STATEMENT NMDAR hypofunction in cortical interneurons has been linked to schizophrenia pathophysiology. How a dysfunction of GABAergic cortical interneurons interacts with maturation during adolescence has not been clarified yet. Here, we demonstrate in vivo that early postnatal ablation of the NMDAR in corticolimbic interneurons results in an overactive but desynchronized PFC before adolescence. Final postnatal maturation during this stage outspreads the impact of the genetic manipulation toward a functional disconnection of the ventral hippocampal-prefrontal pathway, probably as a consequence of an exacerbated propensity toward hippocampal-evoked depotentiation plasticity. Our results demonstrate a complex interaction between genetic and developmental factors affecting cortical interneurons and PFC function.
Collapse
|
42
|
Cognition- and circuit-based dysfunction in a mouse model of 22q11.2 microdeletion syndrome: effects of stress. Transl Psychiatry 2020; 10:41. [PMID: 32066701 PMCID: PMC7026063 DOI: 10.1038/s41398-020-0687-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic microdeletion at the 22q11 locus is associated with very high risk for schizophrenia. The 22q11.2 microdeletion (Df(h22q11)/+) mouse model shows cognitive deficits observed in this disorder, some of which can be linked to dysfunction of the prefrontal cortex (PFC). We used behavioral (n = 10 per genotype), electrophysiological (n = 7 per genotype per group), and neuroanatomical (n = 5 per genotype) techniques to investigate schizophrenia-related pathology of Df(h22q11)/+ mice, which showed a significant decrease in the total number of parvalbumin positive interneurons in the medial PFC. The Df(h22q11)/+ mice when tested on PFC-dependent behavioral tasks, including gambling tasks, perform significantly worse than control animals while exhibiting normal behavior on hippocampus-dependent tasks. They also show a significant decrease in hippocampus-medial Prefrontal cortex (H-PFC) synaptic plasticity (long-term potentiation, LTP). Acute platform stress almost abolished H-PFC LTP in both wild-type and Df(h22q11)/+ mice. H-PFC LTP was restored to prestress levels by clozapine (3 mg/kg i.p.) in stressed Df(h22q11)/+ mice, but the restoration of stress-induced LTP, while significant, was similar between wild-type and Df(h22q11)/+ mice. A medial PFC dysfunction may underlie the negative and cognitive symptoms in human 22q11 deletion carriers, and these results are relevant to the current debate on the utility of clozapine in such subjects.
Collapse
|
43
|
Phenomenology of Voice-Hearing in Psychosis Spectrum Disorders: a Review of Neural Mechanisms. Curr Behav Neurosci Rep 2019. [DOI: 10.1007/s40473-019-00196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Yao L, Wang Z, Deng D, Yan R, Ju J, Zhou Q. The impact of D-cycloserine and sarcosine on in vivo frontal neural activity in a schizophrenia-like model. BMC Psychiatry 2019; 19:314. [PMID: 31653237 PMCID: PMC6814999 DOI: 10.1186/s12888-019-2306-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie the pathogenesis of schizophrenia. Specifically, reduced function of NMDARs leads to altered balance between excitation and inhibition which further drives neural network malfunctions. Clinical studies suggested that NMDAR modulators (glycine, D-serine, D-cycloserine and glycine transporter inhibitors) may be beneficial in treating schizophrenia patients. Preclinical evidence also suggested that these NMDAR modulators may enhance synaptic NMDAR function and synaptic plasticity in brain slices. However, an important issue that has not been addressed is whether these NMDAR modulators modulate neural activity/spiking in vivo. METHODS By using in vivo calcium imaging and single unit recording, we tested the effect of D-cycloserine, sarcosine (glycine transporter 1 inhibitor) and glycine, on schizophrenia-like model mice. RESULTS In vivo neural activity is significantly higher in the schizophrenia-like model mice, compared to control mice. D-cycloserine and sarcosine showed no significant effect on neural activity in the schizophrenia-like model mice. Glycine induced a large reduction in movement in home cage and reduced in vivo brain activity in control mice which prevented further analysis of its effect in schizophrenia-like model mice. CONCLUSIONS We conclude that there is no significant impact of the tested NMDAR modulators on neural spiking in the schizophrenia-like model mice.
Collapse
Affiliation(s)
- Lulu Yao
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Zongliang Wang
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Di Deng
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Rongzhen Yan
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Jun Ju
- 0000 0001 2256 9319grid.11135.37School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
45
|
Eliades SJ, Wang X. Corollary Discharge Mechanisms During Vocal Production in Marmoset Monkeys. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:805-812. [PMID: 31420219 PMCID: PMC6733626 DOI: 10.1016/j.bpsc.2019.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023]
Abstract
Interactions between motor systems and sensory processing are ubiquitous throughout the animal kingdom and play an important role in many sensorimotor behaviors, including both human speech and animal vocalization. During vocal production, the auditory system plays important roles in both encoding feedback of produced sounds, allowing one to self-monitor for vocal errors, and simultaneously maintaining sensitivity to the outside acoustic environment. Supporting these roles is an efferent motor-to-sensory signal known as a corollary discharge. This review summarizes recent work on the role of such signaling during vocalization in the marmoset monkey, a nonhuman primate model of social vocal communication.
Collapse
Affiliation(s)
- Steven J. Eliades
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
46
|
Thakkar KN, Rolfs M. Disrupted Corollary Discharge in Schizophrenia: Evidence From the Oculomotor System. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:773-781. [PMID: 31105039 PMCID: PMC6733648 DOI: 10.1016/j.bpsc.2019.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/04/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023]
Abstract
Corollary discharge (CD) signals are motor-related signals that exert an influence on sensory processing. They allow mobile organisms to predict the sensory consequences of their imminent actions. Among the many functions of CD is to provide a means by which we can distinguish sensory experiences caused by our own actions from those with external causes. In this way, they contribute to a subjective sense of agency. A disruption in the sense of agency is central to many of the clinical symptoms of schizophrenia, and abnormalities in CD signaling have been theorized to underpin particularly those agency-related psychotic symptoms of the illness. Characterizing abnormal CD associated with eye movements in schizophrenia and their resulting influence on visual processing and subsequent action plans may have advantages over other sensory and motor systems. That is because the most robust psychophysiological and neurophysiological data regarding the dynamics and influence of CD as well as the neural circuitry implicated in CD generation and transmission comes from the study of eye movements in humans and nonhuman primates. We review studies of oculomotor CD signaling in the schizophrenia spectrum and possible neurobiological correlates of CD disturbances. We conclude by speculating on the ways in which oculomotor CD dysfunction, specifically, may invoke specific experiences, clinical symptoms, and cognitive impairments. These speculations lay the groundwork for empirical study, and we conclude by outlining potentially fruitful research directions.
Collapse
Affiliation(s)
- Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, Michigan.
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
47
|
Whitford TJ. Speaking-Induced Suppression of the Auditory Cortex in Humans and Its Relevance to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:791-804. [PMID: 31399393 DOI: 10.1016/j.bpsc.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Speaking-induced suppression (SIS) is the phenomenon that the sounds one generates by overt speech elicit a smaller neurophysiological response in the auditory cortex than comparable sounds that are externally generated. SIS is a specific example of the more general phenomenon of self-suppression. SIS has been well established in nonhuman animals and is believed to involve the action of corollary discharges. This review summarizes, first, the evidence for SIS in heathy human participants, where it has been most commonly assessed with electroencephalography and/or magnetoencephalography using an experimental paradigm known as "Talk-Listen"; and second, the growing number of Talk-Listen studies that have reported subnormal levels of SIS in patients with schizophrenia. This result is theoretically significant, as it provides a plausible explanation for some of the most distinctive and characteristic symptoms of schizophrenia, namely the first-rank symptoms. In particular, while the failure to suppress the neural consequences of self-generated movements (such as those associated with overt speech) provides a prima facie explanation for delusions of control, the failure to suppress the neural consequences of self-generated inner speech provides a plausible explanation for certain classes of auditory-verbal hallucinations, such as audible thoughts. While the empirical evidence for a relationship between SIS and the first-rank symptoms is currently limited, I predict that future studies with more sensitive experimental designs will confirm its existence. Establishing the existence of a causal, mechanistic relationship would represent a major step forward in our understanding of schizophrenia, which is a necessary precursor to the development of novel treatments.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
48
|
Monteiro C, Cardoso-Cruz H, Galhardo V. Animal models of congenital hypoalgesia: Untapped potential for assessing pain-related plasticity. Neurosci Lett 2019; 702:51-60. [DOI: 10.1016/j.neulet.2018.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Bygrave AM, Jahans-Price T, Wolff AR, Sprengel R, Kullmann DM, Bannerman DM, Kätzel D. Hippocampal-prefrontal coherence mediates working memory and selective attention at distinct frequency bands and provides a causal link between schizophrenia and its risk gene GRIA1. Transl Psychiatry 2019; 9:142. [PMID: 31000699 PMCID: PMC6472369 DOI: 10.1038/s41398-019-0471-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Increased fronto-temporal theta coherence and failure of its stimulus-specific modulation have been reported in schizophrenia, but the psychological correlates and underlying neural mechanisms remain elusive. Mice lacking the putative schizophrenia risk gene GRIA1 (Gria1-/-), which encodes GLUA1, show strongly impaired spatial working memory and elevated selective attention owing to a deficit in stimulus-specific short-term habituation. A failure of short-term habituation has been suggested to cause an aberrant assignment of salience and thereby psychosis in schizophrenia. We recorded hippocampal-prefrontal coherence while assessing spatial working memory and short-term habituation in these animals, wildtype (WT) controls, and Gria1-/- mice in which GLUA1 expression was restored in hippocampal subfields CA2 and CA3. We found that beta (20-30 Hz) and low-gamma (30-48 Hz) frequency coherence could predict working memory performance, whereas-surprisingly-theta (6-12 Hz) coherence was unrelated to performance and largely unaffected by genotype in this task. In contrast, in novel environments, theta coherence specifically tracked exploration-related attention in WT mice, but was strongly elevated and unmodulated in Gria1-knockouts, thereby correlating with impaired short-term habituation. Strikingly, reintroduction of GLUA1 selectively into CA2/CA3 restored abnormal short-term habituation, theta coherence, and hippocampal and prefrontal theta oscillations. Although local oscillations and coherence in other frequency bands (beta, gamma), and theta-gamma cross-frequency coupling also showed dependence on GLUA1, none of them correlated with short-term habituation. Therefore, sustained elevation of hippocampal-prefrontal theta coherence may underlie a failure in regulating novelty-related selective attention leading to aberrant salience, and thereby represents a mechanistic link between GRIA1 and schizophrenia.
Collapse
Affiliation(s)
- Alexei M. Bygrave
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK ,0000000121901201grid.83440.3bUCL Queen Square Institute of Neurology, University College London, London, UK ,0000 0001 2171 9311grid.21107.35Present Address: Department of Neuroscience, Johns Hopkins University, Baltimore, MD USA
| | - Thomas Jahans-Price
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Amy R. Wolff
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK ,0000000121901201grid.83440.3bUCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rolf Sprengel
- 0000 0001 2202 0959grid.414703.5Max-Planck-Institute for Medical Research, Heidelberg, Germany ,0000 0001 2190 4373grid.7700.0Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Dimitri M. Kullmann
- 0000000121901201grid.83440.3bUCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M. Bannerman
- 0000 0004 1936 8948grid.4991.5Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Dennis Kätzel
- Department of Experimental Psychology, University of Oxford, Oxford, UK. .,UCL Queen Square Institute of Neurology, University College London, London, UK. .,Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
50
|
Rashid B, Chen J, Rashid I, Damaraju E, Liu J, Miller R, Agcaoglu O, van Erp TGM, Lim KO, Turner JA, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, McEwen S, Potkin SG, Preda A, Bustillo JR, Pearlson GD, Calhoun VD. A framework for linking resting-state chronnectome/genome features in schizophrenia: A pilot study. Neuroimage 2019; 184:843-854. [PMID: 30300752 PMCID: PMC6230505 DOI: 10.1016/j.neuroimage.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 01/07/2023] Open
Abstract
Multimodal, imaging-genomics techniques offer a platform for understanding genetic influences on brain abnormalities in psychiatric disorders. Such approaches utilize the information available from both imaging and genomics data and identify their association. Particularly for complex disorders such as schizophrenia, the relationship between imaging and genomic features may be better understood by incorporating additional information provided by advanced multimodal modeling. In this study, we propose a novel framework to combine features corresponding to functional magnetic resonance imaging (functional) and single nucleotide polymorphism (SNP) data from 61 schizophrenia (SZ) patients and 87 healthy controls (HC). In particular, the features for the functional and genetic modalities include dynamic (i.e., time-varying) functional network connectivity (dFNC) features and the SNP data, respectively. The dFNC features are estimated from component time-courses, obtained using group independent component analysis (ICA), by computing sliding-window functional network connectivity, and then estimating subject specific states from this dFNC data using a k-means clustering approach. For each subject, both the functional (dFNC states) and SNP data are selected as features for a parallel ICA (pICA) based imaging-genomic framework. This analysis identified a significant association between a SNP component (defined by large clusters of functionally related SNPs statistically correlated with phenotype components) and time-varying or dFNC component (defined by clusters of related connectivity links among distant brain regions distributed across discrete dynamic states, and statistically correlated with genomic components) in schizophrenia. Importantly, the polygenetic risk score (PRS) for SZ (computed as a linearly weighted sum of the genotype profiles with weights derived from the odds ratios of the psychiatric genomics consortium (PGC)) was negatively correlated with the significant dFNC component, which were mostly present within a state that exhibited a lower occupancy rate in individuals with SZ compared with HC, hence identifying a potential dFNC imaging biomarker for schizophrenia. Taken together, the current findings provide preliminary evidence for a link between dFNC measures and genetic risk, suggesting the application of dFNC patterns as biomarkers in imaging genetic association study.
Collapse
Affiliation(s)
- Barnaly Rashid
- Harvard Medical School, Boston, MA, USA; The Mind Research Network & LBERI, Albuquerque, NM, USA.
| | - Jiayu Chen
- The Mind Research Network & LBERI, Albuquerque, NM, USA
| | - Ishtiaque Rashid
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Eswar Damaraju
- The Mind Research Network & LBERI, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Jingyu Liu
- The Mind Research Network & LBERI, Albuquerque, NM, USA
| | - Robyn Miller
- The Mind Research Network & LBERI, Albuquerque, NM, USA
| | | | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Jessica A Turner
- The Mind Research Network & LBERI, Albuquerque, NM, USA; Department of Psychology and Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| | - Judith M Ford
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Veterans Affairs San Francisco Healthcare System, San Francisco, CA, USA
| | - James Voyvodic
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah McEwen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Steven G Potkin
- Department of Psychiatry, University of California Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry, University of California Irvine, Irvine, CA, USA
| | - Juan R Bustillo
- Department of Psychiatry & Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center - Institute of Living, Hartford, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Vince D Calhoun
- The Mind Research Network & LBERI, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|