1
|
Abstract
With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry-chemical biology, enabling catalytic reactions within media composites - including mammalian tissue - that are historically recalcitrant with blue-light photoredox catalysis.
Collapse
Affiliation(s)
- David C Cabanero
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Graczyk D, Cowin RA, Chekulaev D, Haigh MA, Scattergood PA, Quinn SJ. Study of the Photophysical Properties and the DNA Binding of Enantiopure [Cr(TMP) 2(dppn)] 3+ Complex. Inorg Chem 2024; 63:23620-23629. [PMID: 39626123 DOI: 10.1021/acs.inorgchem.4c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The preparation, electrochemistry and photophysical properties of a heteroleptic chromium(III) polypyridyl complex rac-[Cr(TMP)2(dppn)]3+ (1) containing two 3,4,7,8-tetramethyl-1,10-phenanthroline (TMP) ligands and the π-extended benzodipyrido[3,2-a:2',3'-c]phenazine (dppn) ligand are reported. The visible absorption spectrum of 1 reveals distinct bands between 320 and 420 nm characteristic of dppn-based ligand-centered transitions, with 1 found to be nonemissive in aqueous solution but weakly luminescent in aerated acetonitrile solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of 1 leads to initial population of a ligand-to-metal charge transfer (LMCT) state which evolves within tens of ps to form a dppn-localized intraligand (3IL) state which persists for longer than 7 ns and efficiently sensitizes singlet oxygen. Chiral resolution and DNA binding of the lambda and delta enantiomers of 1 to four different DNA systems is reported. In all cases the lambda enantiomer shows greater affinity for DNA and in particular AT-rich DNA. Thermal denaturation reveals that the lambda enantiomer stabilizes the DNA more. There is also a greater stabilization of the AT-containing DNA sequences compared to GC DNA.
Collapse
Affiliation(s)
- Daniel Graczyk
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rory A Cowin
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S1 3HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S1 3HF, U.K
| | - Maisie A Haigh
- Department of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
3
|
Stitch M, Sanders R, Sazanovich IV, Towrie M, Botchway SW, Quinn SJ. Contrasting Photosensitized Processes of Ru(II) Polypyridyl Structural Isomers Containing Linear and Hooked Intercalating Ligands Bound to Guanine-Rich DNA. J Phys Chem B 2024; 128:7803-7812. [PMID: 39106822 PMCID: PMC11331526 DOI: 10.1021/acs.jpcb.4c04129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn (1) or a hooked bdppz (2) benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of 1 yields a dppn-based metal-to-ligand charge-transfer (MLCT) state, which in turn populates a dppn intraligand (3IL) state. In contrast, photoexcitation of 2 results in an MLCT state on the TAP ligand and not the intercalating bdppz ligand. Both 1 and 2 bind strongly to double-stranded guanine-rich DNA with a loss of emission. Combined TrA and time-resolved infrared (TRIR) spectroscopy confirms formation of the guanine radical cation when 2 is bound to the d(G5C5)2 duplex, which is not the case when 1 is bound to the same duplex and indicates a different mechanism of action in DNA. Utilizing the long-lived triplet excited lifetime, we show good uptake and localization of 2 in live cells as well as isolated chromosomes. The observed shortening of the excited-state lifetime of 2 when internalized in cell chromosomes is consistent with DNA binding and luminescent quenching due to guanine photo-oxidation.
Collapse
Affiliation(s)
- Mark Stitch
- School
of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rosie Sanders
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Stanley W. Botchway
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton
Laboratory, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Susan J. Quinn
- School
of Chemistry, University College Dublin, Dublin 4 D04 V1W8, Ireland
| |
Collapse
|
4
|
De Kreijger S, Cauët E, Elias B, Troian-Gautier L. Synthesis of Ru(II) and Os(II) photosensitizers bearing one 9,10-diamino-1,4,5,8-tetraazaphenanthrene scaffold. Dalton Trans 2024; 53:10270-10284. [PMID: 38829264 DOI: 10.1039/d4dt01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The synthesis of eight Ru(II) and Os(II) photosensitizers bearing a common 9,10-disubstituted-1,4,5,8-tetraazaphenanthrene backbone is reported. With Os(II) photosensitizers, the 9,10-diNH2-1,4,5,8-tetraazaphenanthrene could be directly chelated onto the metal center via the heteroaromatic moiety, whereas similar conditions using Ru(II) resulted in the formation of an o-quinonediimine derivative. Hence, an alternative route, proceeding via the chelation of 9-NH2-10-NO2-1,4,5,8-tetraazaphenanthrene and subsequent ligand reduction of the corresponding photosensitizers was developed. Photosensitizers chelated via the polypyridyl-type moiety exhibited classical photophysical properties whereas the o-quinonediimine chelated Ru(II) analogues exhibited red-shifted absorption (520 nm) and no photoluminescence at room temperature in acetonitrile. The most promising photosensitizers were investigated for excited-state quenching with guanosine-5'-monophosphate in aqueous buffered conditions where reductive excited-state electron transfer was observed by nanosecond transient absorption spectroscopy.
Collapse
Affiliation(s)
- Simon De Kreijger
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium.
| | - Emilie Cauët
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (CP 160/09), Université libre de Bruxelles (ULB), 50 av. F. D. Roosevelt, CP160/09, B-1050 Brussels, Belgium
| | - Benjamin Elias
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium.
| | - Ludovic Troian-Gautier
- UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium.
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
5
|
Pehlken C, Pfeffer MG, Reich K, Rau S. Evaluation of 1 H-NMR Spectroscopy-Based Quantification Methods of the Supramolecular Aggregation of a Molecular Photosensitizer. Photochem Photobiol 2022; 98:1255-1263. [PMID: 35737849 DOI: 10.1111/php.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 12/01/2022]
Abstract
The supramolecular dimerization of a ruthenium polypyridyl precursor of a well-developed family of hydrogen evolving photocatalysts via π-π-interactions of the polyheteroaromatic bridging ligand was quantified with concentration dependent 1 H-NMR-spectroscopy. The data sets were analyzed with different calculation and fit methods. A comparison between the results of direct calculation, linear and nonlinear approaches showed that the application of a global nonlinear fit procedure yields the best results. The presented methods are also applicable for dimerization processes in solution of other molecular moieties.
Collapse
Affiliation(s)
- Christian Pehlken
- University of Ulm, Institute of Inorganic Chemistry I Materials and Catalysis, Albert-Einstein-Allee 11, 89081, Ulm
| | - Michael G Pfeffer
- University of Ulm, Institute of Inorganic Chemistry I Materials and Catalysis, Albert-Einstein-Allee 11, 89081, Ulm
| | - Katharina Reich
- University of Ulm, Institute of Inorganic Chemistry I Materials and Catalysis, Albert-Einstein-Allee 11, 89081, Ulm
| | - Sven Rau
- University of Ulm, Institute of Inorganic Chemistry I Materials and Catalysis, Albert-Einstein-Allee 11, 89081, Ulm
| |
Collapse
|
6
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
7
|
Castro Júnior JGM, Rocha WR. Theoretical investigation of [Ru(bpy) 2(HAT)] 2+ (HAT = 1,4,5,8,9,12-hexaazatriphenylene; bpy = 2,2'-bipyridine): Photophysics and reactions in excited state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120817. [PMID: 35030417 DOI: 10.1016/j.saa.2021.120817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In this article, Density Functional Theory based calculations, including dispersion corrections, PBE0(D3BJ)/Def2-TZVP(-f), were performed to elucidate the photophysics of the [Ru(bpy)2(HAT)]2+ complex in water. In addition, the thermodynamics of the charge and electron transfer excited state reactions of this complex with oxygen, nitric oxide and Guanosine-5'-monophosphate nucleotide (GMP) were investigated. The first singlet excite state, S1, strongly couples with the second and third triplet excited states (T2 and T3) giving rise to a high intersystem crossing rate of 6.26 × 1011 s-1 which is ∼106 greater than the fluorescence rate decay. The thermodynamics of the excited reactions revealed that all electron transfer reactions investigated are highly favorable, due mainly to the high stability of the triply charged radical cation 2PS•3+ species formed after the electron has been transferred. Excited state electron transfer from the GMP nucleotide to the complex is also highly favorable (ΔGsol = -92.6 kcal/mol), showing that this complex can be involved in the photooxidation of DNA, in line with experimental findings. Therefore, the calculations allow to conclude that the [Ru(bpy)2(HAT)]2+ complex can act in Photodynamic therapy through both mechanisms type I and II, through electron transfer from and to the complex and triplet-triplet energy transfer, generating ROS, RNOS and through DNA photooxidation. In addition, the work also opens a perspective of using this complex for the in-situ generation of the singlet nitroxyl (1NO-) species, which can have important applications for the generation of HNO and may have, therefore, important impact for physiological studies involving HNO.
Collapse
Affiliation(s)
- José Geraldo M Castro Júnior
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo(lab), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Pampulha, Belo Horizonte, MG, Brazil
| | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo(lab), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901 Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021; 2:1021-1049. [PMID: 34458823 PMCID: PMC8341117 DOI: 10.1039/d1cb00049g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Transition metal luminophores are emerging as important tools for intracellular imaging and sensing. Their putative suitability for such applications has long been recognised but poor membrane permeability and cytotoxicity were significant barriers that impeded early progress. In recent years, numerous effective routes to overcoming these issues have been reported, inspired in part, by advances and insights from the pharmaceutical and drug delivery domains. In particular, the conjugation of biomolecules but also other less natural synthetic species, from a repertoire of functional motifs have granted membrane permeability and cellular targeting. Such motifs can also reduce cytotoxicity of transition metal complexes and offer a valuable avenue to circumvent such problems leading to promising metal complex candidates for application in bioimaging, sensing and diagnostics. The advances in metal complex probes permeability/targeting are timely, as, in parallel, over the past two decades significant technological advances in luminescence imaging have occurred. In particular, super-resolution imaging is enormously powerful but makes substantial demands of its imaging contrast agents and metal complex luminophores frequently possess the photophysical characteristics to meet these demands. Here, we review some of the key vectors that have been conjugated to transition metal complex luminophores to promote their use in intra-cellular imaging applications. We evaluate some of the most effective strategies in terms of membrane permeability, intracellular targeting and what impact these approaches have on toxicity and phototoxicity which are important considerations in a luminescent contrast or sensing agent.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Christopher S Burke
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - David Cullinane
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| |
Collapse
|
10
|
Cullinane D, Gkika KS, Byrne A, Keyes TE. Photostable NIR emitting ruthenium(II) conjugates; uptake and biological activity in live cells. J Inorg Biochem 2020; 207:111032. [PMID: 32311630 DOI: 10.1016/j.jinorgbio.2020.111032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023]
Abstract
A photostable Ru(2,2-biquinoline)2(3-(2-pyridyl)-5-(4-carboxyphenyl)-1,2,4-triazolate) (Ru(biq)2(trzbenzCOOH)) complex that exhibits near-infrared (NIR) emission centred at 786 nm is reported. The parent complex was conjugated via amide coupling to a cell-penetrating peptide sequence octa-arginine (R8), and two signal peptide sequences; the nuclear localizing sequence (NLS) VQRKRQKLMP and the mitochondria penetrating peptide (MPP) FrFKFrFK(Ac) (r = D isomer of arginine, Ac = terminal lysine amine acetyl blocked). Notably, none of the peptide conjugates were cell-permeable as chloride salts but efficient and rapid membrane permeation was observed post ion exchange with perchlorate counterion. Also, surprisingly, all three peptide conjugates exhibited potent dark cytotoxicity in both CHO and HeLa cell lines. The peptide conjugates induce cell death through a caspase dependent apoptotic pathway. At the minimum concentration of dye (approx. 15 μM) required for cell imaging, only 20% of the cells were viable after a 24 h incubation period. To overcome cytotoxicity, the parent complex was PEGylated; this dramatically decreased cytotoxicity, where 50% of cells were viable even at 150 μM concentration after 24 h. Confocal luminescence microscopy indicated that all four bioconjugates, peptides in perchlorate form and polyethylene glycol (PEG) in chloride form, were rapidly internalized within the cell. However, interestingly the precise localisation by the signal peptides observed in related complexes was not observed here and the peptide conjugates were unsuitable as luminescent probes for cell microscopy due to their high cell toxicity. The poor targeting of signal peptides in this instance is attributed to the high lipophilicity of the metal centre.
Collapse
Affiliation(s)
- David Cullinane
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Aisling Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
11
|
Jain A. Multifunctional, heterometallic ruthenium-platinum complexes with medicinal applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Thongyod W, Buranachai C, Pengpan T, Punwong C. Fluorescence quenching by photoinduced electron transfer between 7-methoxycoumarin and guanine base facilitated by hydrogen bonds: an in silico study. Phys Chem Chem Phys 2019; 21:16258-16269. [PMID: 31304496 DOI: 10.1039/c9cp02037c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the effects of hydrogen bond (H-bond) formation on fluorescence quenching of 7-methoxycoumarin (7MC) via photo-induced electron transfer from a guanine base (Gua) are investigated using a combined quantum mechanics/molecular mechanics simulation. The electronic structure is calculated by the floating occupation molecular orbital complete active space configuration interaction modification on a semiempirical method. Then the full multiple spawning method is employed for the dynamics simulations on multiple electronic states. The methods employed here are validated by simulating direct dynamics of 7MC (without Gua) and compared with available experimental results. Our computational results are in good agreement with the previously reported experimental results in terms of spectroscopic properties of 7MC. In the case of a H-bonded 7MC-Gua complex, the results from constrained dynamics simulations and single-point calculations suggest that the electron transfer occurs on the second excited state and it depends not only on the H-bond length but also on the intermolecular planarity between 7MC and Gua. Moreover, a proton coupled electron transfer can occur at ≈1 Å of H-bond length, where a proton from Gua is also transferred together with the electron to 7MC. The obtained simulations are expected to be greatly beneficial for designing effective fluorescently labeled nucleotide probes as well as providing information for precise fluorescence signal interpretation.
Collapse
Affiliation(s)
- Wutthinan Thongyod
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand. and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90112, Thailand
| | - Chittanon Buranachai
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand. and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90112, Thailand
| | - Teparksorn Pengpan
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Chutintorn Punwong
- Department of Physics, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| |
Collapse
|
13
|
Ravi C, Vuradi RK, Avudoddi S, Yata PK, Putta VR, Srinivas G, Merugu R, Satyanarayana S. Synthesis, spectral studies, DNA binding, photocleavage, antimicrobial and anticancer activities of isoindol Ru(II) polypyridyl complexes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:788-806. [PMID: 31081456 DOI: 10.1080/15257770.2019.1610890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Three new Ru(II) polypyridyl complexes [Ru(phen)2CIIP]2+ (1) {CIIP = 2-(5-Chloro-3a H-Isoindol-3-yl)-1H-Imidazo[4,5-f][1, 10]phenantholine} (phen = 1, 10 phenanthroline), [Ru(bpy)2CIIP]2+ (2) (bpy = 2, 2' bipyridine) and [Ru(dmb)2CIIP]2+ (3) (dmb = 4, 4'-dimethyl 2, 2' bipyridine) were synthesized and characterized by different spectral methods. The DNA-binding behavior of these complexes was investigated by absorption, emission spectroscopic titration and viscosity measurements, indicating that these three complexes bind to CT-DNA in an intercalative mode, but binding affinities of these complexes were different. The DNA-binding constants Kb of complexes 1, 2 and 3 were calculated in the order of 106. All three complexes cleave pBR322 DNA in photoactivated cleavage studies and exhibit good antimicrobial activity. Anticancer activity of these Ru(II) complexes was evaluated in MCF7 cells. Cytotoxicity by MTT assay showed growth inhibition in a dose dependent manner. Cell cycle analysis by flow cytometry data showed an increase in Sub G1 population. Annexin V FITC/PI staining confirms that these complexes cause cell death by the induction of apoptosis.
Collapse
Affiliation(s)
- Ch Ravi
- a Department of Chemistry, JNTU , Hyderabad , India
| | | | | | - Praveen Kumar Yata
- b Department of Chemistry, Osmania University , Hyderabad , India.,c Department of Chemistry, Osmania University PG College , Narsapur , India
| | | | - G Srinivas
- b Department of Chemistry, Osmania University , Hyderabad , India.,d Department of Chemistry, Government Degree College Manthani , Peddapalli , India
| | - Ramchander Merugu
- e Department of Biochemistry, Mahatma Gandhi University , Nalgonda , India
| | - S Satyanarayana
- b Department of Chemistry, Osmania University , Hyderabad , India
| |
Collapse
|
14
|
Abstract
Iodide redox chemistry is intimately coupled with the formation and breaking of chemical bonds that are relevant to emerging solar energy technologies. In this Account, recent advances in dye-sensitized iodide oxidation chemistry in organic solutions are described. Here RuII sensitizers with high cationic charge, tuned reduction potentials, and specific iodide receptor site(s) are shown to self-assemble in organic solvents and yield structures that rapidly oxidize iodide and generate I-I bonds when illuminated with visible light. These studies provided new insights into the fascinating behavior of our most polarizable and easily oxidized monatomic anion. Sensitized iodide photo-oxidation in CH3CN solutions consists of two mechanistic steps. In the first step, an excited-state sensitizer oxidizes iodide (I-) to an iodine atom (I•) through diffusional encounters. The second step involves the reaction of I• with I- to form the I-I bond of diiodide, I2•-. The overall reaction converts a green photon into about 1.64 eV of free energy in the form of I2•- and the reduced sensitizer. The free energy is only transiently available, as back-electron transfer to yield ground-state products is quantitative. Interestingly, when the free energy change is near zero, iodide photo-oxidation occurs rapidly with rate constants near the diffusion limit, i.e., >1010 M-1 s-1. Such rapid reactivity is in line with anecdotal knowledge that iodide is an outstanding electron donor and is indicative of adiabatic electron transfer through an inner-sphere mechanism. In low-dielectric-constant solvents, dicationic RuII sensitizers were found to form tight ion pairs with iodide. Diimine ligands with additional cationic charge, or "binding pockets" that recognize halides, have been utilized to position one or more halides at specific locations about the sensitizer before light absorption. Diverse photochemical reactions observed with these supramolecular assemblies range from the photorelease of halides to the formation of I-I bonds where both iodides present in the ground-state assembly react. Natural population analysis through density functional theory calculations accurately predicts the site(s) of iodide ion-pairing and provides information on the associated free energy change. The ability to direct light-driven bond formation in these ionic assemblies is extended to chloride and bromide ions. The structure-property relationships identified, and those that continue to emerge, may one day allow for the rational design of molecules and materials that drive desired halide transformations when illuminated with light.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wesley B. Swords
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Yu B, Rees TW, Liang J, Jin C, Chen Y, Ji L, Chao H. DNA interaction of ruthenium(ii) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives. Dalton Trans 2019; 48:3914-3921. [DOI: 10.1039/c9dt00454h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The DNA interaction properties of four Ru(ii) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives were investigated by spectral titration, gel electrophoresis (GAR), dynamic light scattering (DLS), zeta potential, atomic force microscopy (AFM), and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Bole Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Jiewen Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
16
|
Mohan B, Modi K, Patel C, Bhatia P, Kumar A, Sharma HK. Design and synthesis of two armed molecular receptor for recognition of Gd3+metal ion and its computational study. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brij Mohan
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | - Krunal Modi
- J. Heyrovsky Institute of physical Chemistry; Academy of Sciences of the Czech Republic; Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Chirag Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences; Gujarat University; Ahmedabad Gujarat 380009 India
| | - Pankaj Bhatia
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | - Ashwani Kumar
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | | |
Collapse
|
17
|
Estalayo-Adrián S, Garnir K, Moucheron C. Perspectives of ruthenium(ii) polyazaaromatic photo-oxidizing complexes photoreactive towards tryptophan-containing peptides and derivatives. Chem Commun (Camb) 2018; 54:322-337. [DOI: 10.1039/c7cc06542f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review focuses on recent advances in the search for RuII polyazaaromatic complexes as molecular photoreagents for tryptophan-containing peptides and proteins, in view of future biomedical applications.
Collapse
Affiliation(s)
- S. Estalayo-Adrián
- Organic Chemistry and Photochemistry
- Université Libre de Bruxelles, (U. L. B.)
- 1050 Bruxelles
- Belgium
| | - K. Garnir
- Organic Chemistry and Photochemistry
- Université Libre de Bruxelles, (U. L. B.)
- 1050 Bruxelles
- Belgium
| | - C. Moucheron
- Organic Chemistry and Photochemistry
- Université Libre de Bruxelles, (U. L. B.)
- 1050 Bruxelles
- Belgium
| |
Collapse
|
18
|
Laramée-Milette B, Nastasi F, Puntoriero F, Campagna S, Hanan GS. Photo-Induced Assembly of a Luminescent Tetraruthenium Square. Chemistry 2017; 23:16497-16504. [PMID: 28922481 DOI: 10.1002/chem.201702714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 01/05/2023]
Abstract
Self-assembly is a powerful synthetic tool that has led to the development of one-, two- and three-dimensional architectures. From MOFs to molecular flasks, self-assembled materials have proven to be of great interest to the scientific community. Here we describe a strategy for the construction and de-construction of a supramolecular structure through unprecedented photo-induced assembly and dis-assembly. The combination of two approaches, a [n×1]-directional bonding strategy and a ligand photo-dissociation strategy, allows the photo-induced assembly of a polypyridyl RuII precursor into a discrete molecular square. Diffusion-ordered NMR spectroscopy confirmed the synthesis of a higher volume species, while the identity of the species was established by high-resolution mass spectrometry and single-crystal X-ray diffraction studies. The self-assembled square is not obtained by classical thermal techniques in similar conditions, but is obtained only by light-irradiation. The tetraruthenium square has an excited-state lifetime (135 ns), 40 times that of its mononuclear precursor and its luminescence quantum yield (1.0 %) is three orders of magnitude higher. These remarkable luminescence properties are closely related to the relatively rigid square structure of the tetraruthenium assembly, as suggested by slow radiationless decay and transient absorption spectroscopy. The results described herein are a rare example of photo-induced assembly and dis-assembly processes, and can open the way to a new avenue in supramolecular chemistry, leading to the preparation of structurally organized supermolecules by photochemical techniques.
Collapse
Affiliation(s)
- Baptiste Laramée-Milette
- Département de Chimie, Université de Montréal, 5155 Ch. de la Rampe, Pavillon J.-A. Bombardier, Montréal, QC, H3T 2B1, Canada
| | - Francesco Nastasi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, and, Centro di ricerca interuniversitario per la conversione chimica dell'energia solare (SOLAR-CHEM), 98166, Messina, Italy
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, and, Centro di ricerca interuniversitario per la conversione chimica dell'energia solare (SOLAR-CHEM), 98166, Messina, Italy
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, and, Centro di ricerca interuniversitario per la conversione chimica dell'energia solare (SOLAR-CHEM), 98166, Messina, Italy
| | - Garry S Hanan
- Département de Chimie, Université de Montréal, 5155 Ch. de la Rampe, Pavillon J.-A. Bombardier, Montréal, QC, H3T 2B1, Canada
| |
Collapse
|
19
|
Piraux G, Bar L, Abraham M, Lavergne T, Jamet H, Dejeu J, Marcélis L, Defrancq E, Elias B. New Ruthenium-Based Probes for Selective G-Quadruplex Targeting. Chemistry 2017; 23:11872-11880. [PMID: 28609545 DOI: 10.1002/chem.201702076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 01/13/2023]
Abstract
Telomeric regions containing G-quadruplex (G4) structures play a pivotal role in the development of cancers. The development of specific binders for G4s is thus of great interest in order to gain a deeper understanding of the role of these structures, and to ultimately develop new anticancer drug candidates. For several years, RuII complexes have been studied as efficient probes for DNA. Interest in these complexes stems mainly from the tunability of their structures and properties, and the possibility of using light excitation as a tool to probe their environment or to selectively trigger their reaction with a biological target. Herein, we report on the synthesis and thorough study of new RuII complexes based on a novel dipyrazino[2,3-a:2',3'-h]phenazine ligand (dph), obtained through a Chichibabin-like reaction. Luminescence experiments, surface plasmon resonance (SPR), and computational studies have demonstrated that these complexes behave as selective probes for G-quadruplex structures.
Collapse
Affiliation(s)
- Guillaume Piraux
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Laure Bar
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Michaël Abraham
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Thomas Lavergne
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Hélène Jamet
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Jérôme Dejeu
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Lionel Marcélis
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Eric Defrancq
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Mallepally RR, Chintakuntla N, Putta VR, K N, Vuradi RK, P M, S SS, Chitumalla RK, Jang J, Penumaka N, Sirasani S. Synthesis, Spectral Properties and DFT Calculations of new Ruthenium (II) Polypyridyl Complexes; DNA Binding Affinity and in Vitro Cytotoxicity Activity. J Fluoresc 2017; 27:1513-1530. [PMID: 28432633 DOI: 10.1007/s10895-017-2091-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
In this paper a novel ligand debip (2-(4-N,N-diethylbenzenamine)1H-imidazo[4,5-f] [1, 10]phenanthroline) and its Ru(II) polypyridyl complexes [Ru(L)2(debip)]2+, (L = phen (1), bpy (2) and dmb (3)) have been synthesized and characterized by spectroscopic techniques. The DNA binding studies for all these complexes were examined by absorption, emission, quenching studies, viscosity measurements and cyclic voltammetry. The light switching properties of complexes 1-3 have been evaluated. Molecular docking, Density Functional Theory (DFT) and time dependent DFT calculations were performed. The Ru(II) complexes exhibited efficient photocleavage activity against pBR322 DNA upon irradiation and exhibited good antimicrobial activity. Also investigated 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, lactate dehydrogenase (LDH) release assay and reactive oxygen species (ROS) against selected cancer cell lines (HeLa, PC3, Lancap, MCF-7 and MD-MBA 231).
Collapse
Affiliation(s)
| | - Nagamani Chintakuntla
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Venkat Reddy Putta
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Nagasuryaprasad K
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Madhuri P
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Satyanarayana Singh S
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Ramesh Kumar Chitumalla
- Department of Nanoenergy Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Nagababu Penumaka
- Inorganic & Physical Chemistry Division, CSIR-IICT, Tarnaka, Hyderabad, Telangana, 500007, India
- CSIR-NEERI Kolkata Zonal Laboratory, 1-8, Sector C, East Kolkata, Area Development Projecct, P.O. East Kolkata, Township, Kolkata, 700107, India
| | | |
Collapse
|
21
|
Troian-Gautier L, Marcélis L, De Winter J, Gerbaux P, Moucheron C. Two ruthenium complexes capable of storing multiple electrons on a single ligand – photophysical, photochemical and electrochemical properties of [Ru(phen)2(TAPHAT)]2+ and [Ru(phen)2(TAPHAT)Ru(phen)2]4+. Dalton Trans 2017; 46:15287-15300. [DOI: 10.1039/c7dt03232c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical, photochemical and electrochemical properties of two newly synthesized ruthenium(ii) complexes are reported.
Collapse
Affiliation(s)
- L. Troian-Gautier
- Organic Chemistry and Photochemistry
- Université libre de Bruxelles (U.L.B.)
- B-1050 Bruxelles
- Belgium
| | - L. Marcélis
- Engineering of Molecular NanoSystems
- Université libre de Bruxelles (U.L.B.)
- B-1050 Bruxelles
- Belgium
| | - J. De Winter
- Organic Synthesis and Mass Spectrometry Laboratory
- Center of Innovation and Research in Materials and Polymers
- Research Institute for Science and Engineering of Materials
- University of Mons - UMONS
- B-7000 Mons
| | - P. Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory
- Center of Innovation and Research in Materials and Polymers
- Research Institute for Science and Engineering of Materials
- University of Mons - UMONS
- B-7000 Mons
| | - C. Moucheron
- Organic Chemistry and Photochemistry
- Université libre de Bruxelles (U.L.B.)
- B-1050 Bruxelles
- Belgium
| |
Collapse
|
22
|
Troian-Gautier L, Mugeniwabagara E, Fusaro L, Moucheron C, Kirsch-De Mesmaeker A, Luhmer M. pH Dependence of Photoinduced Electron Transfer with [Ru(TAP)3]2+. Inorg Chem 2016; 56:1794-1803. [DOI: 10.1021/acs.inorgchem.6b01780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludovic Troian-Gautier
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Epiphanie Mugeniwabagara
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Luca Fusaro
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Cécile Moucheron
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Michel Luhmer
- Laboratoire
de Chimie Organique et Photochimie and §Laboratoire de Résonance Magnétique
Nucléaire Haute Résolution, Université libre de Bruxelles, 50 av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| |
Collapse
|
23
|
Li G, Sun L, Ji L, Chao H. Ruthenium(ii) complexes with dppz: from molecular photoswitch to biological applications. Dalton Trans 2016; 45:13261-76. [DOI: 10.1039/c6dt01624c] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present article describes the recent advances in biological applications of the Ru-dppz systems in DNA binding, cellular imaging, anticancer drugs, phototherapy, protein aggregation detecting and chemosensors.
Collapse
Affiliation(s)
- Guanying Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Lingli Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
24
|
Adam R, Bilbao-Ramos P, Abarca B, Ballesteros R, González-Rosende ME, Dea-Ayuela MA, Estevan F, Alzuet-Piña G. Triazolopyridopyrimidines: an emerging family of effective DNA photocleavers. DNA binding. Antileishmanial activity. Org Biomol Chem 2015; 13:4903-17. [PMID: 25812028 DOI: 10.1039/c5ob00280j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triazolopyridopyrimidines 3-phenyl-6,8-di(2-pyridyl)-[1,2,3]triazolo[5',1':6,1]pyrido[2,3-d]pyrimidine (1a), 6,8-di(pyridin-2-yl)-[1,2,3]triazolo[1',5':1,6]pyrido[2,3-d]pyrimidine (1b) and 3-methyl-6,8-di(2-pyridyl)-[1,2,3]triazolo[5',1':6,1]pyrido[2,3-d]pyrimidine (1c) were prepared and their electrochemical and luminescence properties were studied in depth. The DNA binding ability of this series of compounds has been investigated by means of UV-vis absorption and fluorescence titrations, steady-state emission quenching with ferrocyanide as well as viscosity measurements. Results have shown that triazolopyridopyrimidine 1a interacts strongly at DNA grooves. This compound also displays preferential binding to GC-rich sequences and the ability to photooxidize guanine. Moreover, these studies have revealed the key role of the phenyl substituent at the triazole ring in the binding affinity of 1a-c. Compounds 1b and 1c did not show appreciable propensity for DNA binding, however these triazolopyridopyrimidines demonstrated to present photoinduced DNA cleavage activity, 1b being more active than 1c. DNA photocleavage mediated by these compounds takes place mainly through single strand scission events and, in a minor extent, through double strand cuts. Mechanistic investigations using radical scavengers showed that both 1b and 1c generate reactive oxygen species (singlet oxygen, superoxide and hydroxyl radicals) upon irradiation. Both type I and type II mechanisms are involved in the photocleavage process. Furthermore, compounds 1a-c were tested for their antiprotozoal activity against four different Leishmania spp. (L. infantum, L. braziliensis, L. guyanensis and L. amazonensis). Triazolopyridopyrimidines 1a and 1c resulted to be more active and selective than the reference drug (miltefosine) in vitro against L. infantum amastigotes. Compound 1a exhibited high leishmanicidal activity against L. infantum spleen forms in the in vivo test.
Collapse
Affiliation(s)
- Rosa Adam
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Swavey S, Li K. A Dimetallic Osmium(II) Complex as a Potential Phototherapeutic Agent: Binding and Photocleavage Studies with Plasmid DNA. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Cloonan SM, Elmes RBP, Erby M, Bright SA, Poynton FE, Nolan DE, Quinn SJ, Gunnlaugsson T, Williams DC. Detailed Biological Profiling of a Photoactivated and Apoptosis Inducing pdppz Ruthenium(II) Polypyridyl Complex in Cancer Cells. J Med Chem 2015; 58:4494-505. [PMID: 25961430 DOI: 10.1021/acs.jmedchem.5b00451] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ruthenium polypyridyl complexes show great promise as new photodynamic therapy (PDT) agents. However, a lack of detailed understanding of their mode of action in cells poses a challenge to their development. We have designed a new Ru(II) PDT candidate that efficiently enters cells by incorporation of the lipophilic aromatic pdppz ([2,3-h]dipyrido[3,2-a:2',3'-c]phenazine) ligand and exhibits photoactivity through incorporation of 1,4,5,8-tetraazaphenanthrene ancillary ligands. Its photoreactivity toward biomolecules was studied in vitro, where light activation caused DNA cleavage. Cellular internalization occurred via an energy dependent mechanism. Confocal and transmission electron microscopy revealed that the complex localizes in various organelles, including the mitochondria. The complex is nontoxic in the dark, with cellular clearance within 96 h; however, upon visible light activation it induces caspase-dependent and reactive-oxygen-species-dependent apoptosis, with low micromolar IC50 values. This investigation greatly increases our understanding of such systems in cellulo, aiding development and realization of their application in cancer therapy.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- †School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Robert B P Elmes
- ‡School of Chemistry and Trinity Biomedical Sciences Institute, Centre for Synthesis and Chemical Biology, Trinity College Dublin, Dublin 2, Ireland
| | - MariaLuisa Erby
- †School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sandra A Bright
- †School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fergus E Poynton
- ‡School of Chemistry and Trinity Biomedical Sciences Institute, Centre for Synthesis and Chemical Biology, Trinity College Dublin, Dublin 2, Ireland
| | - Derek E Nolan
- †School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Susan J Quinn
- §School of Chemistry and Chemical Biology, University College Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- ‡School of Chemistry and Trinity Biomedical Sciences Institute, Centre for Synthesis and Chemical Biology, Trinity College Dublin, Dublin 2, Ireland
| | - D Clive Williams
- †School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
27
|
Swavey S, DeBeer M, Li K. Photoinduced Interactions of Supramolecular Ruthenium(II) Complexes with Plasmid DNA: Synthesis and Spectroscopic, Electrochemical, and DNA Photocleavage Studies. Inorg Chem 2015; 54:3139-47. [DOI: 10.1021/ic502340p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shawn Swavey
- SupraMolecular Applied Research
and Technology Center, Department of Chemistry, University of Dayton, 300 College Park, Dayton, Ohio 45469-2357, United States
| | - Madeleine DeBeer
- SupraMolecular Applied Research
and Technology Center, Department of Chemistry, University of Dayton, 300 College Park, Dayton, Ohio 45469-2357, United States
| | - Kaiyu Li
- SupraMolecular Applied Research
and Technology Center, Department of Chemistry, University of Dayton, 300 College Park, Dayton, Ohio 45469-2357, United States
| |
Collapse
|
28
|
Ryan GJ, Poynton FE, Elmes RBP, Erby M, Williams DC, Quinn SJ, Gunnlaugsson T. Unexpected DNA binding properties with correlated downstream biological applications in mono vs. bis-1,8-naphthalimide Ru(ii)-polypyridyl conjugates. Dalton Trans 2015; 44:16332-44. [DOI: 10.1039/c5dt00360a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of two 1,8-napthalimide-conjugated Ru(ii)-polypyridyl complexes which exhibit different DNA binding and photocleavage behavior is presented.
Collapse
Affiliation(s)
- Gary J. Ryan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Fergus E. Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Robert B. P. Elmes
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Marialuisa Erby
- School of Biochemistry and Immunology
- and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology
- and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Susan J. Quinn
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| |
Collapse
|
29
|
|
30
|
Sista P, Ghosh K, Martinez JS, Rocha RC. Metallo-Biopolymers: Conjugation Strategies and Applications. POLYM REV 2014. [DOI: 10.1080/15583724.2014.913063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Troian-Gautier L, Moucheron C. RutheniumII complexes bearing fused polycyclic ligands: from fundamental aspects to potential applications. Molecules 2014; 19:5028-87. [PMID: 24759069 PMCID: PMC6270827 DOI: 10.3390/molecules19045028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/04/2023] Open
Abstract
In this review, we first discuss the photophysics reported in the literature for mononuclear ruthenium complexes bearing ligands with extended aromaticity such as dipyrido[3,2-a:2',3'-c]phenazine (DPPZ), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]-phenazine (TPPHZ), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]acridine (TPAC), 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene (PHEHAT) 9,11,20,22-tetraaza- tetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (TATPP), etc. Photophysical properties of binuclear and polynuclear complexes based on these extended ligands are then reported. We finally develop the use of binuclear complexes with extended π-systems for applications such as photocatalysis.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Laboratoire de Chimie Organique et Photochimie, Université Libre de Bruxelles (ULB), CP160/08, 50 av. F. D. Roosevelt, 1050 Bruxelles, Belgium.
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Université Libre de Bruxelles (ULB), CP160/08, 50 av. F. D. Roosevelt, 1050 Bruxelles, Belgium.
| |
Collapse
|
32
|
Mattiuzzi A, Marcélis L, Jabin I, Moucheron C, Mesmaeker AKD. Synthesis and Electrochemical and Photophysical Properties of Calixarene-Based Ruthenium(II) Complexes as Potential Multivalent Photoreagents. Inorg Chem 2013; 52:11228-36. [DOI: 10.1021/ic401468t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alice Mattiuzzi
- Laboratoire de Chimie Organique, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Lionel Marcélis
- Laboratoire de Chimie
Organique
et Photochimie, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie
Organique
et Photochimie, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Laboratoire de Chimie
Organique
et Photochimie, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/08, B-1050 Brussels, Belgium
| |
Collapse
|
33
|
Kalaivani P, Prabhakaran R, Kaveri M, Huang R, Staples R, Natarajan K. Synthesis, spectral, X-ray crystallography, electrochemistry, DNA/protein binding and radical scavenging activity of new palladium(II) complexes containing triphenylarsine. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.06.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Walker MG, Gonzalez V, Chekmeneva E, Thomas JA. Temperature-Switched Binding of a RuII(dppz)/DNA Light-Switch Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Walker MG, Gonzalez V, Chekmeneva E, Thomas JA. Temperature-switched binding of a RuII (dppz)/DNA light-switch complex. Angew Chem Int Ed Engl 2012; 51:12107-10. [PMID: 23081806 DOI: 10.1002/anie.201206260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Michael G Walker
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | | | | | | |
Collapse
|
36
|
Marcélis L, Ghesquière J, Garnir K, Kirsch-De Mesmaeker A, Moucheron C. Photo-oxidizing RuII complexes and light: Targeting biomolecules via photoadditions. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Zhao XL, Ma YZ, Wang KZ. Synthesis, pH-induced “on–off–on” luminescence switching, and partially intercalative DNA-binding and DNA photocleavage properties of an β-d-allopyranoside-grafted ruthenium(II) complex. J Inorg Biochem 2012; 113:66-76. [DOI: 10.1016/j.jinorgbio.2012.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/15/2022]
|
38
|
Mari C, Panigati M, D’Alfonso L, Zanoni I, Donghi D, Sironi L, Collini M, Maiorana S, Baldoli C, D’Alfonso G, Licandro E. Luminescent Conjugates between Dinuclear Rhenium Complexes and Peptide Nucleic Acids (PNA): Synthesis, Photophysical Characterization, and Cell Uptake. Organometallics 2012. [DOI: 10.1021/om3004515] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cristina Mari
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano,
Italy
| | - Monica Panigati
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano,
Italy
| | - Laura D’Alfonso
- Dipartimento di Fisica, Università di Milano-Bicocca, piazza della Scienza 3, I-20126 Milano,
Italy
| | - Ivan Zanoni
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca,
piazza della Scienza 2, I-20126 Milano, Italy
| | - Daniela Donghi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano,
Italy
| | - Laura Sironi
- Dipartimento di Fisica, Università di Milano-Bicocca, piazza della Scienza 3, I-20126 Milano,
Italy
| | - Maddalena Collini
- Dipartimento di Fisica, Università di Milano-Bicocca, piazza della Scienza 3, I-20126 Milano,
Italy
| | - Stefano Maiorana
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano,
Italy
| | - Clara Baldoli
- Istituto di Scienze e Tecnologie Molecolari, CNR, Via C. Golgi 19, I-20133 Milano, Italy
| | - Giuseppe D’Alfonso
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano,
Italy
| | - Emanuela Licandro
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano,
Italy
| |
Collapse
|
39
|
Liu XW, Chen YD, Li L. Synthesis, DNA-binding, and photocleavage properties of Ru(II) complexes containing dppz-based ligand. J COORD CHEM 2012. [DOI: 10.1080/00958972.2012.710749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xue-Wen Liu
- a College of Chemistry and Chemical Engineering, Hunan University of Arts and Science , ChangDe 415000 , P.R. China
- b Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education , Xiangtan University , Xiangtan 411105 , P.R. China
| | - Yuan-Dao Chen
- a College of Chemistry and Chemical Engineering, Hunan University of Arts and Science , ChangDe 415000 , P.R. China
- b Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education , Xiangtan University , Xiangtan 411105 , P.R. China
| | - Lin Li
- a College of Chemistry and Chemical Engineering, Hunan University of Arts and Science , ChangDe 415000 , P.R. China
| |
Collapse
|
40
|
Vanderlinden W, Blunt M, David CC, Moucheron C, Kirsch-De Mesmaeker A, De Feyter S. Mesoscale DNA Structural Changes on Binding and Photoreaction with Ru[(TAP)2PHEHAT]2+. J Am Chem Soc 2012; 134:10214-21. [DOI: 10.1021/ja303091q] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Willem Vanderlinden
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| | - Matthew Blunt
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| | - Charlotte C. David
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| | - Cécile Moucheron
- Department of Chemistry, Laboratory
of Organic Chemistry and Photochemistry, Université Libre de Bruxelles, Avenue Franklin D. Roosevelt 50,
1050 Brussels, Belgium
| | - Andrée Kirsch-De Mesmaeker
- Department of Chemistry, Laboratory
of Organic Chemistry and Photochemistry, Université Libre de Bruxelles, Avenue Franklin D. Roosevelt 50,
1050 Brussels, Belgium
| | - Steven De Feyter
- Department of Chemistry, Laboratory
of Photochemistry and Spectroscopy, Division of Molecular Imaging
and Photonics, KU Leuven, Celestijnenlaan
200F, 3001 Leuven, Belgium
| |
Collapse
|
41
|
Betanzos-Lara S, Salassa L, Habtemariam A, Novakova O, Pizarro AM, Clarkson GJ, Liskova B, Brabec V, Sadler PJ. Photoactivatable Organometallic Pyridyl Ruthenium(II) Arene Complexes. Organometallics 2012. [DOI: 10.1021/om201177y] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Luca Salassa
- Department of Chemistry, University of Warwick, Coventry, UK CV4 7AL
| | | | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ61265
Brno, Czech Republic
| | - Ana M. Pizarro
- Department of Chemistry, University of Warwick, Coventry, UK CV4 7AL
| | - Guy J. Clarkson
- Department of Chemistry, University of Warwick, Coventry, UK CV4 7AL
| | - Barbora Liskova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ61265
Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ61265
Brno, Czech Republic
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Coventry, UK CV4 7AL
| |
Collapse
|
42
|
Kalaivani P, Prabhakaran R, Ramachandran E, Dallemer F, Paramaguru G, Renganathan R, Poornima P, Vijaya Padma V, Natarajan K. Influence of terminal substitution on structural, DNA, protein binding, anticancer and antibacterial activities of palladium(II) complexes containing 3-methoxy salicylaldehyde-4(N) substituted thiosemicarbazones. Dalton Trans 2012; 41:2486-99. [PMID: 22222360 DOI: 10.1039/c1dt11838b] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The variable chelating behavior of 3-methoxysalicylaldehyde-4(N)-substituted thiosemicarbazones was observed in equimolar reactions with [PdCl(2)(PPh(3))(2)]. The new complexes were characterized by various analytical, spectroscopic techniques (mass, (1)H-NMR, absorption, IR). All the new complexes were structurally characterized by single crystal X-ray diffraction. Crystallographic results showed that the ligands H(2)L(1) and H(2)L(4) are coordinated as binegative tridentate ONS donor ligands in the complexes 1 and 4 by forming six and five member rings. However, the ligands H(2)L(2) and H(2)L(3) bound to palladium in 2 and 3 as uninegative bidentate NS donors by forming a five member chelate ring. From this study, it was found that the substitution on terminal 4(N)-nitrogen may have an influence on the chelating ability of thiosemicarbazone. The presence of hydrogen bonding in 2 and 3 might be responsible for preventing the coordination of phenolic oxygen to the metal ion. The interaction of the complexes with calf-thymus DNA (CT-DNA) has been explored by absorption and emission titration methods. Based on the observations, an electrostatic binding mode of DNA has been proposed. The protein binding studies were monitored by quenching of tryptophan and tyrosine residues in the presence of complexes using Lysozyme as model protein. Antibacterial activity studies of the complexes have been screened against pathogenic bacteria such as Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. MIC50 values of the complexes showed that they exhibited significant activity against the pathogens and among them, 3 exhibited higher activity. Further, anticancer activity of the complexes on the lung cancer cell line A549 has also been studied.
Collapse
Affiliation(s)
- P Kalaivani
- Department of Chemistry, Bharathiar University, Coimbatore, 641 046, India
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Transient spectroscopy of dipyridophenazine metal complexes which undergo photo-induced electron transfer with DNA. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Elmes RBP, Orange KN, Cloonan SM, Williams DC, Gunnlaugsson T. Luminescent ruthenium(II) polypyridyl functionalized gold nanoparticles; their DNA binding abilities and application as cellular imaging agents. J Am Chem Soc 2011; 133:15862-5. [PMID: 21923121 DOI: 10.1021/ja2061159] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis and photophysical and biological investigation of Ru(II)-polypyridyl stabilized water-soluble, luminescent gold nanoparticles (AuNPs) are described. These structures bind to DNA and undergo rapid cellular uptake, being localized within the cell cytoplasm and nucleus within 4 h.
Collapse
Affiliation(s)
- Robert B P Elmes
- School of Chemistry, Centre for Synthesis and Chemical Biology, Trinity College, Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
45
|
Cao Q, Creely CM, Davies ES, Dyer J, Easun TL, Grills DC, McGovern DA, McMaster J, Pitchford J, Smith JA, Sun XZ, Kelly JM, George MW. Excited state dependent electron transfer of a rhenium-dipyridophenazine complex intercalated between the base pairs of DNA: a time-resolved UV-visible and IR absorption investigation into the photophysics of fac-[Re(CO)3(F2dppz)(py)]+ bound to either [poly(dA-dT)]2 or [poly(dG-dC)]2. Photochem Photobiol Sci 2011; 10:1355-64. [PMID: 21698328 DOI: 10.1039/c1pp05050h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transient species formed following excitation of fac-[Re(CO)(3)(F(2)dppz)(py)](+) (F(2)dppz = 11,12-difluorodipyrido[3,2-a:2',3'-c]phenazine) bound to double-stranded polynucleotides [poly(dA-dT)](2) or [poly(dG-dC)](2) have been studied by transient visible and infra-red spectroscopy in both the picosecond and nanosecond time domains. The latter technique has been used to monitor both the metal complex and the DNA by monitoring the regions 1900-2100 and 1500-1750 cm(-1) respectively. These data provide direct evidence for electron transfer from guanine to the excited state of the metal complex, which proceeds both on a sub-picosecond time scale and with a lifetime of 35 ps, possibly due to the involvement of two excited states. No electron transfer is found for the [poly(dA-dT)](2) complex, although characteristic changes are seen in the DNA-region TRIR consistent with changes in the binding of the bases in the intercalation site upon excitation of the dppz-complex.
Collapse
Affiliation(s)
- Qian Cao
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shahabadi N, Kashanian S, Mahdavi M. DNA interaction studies of cobalt (II) mixed-ligand complexes containing dimethyl-1, 10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine: the role of methyl substitutions on the mode of binding. DNA Cell Biol 2011; 30:507-15. [PMID: 21345129 DOI: 10.1089/dna.2010.1151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two cobalt (II) complexes containing a dipyrido[3,2-a:2',3'-c]phenazine (dppz) base with the general formulation [Co(dppz)(dmp)(2)]Cl(2), where dmp is 4,7-dimethyl-1,10-phenanthroline ligand (4,7-dmp) (1) and 2,9-dimethyl-1,10-phenanthroline ligand (2,9-dmp) (2) were synthesized and characterized. Binding interactions of these complexes with calf thymus DNA were investigated by emission, absorption, circular dichroism, and viscosity studies, and the effects of the positions of methyl substitutions in phenanthroline coligands were investigated. The DNA binding constants obtained from the absorption spectral titrations decrease in the order of 1 > 2, which is consistent with the trend in apparent emission enhancement of the complexes on binding to calf thymus DNA. These observations were supported by circular dichroism spectroscopy and viscosity measurements and reveal that DNA binding affinity of the complexes depends on the position of methyl groups on the phenanthroline ligands.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Chemistry, Faculty of Science, Razi University, Kermanshah, Iran.
| | | | | |
Collapse
|
47
|
Ghosh A, Das P, Gill MR, Kar P, Walker MG, Thomas JA, Das A. Photoactive RuII-Polypyridyl Complexes that Display Sequence Selectivity and High-Affinity Binding to Duplex DNA through Groove Binding. Chemistry 2011; 17:2089-98. [DOI: 10.1002/chem.201002149] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/07/2010] [Indexed: 11/11/2022]
|
48
|
Mattiuzzi A, Jabin I, Moucheron C, Kirsch-De Mesmaeker A. Ru-TAP complexes with btz and pytz ligands: novel candidates as photooxidizing agents. Dalton Trans 2011; 40:7395-402. [DOI: 10.1039/c1dt10235d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
49
|
Servaty K, Moucheron C, Kirsch-De Mesmaeker A. Trinuclear ruthenium dendrons based on bridging PHEHAT and TPAC ligands. Dalton Trans 2011; 40:11704-11. [DOI: 10.1039/c1dt10639b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Downward AM, Moore EG, Hartshorn RM. Photoinduced ligand release in a ruthenium(ii)-cobalt(iii) heterodinuclear system. Chem Commun (Camb) 2011; 47:7692-4. [DOI: 10.1039/c1cc12729b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|