1
|
Tanaka Y. Development of High-Throughput Quantitative Imaging Mass Spectrometry for Analysis of Drug Distribution in Tissues. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5135. [PMID: 40195287 DOI: 10.1002/jms.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) is applied in drug discovery and development. A high-throughput quantitative MALDI-IMS methodology was developed to confirm whether epertinib is superior to lapatinib in penetrating brain metastases using intraventricular injection mouse models (IVMs) of human EGFR2 (HER2)-positive breast or T790M-EGFR-positive lung cancer cells. A simple calibration curve was prepared for each compound via spotting standard solutions without using blank tissue sections or blank tissues onto the same glass slide as the epertinib or lapatinib brain section samples. Quantitative MALDI-IMS was performed via coating a glass slide with a MALDI matrix solution containing each internal standard solution. The samples of calibration curve and brain section were analyzed using a linear ion trap mass spectrometer with a MALDI ion source. Epertinib and lapatinib responses were strongly linear, with a wide dynamic range and low variation (relative standard deviation [RSD] < 20%) among the individual concentrations. Epertinib and lapatinib were sufficiently extracted from brain sections after oral administration in a breast cancer IVM. The quantitative MALDI-IMS results revealed that the epertinib concentrations administered to the brain sections in the lung cancer IVM were similar to those measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Quantitative MALDI-IMS, owing to its high reproducibility and throughput, is useful for selecting drug candidates in the early stages of discovery and development, enabling efficient and rapid screening of candidate compounds as well as an understanding of the mechanisms of drug efficacy, toxicity, and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Yukari Tanaka
- Drug Metabolism and Pharmacokinetics and Analytical Sciences, Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
2
|
Dvorak J, Fojtík L, Adámková L, Vlkova K, Studentova V, Chudejova K, Geigerová L, Volny M, Novak P, Hrabak J, Pompach P. Proof-of-concept MALDI-TOF-MS assay for the detection of Toxin B enzymatic activity in Clostridioides difficile infection. Microbiol Spectr 2025; 13:e0245324. [PMID: 40162757 PMCID: PMC12054005 DOI: 10.1128/spectrum.02453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers have become an integral part of all modern clinical microbiology laboratories. They serve as the key tool for pathogen identification and antibiotic resistance determination. However, certain limiting conditions must be fulfilled. The pathogen cannot be tested directly from the sample and requires the cultivation of a pure colony, which means that the standard protocol takes additional time, workforce, and consumables. The testing protocol is also more complicated when it comes to anaerobes. In our work, we focused on the functional detection of Clostridioides difficile, an important nosocomial human pathogen that is responsible for diarrhea and can lead to life-threatening colitis, as a model diagnostic problem. The virulence of C. difficile is mainly caused by two toxins, Toxin A and Toxin B. Established diagnostic methods, including nucleic acid amplification testing methods and immunoassays, detect the presence of the microorganism or the presence and concentration of the toxins, with limited ability to gauge infection severity based on the actual biochemical activity of the toxins and thus their potency to cause harm. This work presents proof-of-concept assays that indirectly determine the toxin activity in the human stool, a very complex matrix sample, using the natural RhoA protein as substrate. The RhoA protein substrate was recombinantly prepared with biotin tag modification, which allows its attachment to the NeutrAvidin MALDI chips. In the assay, the RhoA substrate anchored on the MALDI chip undergoes enzymatic glycosylation when exposed to the Toxin B in the stool sample, and the reaction product is then detected by MALDI-TOF mass spectrometry directly from the MALDI chip. The entire assay, from sampling to final mass spectrometry detection, was performed in situ, on the NeutrAvidin MALDI chip, which was prepared by unique surface modification technology also described in this work. The assay was successfully tested for the detection of Toxin B in a cohort of patient samples as well as in cell culture of C. difficile. IMPORTANCE The diagnostics of Clostridioides difficile infection is usually based on the identification of the bacterial pathogen and/or on the detection of the Toxins A and B. Due to the variance in Toxins A and B activity across species, the toxin concentration determined by standard methods does not necessarily correlate with the severity of the disease. Assays that would target toxins' enzymatic activity are not routinely used because the requirements are unsuitable for clinical laboratories. In this study, we demonstrate a new approach that determines the presence and potency of Toxin B indirectly by determining its enzymatic activity rather than its concentration. This is performed by detecting mass difference due to glycosylation of RhoA substrate by Toxin B, which is then determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented proof-of-concept assay thus offers the possibility to quickly determine the activity of C. difficile toxins directly in the stool samples without pathogen cultivation.
Collapse
Affiliation(s)
- Josef Dvorak
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Biochemistry, Charles University, Prague, Czechia
| | - Lukáš Fojtík
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Biochemistry, Charles University, Prague, Czechia
| | - Ljubina Adámková
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Katerina Vlkova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vendula Studentova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Katerina Chudejova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Lenka Geigerová
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Michael Volny
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Petr Novak
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Petr Pompach
- Department of Biochemistry, Charles University, Prague, Czechia
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| |
Collapse
|
3
|
Phulara NR, Seneviratne HK. Visualization of Efavirenz-Induced Lipid Alterations in the Mouse Brain Using MALDI Mass Spectrometry Imaging. Curr Protoc 2025; 5:e70108. [PMID: 40007509 DOI: 10.1002/cpz1.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
This article highlights experimental procedures and troubleshooting tips for the utilization of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) methods for detecting and visualizing lipid alterations in the mouse brain tissue in response to efavirenz (EFV) treatment. To investigate drug-induced adverse effects, it is becoming increasingly important to understand the spatial alterations of lipid molecules in the target organs. EFV is a non-nucleoside reverse transcriptase inhibitor commonly used for HIV treatment in combination with other antiretrovirals. Importantly, EFV is a drug that is included in the World Health Organization's list of essential medications. However, EFV is known to be associated with neurotoxicity. To date, the mechanisms underlying EFV-induced neurotoxicity have not been fully elucidated. Therefore, it is important to gain understanding of the effect of EFV on the brain. It is known that the brain is composed of different neuroanatomical regions that are abundant in lipids. Described here is the use of a chemical imaging strategy, MALDI MSI, to detect, identify, and visualize the spatial localization of several lipid species across the brain tissue sections along with their alterations in response to EFV treatment. The set of protocols consists of three major parts: lipid detection, identification, and tissue imaging. Lipid detection includes testing different chemical matrices and how they facilitate the detection of analytes, which is then followed by identification. Collision-induced dissociation is employed to verify the identity of the lipid molecules. Lastly, tissue imaging experiments are performed to generate the spatial localization profiles of the lipids. The protocols described in this article can be employed to spatially visualize alterations in the lipid molecules in response to drug treatment. © 2025 Wiley Periodicals LLC. Basic Protocol 1: MALDI mass spectrometry (MALDI MS) profiling experiments for detection of lipids Basic Protocol 2: MALDI MS imaging of lipid molecules in mouse brain tissues Basic Protocol 3: MALDI MS data processing and analysis.
Collapse
Affiliation(s)
- Nav Raj Phulara
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
4
|
Trimpin S, Inutan ED, Pagnotti VS, Karki S, Marshall DD, Hoang K, Wang B, Lietz CB, Richards AL, Yenchick FS, Lee C, Lu IC, Fenner M, Madarshahian S, Saylor S, Chubatyi ND, Zimmerman T, Moreno-Pedraza A, Wang T, Adeniji-Adele A, Meher AK, Madagedara H, Owczarzak Z, Musavi A, Hendrickson TL, Peacock PM, Tomsho JW, Larsen BS, Prokai L, Shulaev V, Pophristic M, McEwen CN. Direct sub-atmospheric pressure ionization mass spectrometry: Evaporation/sublimation-driven ionization is amazing, fundamentally, and practically. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5018. [PMID: 38736378 DOI: 10.1002/jms.5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/14/2024]
Abstract
This paper covers direct sub-atmospheric pressure ionization mass spectrometry (MS). The discovery, applications, and mechanistic aspects of novel ionization processes for use in MS that are not based on the high-energy input from voltage, laser, and/or high temperature but on sublimation/evaporation within a region linking a higher to lower pressure and modulated by heat and collisions, are discussed, including how this new reality has guided a series of discoveries, instrument developments, and commercialization. A research focus, inter alia, is on how best to understand, improve, and use these novel ionization processes, which convert volatile and nonvolatile compounds from solids (sublimation) or liquids (evaporation) into gas-phase ions for analysis by MS providing reproducible, accurate, sensitive, and prompt results. Our perception on how these unprecedented versus traditional ionization processes/methods relate to each other, how they can be made to coexist on the same mass spectrometer, and an outlook on new and expanded applications (e.g., clinical, portable, fast, safe, and autonomous) is presented, and is based on ST's Opening lecture presentation at the Nordic Mass spectrometry Conference, Geilo, Norway, January 2023. Focus will be on matrix-assisted ionization (MAI) and solvent-assisted ionization (SAI) MS covering the period from 2010 to 2023; a potential paradigm shift in the making.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Vincent S Pagnotti
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Frank S Yenchick
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Madeleine Fenner
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Sara Madarshahian
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Sarah Saylor
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Nicolas D Chubatyi
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Teresa Zimmerman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | - Tongwen Wang
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Adetoun Adeniji-Adele
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Hasini Madagedara
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Zachary Owczarzak
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Ahmed Musavi
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | | | - John W Tomsho
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | | | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, The University of North Texas Health Science Center at Forth Worth, Fort Worth, Texas, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, The University of North Texas, Denton, Texas, USA
| | - Milan Pophristic
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Charles N McEwen
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Birse N, Burns DT, Walker MJ, Quaglia M, Elliott CT. Food allergen analysis: A review of current gaps and the potential to fill them by matrix-assisted laser desorption/ionization. Compr Rev Food Sci Food Saf 2023; 22:3984-4003. [PMID: 37530543 DOI: 10.1111/1541-4337.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Food allergy remains a public health, business, and regulatory challenge. Risk analysis (RA) and risk management (RM) of food allergens are of great importance and analysis for food allergens is necessary for both. The current workhorse techniques for allergen analysis (enzyme linked immunosorbent assay [ELISA] and real-time polymerase chain reaction) exhibit recognized challenges including variable and antibody specific responses and detection of species DNA rather than allergen protein, respectively. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) enables protein identification, with potential for multiplex analysis and traceability to the System of International units (SI), aiding global measurement standardization. In this review, recent literature has been systematically reviewed to assess progress in LC-MS/MS and define the potential and benefits of matrix-assisted laser desorption/ionization-time-of-flight MS (MALDI-ToF-MS) technology for allergen analysis. MALDI-ToF-MS of initially intact protein is already applied to verify in silico-derived peptide sequences for LC-MS/MS analysis. We describe the origins of MALDI and its future perspectives, including affinity bead-assisted assays coupled to MALDI. Based on the proliferation of reliable and reproducible MALDI-based clinical applications, the technique should emulate the detection capability (sensitivity) of established allergen detection techniques, whilst reducing technical support and having equivalent multiplexing potential to competing techniques, for example, LC-MS/MS and ELISA. Although unlikely to offer inherent SI traceability, MALDI-based allergen analysis will complement existing MS approaches for allergens. Affinity bead-MALDI appears capable of higher throughput at lower cost per sample than almost any existing technique, enabling repeated sub-sampling as a way to reduce representative sampling issues.
Collapse
Affiliation(s)
- Nicholas Birse
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Duncan Thorburn Burns
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Michael J Walker
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
6
|
Villarreal J, Kow K, Pham B, Egatz-Gomez A, Sandrin TR, Coleman PD, Ros A. Intracellular Amyloid-β Detection from Human Brain Sections Using a Microfluidic Immunoassay in Tandem with MALDI-MS. Anal Chem 2023; 95:5522-5531. [PMID: 36894164 PMCID: PMC10078609 DOI: 10.1021/acs.analchem.2c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Alzheimer's disease (AD) currently affects more than 30 million people worldwide. The lack of understanding of AD's physiopathology limits the development of therapeutic and diagnostic tools. Soluble amyloid-β peptide (Aβ) oligomers that appear as intermediates along the Aβ aggregation into plaques are considered among the main AD neurotoxic species. Although a wealth of data are available about Aβ from in vitro and animal models, there is little known about intracellular Aβ in human brain cells, mainly due to the lack of technology to assess the intracellular protein content. The elucidation of the Aβ species in specific brain cell subpopulations can provide insight into the role of Aβ in AD and the neurotoxic mechanism involved. Here, we report a microfluidic immunoassay for in situ mass spectrometry analysis of intracellular Aβ species from archived human brain tissue. This approach comprises the selective laser dissection of individual pyramidal cell bodies from tissues, their transfer to the microfluidic platform for sample processing on-chip, and mass spectrometric characterization. As a proof-of-principle, we demonstrate the detection of intracellular Aβ species from as few as 20 human brain cells.
Collapse
Affiliation(s)
- Jorvani
Cruz Villarreal
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Keegan Kow
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Brian Pham
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Ana Egatz-Gomez
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Todd R. Sandrin
- School
of Mathematical and Natural Sciences, Arizona
State University, Glendale, Arizona 85306, United States
- Julie
Ann Wrigley Global Futures Laboratory, Arizona
State University, Glendale, Arizona 85306, United States
| | - Paul D. Coleman
- Banner
ASU Neurodegenerative Research Center, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Liepold T, Klafki HW, Kumar S, Walter J, Wirths O, Wiltfang J, Jahn O. Matrix Development for the Detection of Phosphorylated Amyloid-β Peptides by MALDI-TOF-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:505-512. [PMID: 36706152 PMCID: PMC9983008 DOI: 10.1021/jasms.2c00270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Amyloid-β (Aβ) peptides, including post-translationally modified variants thereof, are believed to play a key role in the onset and progression of Alzheimer's disease. Suggested modified Aβ species with potential disease relevance include Aβ peptides phosphorylated at serine in position eight (pSer8-Aβ) or 26 (pSer26-Aβ). However, the published studies on those Aβ peptides essentially relied on antibody-based approaches. Thus, complementary analyses by mass spectrometry, as shown for other modified Aβ variants, will be necessary not only to unambiguously verify the existence of phosphorylated Aβ species in brain samples but also to reveal their exact identity as to phosphorylation sites and potential terminal truncations. With the aim of providing a novel tool for addressing this still-unresolved issue, we developed a customized matrix formulation, referred to as TOPAC, that allows for improved detection of synthetic phosphorylated Aβ species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. When TOPAC was compared with standard matrices, we observed higher signal intensities but minimal methionine oxidation and phosphate loss for intact pSer8-Aβ(1-40) and pSer26-Aβ(1-40). Similarly, TOPAC also improved the mass spectrometric detection and sequencing of the proteolytic cleavage products pSer8-Aβ(1-16) and pSer26-Aβ(17-28). We expect that TOPAC will facilitate future efforts to detect and characterize endogenous phosphorylated Aβ species in biological samples and that it may also find its use in phospho-proteomic approaches apart from applications in the Aβ field.
Collapse
Affiliation(s)
- Thomas Liepold
- Neuroproteomics
Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany
| | - Hans-Wolfgang Klafki
- Department
of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| | - Sathish Kumar
- Department
of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- Department
of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Oliver Wirths
- Department
of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| | - Jens Wiltfang
- Department
of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| | - Olaf Jahn
- Neuroproteomics
Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Goettingen, Germany
- Department
of Psychiatry and Psychotherapy, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany
| |
Collapse
|
8
|
Niu J, Yang J, Guo Y, Qian K, Wang Q. Joint deep learning for batch effect removal and classification toward MALDI MS based metabolomics. BMC Bioinformatics 2022; 23:270. [PMID: 35818047 PMCID: PMC9275160 DOI: 10.1186/s12859-022-04758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Metabolomics is a primary omics topic, which occupies an important position in both clinical applications and basic researches for metabolic signatures and biomarkers. Unfortunately, the relevant studies are challenged by the batch effect caused by many external factors. In last decade, the technique of deep learning has become a dominant tool in data science, such that one may train a diagnosis network from a known batch and then generalize it to a new batch. However, the batch effect inevitably hinders such efforts, as the two batches under consideration can be highly mismatched. Results We propose an end-to-end deep learning framework, for joint batch effect removal and then classification upon metabolomics data. We firstly validate the proposed deep learning framework on a public CyTOF dataset as a simulated experiment. We also visually compare the t-SNE distribution and demonstrate that our method effectively removes the batch effects in latent space. Then, for a private MALDI MS dataset, we have achieved the highest diagnostic accuracy, with about 5.1 ~ 7.9% increase on average over state-of-the-art methods. Conclusions Both experiments conclude that our method performs significantly better in classification than conventional methods benefitting from the effective removal of batch effect. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04758-z.
Collapse
Affiliation(s)
- Jingyang Niu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuyu Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qian Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Niu J, Xu W, Wei D, Qian K, Wang Q. Deep Learning Framework for Integrating Multibatch Calibration, Classification, and Pathway Activities. Anal Chem 2022; 94:8937-8946. [PMID: 35709357 DOI: 10.1021/acs.analchem.2c00601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The amount of available biological data has exploded since the emergence of high-throughput technologies, which is not only revolting the way we recognize molecules and diseases but also bringing novel analytical challenges to bioinformatics analysis. In recent years, deep learning has become a dominant technique in data science. However, classification accuracy is plagued with domain discrepancy. Notably, in the presence of multiple batches, domain discrepancy typically happens between individual batches. Most pairwise adaptation approaches may be suboptimal as they fail to eliminate external factors across multiple batches and take the classification task into account simultaneously. We propose a joint deep learning framework for integrating batch effect removal, classification, and downstream pathway activities upon biological data. To this end, we validate it on two MALDI MS-based metabolomics datasets. We have achieved the highest diagnostic accuracy (ACC), with a notable ∼10% improvement over other methods. Overall, these results indicate that our approach removes batch effect more effectively than state-of-the-art methods and yields more accurate classification as well as biomarkers for smart diagnosis.
Collapse
Affiliation(s)
- JingYang Niu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - DongMing Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
De La Toba EA, Bell SE, Romanova EV, Sweedler JV. Mass Spectrometry Measurements of Neuropeptides: From Identification to Quantitation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:83-106. [PMID: 35324254 DOI: 10.1146/annurev-anchem-061020-022048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neuropeptides (NPs), a unique class of neuronal signaling molecules, participate in a variety of physiological processes and diseases. Quantitative measurements of NPs provide valuable information regarding how these molecules are differentially regulated in a multitude of neurological, metabolic, and mental disorders. Mass spectrometry (MS) has evolved to become a powerful technique for measuring trace levels of NPs in complex biological tissues and individual cells using both targeted and exploratory approaches. There are inherent challenges to measuring NPs, including their wide endogenous concentration range, transport and postmortem degradation, complex sample matrices, and statistical processing of MS data required for accurate NP quantitation. This review highlights techniques developed to address these challenges and presents an overview of quantitative MS-based measurement approaches for NPs, including the incorporation of separation methods for high-throughput analysis, MS imaging for spatial measurements, and methods for NP quantitation in single neurons.
Collapse
Affiliation(s)
- Eduardo A De La Toba
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sara E Bell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Chen XY, Wang YH, Ren SY, Li S, Wang Y, Qin K, Li S, Han DP, Peng Y, Han T, Gao ZX, Gao BX, Zhou HY. Amorphous poly- N-vinylcarbazole polymer as a novel matrix for the determination of low molecular weight compounds by MALDI-TOF MS. RSC Adv 2022; 12:15215-15221. [PMID: 35693227 PMCID: PMC9116175 DOI: 10.1039/d2ra01602h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022] Open
Abstract
Traditional matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) are usually crystalline small molecules. The heterogeneous co-crystallization of the analyte and the matrix creates a sweet spot effect and reduces point-to-point reproducibility. In this study, an amorphous poly-N-vinylcarbazole polymer (PVK) was studied as a novel matrix for MALDI-TOF MS to detect various low molecular weight compounds (LMWCs) in the negative ion mode. The PVK achieved excellent matrix action and showed high sensitivity, good salt tolerance, and reproducibility. These results significantly broaden the design rules for new and efficient polymeric MALDI matrices. Amorphous, highly salt tolerant and stable polymer PVK as a negative ion mode matrix was successfully achieved for the qualitative and quantitative detection of small molecule compounds by MALDI MS.![]()
Collapse
Affiliation(s)
- Xiu-Ying Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemical and Environmental Sciences, Hebei University Baoding 071002 China .,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China .,Nanpu Development Zone Administrative Examination and Approval Bureau Tangshan 063305 China
| | - Yong-Hui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Shu-Yue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Dian-Peng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Bao-Xiang Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemical and Environmental Sciences, Hebei University Baoding 071002 China
| | - Huan-Ying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| |
Collapse
|
12
|
Chen C, Huang Y, Wu P, Pan J, Guo P, Liu S. In vivo microcapillary sampling coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry for real-time monitoring of paraquat and diquat in living vegetables. Food Chem 2022; 388:132998. [PMID: 35453011 DOI: 10.1016/j.foodchem.2022.132998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
An in vivo microcapillary sampling (MCS) method coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) analysis was utilized to monitor the real-time bipyridine quaternary ammonium herbicides concentrations and assess their uptake and elimination behaviors in living cabbage plants noninvasively. Under optimized conditions, the proposed method for paraquat (PQ) and diquat (DQ) determination showed wide linear ranges (7.81-500 μg/kg), low limits of detection (0.1-0.9 μg/kg), and good reproducibility. In vivo tracking results demonstrated that different absorption behaviors between PQ and DQ existed in living vegetables and DQ was more easily absorbed. Through decay kinetics model fitting, herbicide half-lives were 1.32 and 1.86 days for PQ and DQ, respectively. To summarize, in vivo MCS method provides valuable information on herbicide risks for agricultural production, which is suitable for temporal, spatial, and longitudinal studies in the same living system and multicompartmental studies in the same organism.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yan Huang
- North China University of Science and Technology Affiliated Hospital, 73 Jianshe South Road, Tangshan 063000, Hebei, China
| | - Peishan Wu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiachuan Pan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China.
| |
Collapse
|
13
|
Cruz Villarreal J, Kruithoff R, Egatz-Gomez A, Coleman PD, Ros R, Sandrin TR, Ros A. MIMAS: microfluidic platform in tandem with MALDI mass spectrometry for protein quantification from small cell ensembles. Anal Bioanal Chem 2022; 414:3945-3958. [PMID: 35385983 PMCID: PMC9188328 DOI: 10.1007/s00216-022-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
Understanding cell-to-cell variation at the molecular level provides relevant information about biological phenomena and is critical for clinical and biological research. Proteins carry important information not available from single-cell genomics and transcriptomics studies; however, due to the minute amount of proteins in single cells and the complexity of the proteome, quantitative protein analysis at the single-cell level remains challenging. Here, we report an integrated microfluidic platform in tandem with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the detection and quantification of targeted proteins from small cell ensembles (> 10 cells). All necessary steps for the assay are integrated on-chip including cell lysis, protein immunocapture, tryptic digestion, and co-crystallization with the matrix solution for MALDI-MS analysis. We demonstrate that our approach is suitable for protein quantification by assessing the apoptotic protein Bcl-2 released from MCF-7 breast cancer cells, ranging from 26 to 223 cells lysed on-chip (8.75 nL wells). A limit of detection (LOD) of 11.22 nM was determined, equivalent to 5.91 × 107 protein molecules per well. Additionally, the microfluidic platform design was further improved, establishing the successful quantification of Bcl-2 protein from MCF-7 cell ensembles ranging from 8 to 19 cells in 4 nL wells. The LOD in the smaller well designs for Bcl-2 resulted in 14.85 nM, equivalent to 3.57 × 107 protein molecules per well. This work shows the capability of our approach to quantitatively assess proteins from cell lysate on the MIMAS platform for the first time. These results demonstrate our approach constitutes a promising tool for quantitative targeted protein analysis from small cell ensembles down to single cells, with the capability for multiplexing through parallelization and automation.
Collapse
Affiliation(s)
- Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Temple, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rory Kruithoff
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Temple, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Paul D Coleman
- School of Life Sciences, Arizona State University, Temple, AZ, USA
- ASU-Banner Neurodegenerative Research Center, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Robert Ros
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
- Center for Single Molecule Biophysics, The Biodesign Institute, Arizona State University, Temple, AZ, USA
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Temple, AZ, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
Exponential isothermal amplification coupled MALDI-TOF MS for microRNAs detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Bian Y, He MY, Ling Y, Wang XJ, Zhang F, Feng XS, Zhang Y, Xing SG, Li J, Qiu X, Li YR. Tissue distribution study of perfluorooctanoic acid in exposed zebrafish using MALDI mass spectrometry imaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118505. [PMID: 34785291 DOI: 10.1016/j.envpol.2021.118505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) as an emerging environmental contaminant, has become ubiquitous in the environment. It is of significance to study bioconcentration and tissue distribution of aquatic organisms for predicting the persistence of PFOA and its adverse effects on the environment and human body. However, the distribution of PFOA in different tissues is a complex physiological process affected by many factors. It is difficult to be accurately described by a simple kinetic model. In present study, a new strategy was introduced to research the PFOA distribution in tissues and estimate the exposure stages. Zebrafish were continuously exposed to 25 mg/L PFOA for 30 days to simulate environmental process. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) method was used to monitor the spatio-temporal distribution of PFOA in zebrafish tissues. By analyzing the law of change obtained from the high spatial resolution MSI data, two different enrichment trends in ten tissues were summarized by performing curve fitting. Analyzing the ratio of two types of curves, a new "exposure curve" was defined to evaluate the exposure stages. With this model, three levels (mild, moderate, and deep pollution stage) of PFOA pollution in zebrafish can be simply evaluated.
Collapse
Affiliation(s)
- Yu Bian
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mu-Yi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiu-Juan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shi-Ge Xing
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jie Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Qiu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu-Rui Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| |
Collapse
|
16
|
Ralbovsky NM, Zou L, Chen B, Zhang NR, Hines CDG, Vavrek M, Zhong W, Smith JP, Bu X. Simultaneous multielement imaging of liver tissue using laser ablation inductively coupled plasma mass spectrometry. Talanta 2021; 235:122725. [PMID: 34517593 DOI: 10.1016/j.talanta.2021.122725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/26/2022]
Abstract
Analysis of the spatial distribution of metals, metalloids, and non-metals in biological tissues is of significant interest in the life sciences, helping to illuminate the function and roles these elements play within various biological pathways. Chemical imaging methods are commonly employed to address biological questions and reveal individual spatial distributions of analytes of interest. Elucidation of these spatial distributions can help determine key elemental and molecular information within the respective biological specimens. However, traditionally utilized imaging methods prove challenging for certain biological tissue analysis, especially with respect to applications that require high spatial resolution or depth profiling. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been shown to be effective for direct elemental analysis of solid materials with high levels of precision. In this work, chemical imaging using LA-ICP-MS has been applied as a powerful analytical methodology for the analysis of liver tissue samples. The proposed analytical methodology successfully produced both qualitative and quantitative information regarding specific elemental distributions within images of thin tissue sections with high levels of sensitivity and spatial resolution. The spatial resolution of the analytical methodology was innovatively enhanced, helping to broaden applicability of this technique to applications requiring significantly high spatial resolutions. This information can be used to further understand the role these elements play within biological systems and impacts dysregulation may have.
Collapse
Affiliation(s)
- Nicole M Ralbovsky
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Lanfang Zou
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Bingming Chen
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Nanyan Rena Zhang
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Catherine D G Hines
- Translational Imaging Biomarkers, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Marissa Vavrek
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Wendy Zhong
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA
| | - Joseph P Smith
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA.
| | - Xiaodong Bu
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, PA, 19486, USA.
| |
Collapse
|
17
|
Han Z, Peng C, Yi J, Wang Y, Liu Q, Yang Y, Long S, Qiao L, Shen Y. Matrix-assisted laser desorption ionization mass spectrometry profiling of plasma exosomes evaluates osteosarcoma metastasis. iScience 2021; 24:102906. [PMID: 34401680 PMCID: PMC8355924 DOI: 10.1016/j.isci.2021.102906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary sarcoma of bone among adolescents, often characterized by early lung metastasis resulting in high mortality. Recently, exosomes have been used in liquid biopsy to monitor tumors. Herein, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to profile human plasma exosomes for the evaluation of osteosarcoma lung metastasis. Forty patients with osteosarcoma with (n = 20) or without (n = 20) lung metastasis as well as 12 heathy controls were recruited. Exosomes were isolated from human plasma for MALDI-TOF MS analysis. Multivariate statistical analyses were performed based on the MALDI-TOF mass spectra. The strategy can efficiently differentiate osteosarcomas from healthy controls and further discriminate osteosarcoma lung metastasis from non-lung metastasis. We identified seven exosomal proteins as potential biomarkers of osteosarcoma lung metastasis. The proposed method holds great promise to clinically diagnose osteosarcoma and monitor osteosarcoma lung metastasis.
Collapse
Affiliation(s)
- Zhenzhen Han
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Peng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jia Yi
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yiwen Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yi Yang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shuping Long
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
18
|
Campuzano IDG, Sandoval W. Denaturing and Native Mass Spectrometric Analytics for Biotherapeutic Drug Discovery Research: Historical, Current, and Future Personal Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1861-1885. [PMID: 33886297 DOI: 10.1021/jasms.1c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mass spectrometry (MS) plays a key role throughout all stages of drug development and is now as ubiquitous as other analytical techniques such as surface plasmon resonance, nuclear magnetic resonance, and supercritical fluid chromatography, among others. Herein, we aim to discuss the history of MS, both electrospray and matrix-assisted laser desorption ionization, specifically for the analysis of antibodies, evolving through to denaturing and native-MS analysis of newer biologic moieties such as antibody-drug conjugates, multispecific antibodies, and interfering nucleic acid-based therapies. We discuss challenging therapeutic target characterization such as membrane protein receptors. Importantly, we compare and contrast the MS and hyphenated analytical chromatographic methods used to characterize these therapeutic modalities and targets within biopharmaceutical research and highlight the importance of appropriate MS deconvolution software and its essential contribution to project progression. Finally, we describe emerging applications and MS technologies that are still predominantly within either a development or academic stage of use but are poised to have significant impact on future drug development within the biopharmaceutic industry once matured. The views reflected herein are personal and are not meant to be an exhaustive list of all relevant MS performed within biopharmaceutical research but are what we feel have been historically, are currently, and will be in the future the most impactful for the drug development process.
Collapse
MESH Headings
- Antibodies, Monoclonal/analysis
- Automation, Laboratory
- Biopharmaceutics/methods
- Chromatography, Liquid
- Drug Discovery/methods
- Drug Industry/history
- History, 20th Century
- History, 21st Century
- Humans
- Immunoconjugates/analysis
- Immunoconjugates/chemistry
- Protein Denaturation
- Protein Processing, Post-Translational
- Proteins/analysis
- Spectrometry, Mass, Electrospray Ionization/history
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/history
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Iain D G Campuzano
- Discovery Attribute Sciences, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, California 92130, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
19
|
Wang Z, Zhang Q, Shen H, Yang P, Zhou X. Optimized MALDI-TOF MS Strategy for Characterizing Polymers. Front Chem 2021; 9:698297. [PMID: 34249867 PMCID: PMC8264446 DOI: 10.3389/fchem.2021.698297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plays an essential role in the analysis of polymers. To acquire a more reliable strategy for polymer profiling, we characterized four representative polymers including polyethylene glycol 6000, polyvinylpyrrolidone K12, polymer polyol KPOP-5040, and polyether polyol DL-4000. The preparation methods of these four polymer samples have been optimized from six aspects, including matrix, cationization reagent, solvent, mixing ratio of cationization reagent to polymer, mixing ratio of matrix to polymer, and laser intensity. After investigating the effects of seven commonly used matrices on the ionization efficiency of four polymers, trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB) was found to be the only matrix suitable for the analysis of all the four polymers. Our experimental results suggested that different polymers showed a certain preference for different cationization reagents. For example, the polymer polyol KPOP-5040 was suitable for sodium iodide as the cationization reagent, while polyvinylpyrrolidone K12 was more suitable for silver trifluoroacetate (AgTFA). For the choice of solvent, tetrahydrofuran is a reagent with rapid evaporation and a wide range of dissolution which can achieve the best results for the analysis of four polymers. The optimized method was successfully applied to the identification of DSPE-PEG-NH2 with different polymerized degrees. This MALDI-TOF strategy potentially provided the supplementary function through the polymer's application in biomedical and visible probing.
Collapse
Affiliation(s)
- Zhenxin Wang
- Institutes of Biomedical Sciences of Shanghai Medical School and Laboratory Medicine of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quanqing Zhang
- Department of Chemistry, University of California, Riverside, CA, United States
| | - Huali Shen
- Institutes of Biomedical Sciences of Shanghai Medical School and Minhang Hospital, Fudan University, Shanghai, China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences of Shanghai Medical School and Department of Chemistry, Fudan University, Shanghai, China
| | - Xinwen Zhou
- Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Janda M, Seah BKB, Jakob D, Beckmann J, Geier B, Liebeke M. Determination of Abundant Metabolite Matrix Adducts Illuminates the Dark Metabolome of MALDI-Mass Spectrometry Imaging Datasets. Anal Chem 2021; 93:8399-8407. [PMID: 34097397 PMCID: PMC8223199 DOI: 10.1021/acs.analchem.0c04720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Spatial metabolomics
using mass spectrometry imaging (MSI) is a
powerful tool to map hundreds to thousands of metabolites in biological
systems. One major challenge in MSI is the annotation of m/z values, which is substantially complicated by
background ions introduced throughout the chemicals and equipment
used during experimental procedures. Among many factors, the formation
of adducts with sodium or potassium ions, or in case of matrix-assisted
laser desorption ionization (MALDI)-MSI, the presence of abundant
matrix clusters strongly increases total m/z peak counts. Currently, there is a limitation to identify
the chemistry of the many unknown peaks to interpret their biological
function. We took advantage of the co-localization of adducts with
their parent ions and the accuracy of high mass resolution to estimate
adduct abundance in 20 datasets from different vendors of mass spectrometers.
Metabolites ranging from lipids to amines and amino acids form matrix
adducts with the commonly used 2,5-dihydroxybenzoic acid (DHB) matrix
like [M + (DHB-H2O) + H]+ and [M + DHB + Na]+. Current data analyses neglect those matrix adducts and overestimate
total metabolite numbers, thereby expanding the number of unidentified
peaks. Our study demonstrates that MALDI-MSI data are strongly influenced
by adduct formation across different sample types and vendor platforms
and reveals a major influence of so far unrecognized metabolite–matrix
adducts on total peak counts (up to one third). We developed a software
package, mass2adduct, for the community
for an automated putative assignment and quantification of metabolite–matrix
adducts enabling users to ultimately focus on the biologically relevant
portion of the MSI data.
Collapse
Affiliation(s)
- Moritz Janda
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Brandon K B Seah
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Dennis Jakob
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Janine Beckmann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| |
Collapse
|
21
|
Li X, Li T, Wang Z, Wei J, Liu J, Zhang Y, Zhao Z. Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic. Talanta 2021; 226:122150. [PMID: 33676699 DOI: 10.1016/j.talanta.2021.122150] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 01/24/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an emerging persistent organic pollutant (POP), and the harm caused by the enrichment of PFOS in living organism has attracted more and more attention. In this work, animal exposure model to PFOS was established. Mass spectrometry (MS), mass spectrometry imaging (MSI), hematoxylin and eosin (H&E) staining and lipidomics were combined for the study of the organ targeting of PFOS, the toxicity and possible mechanism caused by PFOS. PFOS most accumulated in the liver, followed by the lungs, kidneys, spleen, heart and brain. Combined with H&E staining and matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) results, it was found that the accumulation of PFOS indeed caused damage in particular areas of specific organ, like in the liver and in the marginal area of the heart. This work found that PFOS could cross the blood-brain barrier, entered the brain and caused the neurotoxicity, which was surprising and might be the reason that high dose of PFOS could cause convulsions. From the liver lipidomic analysis, we found that PFOS exposure mainly affected glycerophospholipid metabolism and sphingolipid metabolism. The up-regulated ceramide and lysophosphatidylcholine (LPC) might lead to liver cell apoptosis, and the decrease in liver triglyceride (TG) content might result in insufficient energy in mice and cause liver morphological damage. Phosphatidylcholine (PC) synthesis via phosphatidylethanolamine N-methyltransferase (PEMT) pathway might be a mechanism of self-protection in animals against PFOS induced inflammation. This study might provide new insight into underlying toxicity mechanism after exposure to PFOS.
Collapse
Affiliation(s)
- Xing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenpeng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Jianan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Practical guide on MALDI-TOF MS method development for high throughput profiling of pharmaceutically relevant, small molecule chemical reactions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Unger MS, Schumacher L, Enzlein T, Weigt D, Zamek-Gliszczynski MJ, Schwab M, Nies AT, Drewes G, Schulz S, Reinhard FBM, Hopf C. Direct Automated MALDI Mass Spectrometry Analysis of Cellular Transporter Function: Inhibition of OATP2B1 Uptake by 294 Drugs. Anal Chem 2020; 92:11851-11859. [DOI: 10.1021/acs.analchem.0c02186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melissa S. Unger
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Lena Schumacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Maciej J. Zamek-Gliszczynski
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gerard Drewes
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Sandra Schulz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | | | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
24
|
Khan SA, Mason RW, Kobayashi H, Yamaguchi S, Tomatsu S. Advances in glycosaminoglycan detection. Mol Genet Metab 2020; 130:101-109. [PMID: 32247585 PMCID: PMC7198342 DOI: 10.1016/j.ymgme.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glycosaminoglycans (GAGs) are negatively charged long linear (highly sulfated) polysaccharides consisting of repeating disaccharide units that are expressed on the surfaces of all nucleated cells. The expression of GAGs is required for embryogenesis, regulation of cell growth and proliferation, maintenance of tissue hydration, and interactions of the cells via receptors. Mucopolysaccharidoses (MPS) are caused by deficiency of specific lysosomal enzymes that result in the accumulation of GAGs in multiple tissues leading to organ dysfunction. Therefore, GAGs are important biomarkers for MPS. Without any treatment, patients with severe forms of MPS die within the first two decades of life. SCOPE OF REVIEW Accurate measurement of GAGs is important to understand the diagnosis and pathogenesis of MPS and to monitor therapeutic efficacy before, during, and after treatment of the disease. This review covers various qualitative and quantitative methods for measurement of GAGs, including dye specific, thin layer chromatography (TLC), capillary electrophoresis, high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography, ELISA, and automated high-throughput mass spectrometry. Major conclusion: There are several methods for GAG detection however, specific GAG detection in the various biological systems requires rapid, sensitive, specific, and cost-effective methods such as LC-MS/MS. GENERAL SIGNIFICANCE This review will describe different methods for GAG detection and analysis, including their advantages and limitation.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Richardson LT, Brantley MR, Solouki T. Using isotopic envelopes and neural decision tree-based in silico fractionation for biomolecule classification. Anal Chim Acta 2020; 1112:34-45. [DOI: 10.1016/j.aca.2020.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
26
|
Lee J, Chen J, Sarkar P, Xue M, Hooley RJ, Zhong W. Monitoring the crosstalk between methylation and phosphorylation on histone peptides with host-assisted capillary electrophoresis. Anal Bioanal Chem 2020; 412:6189-6198. [PMID: 32064571 DOI: 10.1007/s00216-020-02486-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022]
Abstract
Post-translational modifications (PTMs) greatly increase protein diversity and regulate their functions by changing the structures, properties, and molecular interactions of proteins. In peptide regions with high density of PTMs, PTMs can influence modification on residues in proximity or even at distal positions, adding another layer of regulation. Methods that can monitor the activities of PTM enzymes on peptides carrying multiple modifications are valuable tools for better understanding of PTM crosstalk. Herein, we developed a host-assisted capillary electrophoresis (CE) method to separate histone peptides with methylation and phosphorylation and applied it to monitor the crosstalk between serine phosphorylation and lysine methylation when they were added by Aurora B kinase and G9a lysine methyltransferase, respectively. A synthetic receptor molecule, 4-hexasulfonatocalix[6]arene (CX6), was included in the CE buffer to improve the resolution of the corresponding substrates and products. A linear polyacrylamide-coated capillary was employed to effectively reduce wall adsorption of the cationic histone peptides. The peptide substrates were labeled with fluorescein to enhance their detectability during CE separation. Our method successfully revealed that the activity of G9a methyltransferase was completely inhibited by the adjacent phosphorylation, while 25% reduction in the activity of Aurora B kinase was observed with the presence of dimethylation on the nearby residue. The PTM crosstalk was examined not only using a pure peptide substrate, but also in a competitive reaction environment, in which the modified and unmodified peptides were mixed and the enzyme actions on both peptides were monitored simultaneously. Our work demonstrates that host-assisted CE is an effective method for study of PTM crosstalk, which could offer the advantages of fast separation, high resolution, and low sample consumption. Graphical abstract.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Junyi Chen
- Department of Environmental Toxicology Program, University of California-Riverside, 00 University Ave., Riverside, CA, 92521, USA
| | - Priyanka Sarkar
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Min Xue
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Department of Environmental Toxicology Program, University of California-Riverside, 00 University Ave., Riverside, CA, 92521, USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.,Department of Biochemistry and Molecular Biology, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA. .,Department of Environmental Toxicology Program, University of California-Riverside, 00 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
27
|
Abstract
Mass spectrometry, a technology to determine the mass of ionized molecules and biomolecules, is increasingly applied for the global identification and quantification of proteins. Proteomics applies mass spectrometry in many applications, and each application requires consideration of analytical choices, instrumental limitations and data processing steps. These depend on the aim of the study and means of conducting it. Choosing the right combination of sample preparation, MS instrumentation, and data processing allows exploration of different aspects of the proteome. This chapter gives an outline for some of these commonly used setups and some of the key concepts, many of which later chapters discuss in greater depth. Understanding and handling mass spectrometry data is a multifaceted task that requires many user decisions to obtain the most comprehensive information from an MS experiment. Later chapters in this book deal in-depth with various aspects of the process and how different tools addresses the many analytical challenges. This chapter revises the basic concept in mass spectrometry (MS)-based proteomics.
Collapse
Affiliation(s)
- Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | | |
Collapse
|
28
|
Bastrup J, Birkelund S, Asuni AA, Volbracht C, Stensballe A. Dual strategy for reduced signal-suppression effects in matrix-assisted laser desorption/ionization mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1711-1721. [PMID: 31307118 DOI: 10.1002/rcm.8521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/16/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE The molecular complexity of tissue features several signal-suppression effects which reduce the ionization of analytes significantly and thereby weakens the quality of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) imaging (MALDI imaging). We report a novel approach in MALDI imaging by reducing signal-suppression effects for the analysis of beta-amyloid (Aβ) plaques, one pathological hallmark of Alzheimer's disease (AD). METHODS We analyzed Aβ proteoforms from postmortem AD brains and brains from transgenic mice (APPPS1-21) overexpressing familial AD mutations by combining two techniques: (1) laser capture microdissection (LCM) to accumulate Aβ plaques and (2) phosphoric acid (PA) as additive to the super-2,5-dihydroxybenzoic acid matrix. RESULTS LCM and MALDI-MS enabled tandem mass spectrometric fragmentation of stained Aβ plaques. PA improved the signal-to-noise (S/N) ratio, especially of the Aβ1-42 peptide, by three-fold compared with the standard matrix additive trifluoroacetic acid. The beneficial effect of the PA matrix additive in MALDI imaging was particularly important for AD brain tissue. We identified several significant differences in Aβ plaque composition from AD compared with APPPS1-21, underlining the value of reducing signal-suppressing effects in MALDI imaging. CONCLUSIONS We present a novel strategy for overcoming signal-suppression effects in MALDI imaging of Aβ proteoforms.
Collapse
Affiliation(s)
- Joakim Bastrup
- Department of Health Science and Technology, Aalborg University, 9220, Aalborg East, Denmark
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, 9220, Aalborg East, Denmark
| | - Ayodeji A Asuni
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220, Aalborg East, Denmark
| |
Collapse
|
29
|
Curcio R, Aiello D, Vozza A, Muto L, Martello E, Cappello AR, Capobianco L, Fiermonte G, Siciliano C, Napoli A, Dolce V. Cloning, Purification, and Characterization of the Catalytic C-Terminal Domain of the Human 3-Hydroxy-3-methyl glutaryl-CoA Reductase: An Effective, Fast, and Easy Method for Testing Hypocholesterolemic Compounds. Mol Biotechnol 2019; 62:119-131. [DOI: 10.1007/s12033-019-00230-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Horatz K, Ditte K, Prenveille T, Zhang K, Jehnichen D, Kiriy A, Voit B, Lissel F. Amorphous Conjugated Polymers as Efficient Dual‐Mode MALDI Matrices for Low‐Molecular‐Weight Analytes. Chempluschem 2019; 84:1338-1345. [DOI: 10.1002/cplu.201900203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kilian Horatz
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Mommsenstraße 01062 Dresden Germany
| | - Kristina Ditte
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Mommsenstraße 01062 Dresden Germany
| | - Thomas Prenveille
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Mommsenstraße 01062 Dresden Germany
- Arkema S.A, Colombes, France
| | - Ke‐Nan Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Mommsenstraße 01062 Dresden Germany
| | - Dieter Jehnichen
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
| | - Anton Kiriy
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Mommsenstraße 01062 Dresden Germany
| | - Franziska Lissel
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Mommsenstraße 01062 Dresden Germany
| |
Collapse
|
31
|
Choi H, Lee D, Kim Y, Nguyen HQ, Han S, Kim J. Effects of Matrices and Additives on Multiple Charge Formation of Proteins in MALDI-MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1174-1178. [PMID: 31044356 DOI: 10.1007/s13361-019-02213-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The sinapinic acid (SA) matrix has frequently been used for protein analysis in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). However, the SA matrix does not result in the formation of distinctive multiple protein charge states, whereas the 2-nitrophloroglucinol (2-NPG) matrix is capable of this. The formation of multiple charge states in the MALDI-MS analysis of proteins is advantageous in that it results in higher accuracy. In this study, the mass spectra of several common standard proteins, namely cytochrome c, myoglobin, bovine serum albumin (BSA), and immunoglobulin G (IgG), were compared using various matrices (2,5-dihydroxybenzoic acid, α-cyano-hydroxycinnamic acid, SA, and 2-NPG). Furthermore, the mass spectra of two large standard proteins (BSA and IgG) using various acid additives (H3PO4, HNO3, H2SO4, HCl, and trifluoroacetic acid) with the 2-NPG matrix were also compared. Among the different matrices, 2-NPG provided the broadest range of multiple protein charge states, while, among the different additives, the 2-NPG matrix in combination with HCl generated the broadest multiple charge states as well as the most intense protein peaks.
Collapse
Affiliation(s)
- Hyemin Choi
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Dabin Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yeoseon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Sol Han
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
32
|
Yang C, Lee HK, Zhang Y, Jiang LL, Chen ZF, Chung ACK, Cai Z. In Situ Detection and Imaging of PFOS in Mouse Kidney by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. Anal Chem 2019; 91:8783-8788. [DOI: 10.1021/acs.analchem.9b00711] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hin Kiu Lee
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Li-Long Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Arthur Chi Kong Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
33
|
Schmitt ND, Rawlins CM, Randall EC, Wang X, Koller A, Auclair JR, Kowalski JM, Kowalski PJ, Luther E, Ivanov AR, Agar NY, Agar JN. Genetically Encoded Fluorescent Proteins Enable High-Throughput Assignment of Cell Cohorts Directly from MALDI-MS Images. Anal Chem 2019; 91:3810-3817. [PMID: 30839199 PMCID: PMC6827431 DOI: 10.1021/acs.analchem.8b03454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g. mass cytometry and next-generation sequencing). Technological barriers have prevented the high-throughput assignment of MSI spectra from solid tissue preparations to their cell type. These barriers include obtaining a suitable cell-identifying image (e.g. immunohistochemistry) and obtaining sufficiently accurate registration of the cell-identifying and MALDI-MS images. This study introduces a technique that overcame these barriers by assigning cell type directly from mass spectra. We hypothesized that, in MSI from mice with a defined fluorescent protein expression pattern, the fluorescent protein's molecular ion could be used to identify cell cohorts. A method was developed for the purification of enhanced yellow fluorescent protein (EYFP) from mice. To determine EYFP's molecular mass for MSI studies, we performed intact mass analysis and characterized the protein's primary structure and post-translational modifications through various techniques. MALDI-MSI methods were developed to enhance the detection of EYFP in situ, and by extraction of EYFP's molecular ion from MALDI-MS images, automated, whole-image assignment of cell cohorts was achieved. This method was validated using a well-characterized mouse line that expresses EYFP in motor and sensory neurons and should be applicable to hundreds of commercially available mice (and other animal) strains comprising a multitude of cell-specific fluorescent labels.
Collapse
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Catherine M. Rawlins
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- These authors contributed equally to this work
| | - Elizabeth C. Randall
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianzhe Wang
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Antonius Koller
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Biopharmaceutical Analysis Training Laboratory (BATL), Northeastern University Innovation Campus, Burlington, MA, 01803, USA
| | | | | | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
| | - Nathalie Y.R. Agar
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, and Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Complementarity of Matrix- and Nanostructure-Assisted Laser Desorption/Ionization Approaches. NANOMATERIALS 2019; 9:nano9020260. [PMID: 30769830 PMCID: PMC6410089 DOI: 10.3390/nano9020260] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
Abstract
In recent years, matrix-assisted laser desorption/ionization (MALDI) has become the main tool for the study of biological macromolecules, such as protein nano-machines, especially in the determination of their molecular masses, structure, and post-translational modifications. A key role in the classical process of desorption and ionization of the sample is played by a matrix, usually a low-molecular weight weak organic acid. Unfortunately, the interpretation of mass spectra in the mass range of below m/z 500 is difficult, and hence the analysis of low molecular weight compounds in a matrix-assisted system is an analytical challenge. Replacing the classical matrix with nanomaterials, e.g., silver nanoparticles, allows improvement of the selectivity and sensitivity of spectrometric measurement of biologically important small molecules. Nowadays, the nanostructure-assisted laser desorption/ionization (NALDI) approach complements the classic MALDI in the field of modern bioanalytics. In particular, the aim of this work is to review the recent advances in MALDI and NALDI approaches.
Collapse
|
35
|
Ly A, Ragionieri L, Liessem S, Becker M, Deininger SO, Neupert S, Predel R. Enhanced Coverage of Insect Neuropeptides in Tissue Sections by an Optimized Mass-Spectrometry-Imaging Protocol. Anal Chem 2019; 91:1980-1988. [DOI: 10.1021/acs.analchem.8b04304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alice Ly
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Lapo Ragionieri
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Sander Liessem
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Michael Becker
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | | | - Susanne Neupert
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Reinhard Predel
- Department for Biology, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
36
|
Podolskaya EP, Gladchuk AS, Keltsieva OA, Dubakova PS, Silyavka ES, Lukasheva E, Zhukov V, Lapina N, Makhmadalieva MR, Gzgzyan AM, Sukhodolov NG, Krasnov KA, Selyutin AA, Frolov A. Thin Film Chemical Deposition Techniques as a Tool for Fingerprinting of Free Fatty Acids by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2018; 91:1636-1643. [PMID: 30532949 DOI: 10.1021/acs.analchem.8b05296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolic fingerprinting is a powerful analytical technique, giving access to high-throughput identification and relative quantification of multiple metabolites. Because of short analysis times, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is the preferred instrumental platform for fingerprinting, although its power in analysis of free fatty acids (FFAs) is limited. However, these metabolites are the biomarkers of human pathologies and indicators of food quality. Hence, a high-throughput method for their fingerprinting is required. Therefore, here we propose a MALDI-TOF-MS method for identification and relative quantification of FFAs in biological samples of different origins. Our approach relies on formation of monomolecular Langmuir films (LFs) at the interphase of aqueous barium acetate solution, supplemented with low amounts of 2,5-dihydroxybenzoic acid, and hexane extracts of biological samples. This resulted in detection limits of 10-13-10-14 mol and overall method linear dynamic range of at least 4 orders of magnitude with accuracy and precision within 2 and 17%, respectively. The method precision was verified with eight sample series of different taxonomies, which indicates a universal applicability of our approach. Thereby, 31 and 22 FFA signals were annotated by exact mass and identified by tandem MS, respectively. Among 20 FFAs identified in Fucus algae, 14 could be confirmed by gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Ekaterina P Podolskaya
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Institute of Analytical Instrumentation , Russian Academy of Sciences , St. Petersburg , Russia 198095
| | - Alexey S Gladchuk
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Peter the Great St. Petersburg Polytechnic University , St. Petersburg , Russia 195251
| | - Olga A Keltsieva
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Institute of Analytical Instrumentation , Russian Academy of Sciences , St. Petersburg , Russia 198095
| | - Polina S Dubakova
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Peter the Great St. Petersburg Polytechnic University , St. Petersburg , Russia 195251
| | | | | | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia 196608
| | - Natalia Lapina
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019
| | - Manizha R Makhmadalieva
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott , St. Petersburg , Russia 199034
| | - Alexander M Gzgzyan
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott , St. Petersburg , Russia 199034
| | - Nikolai G Sukhodolov
- Institute of Analytical Instrumentation , Russian Academy of Sciences , St. Petersburg , Russia 198095
| | - Konstantin A Krasnov
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019
| | | | - Andrej Frolov
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Halle/Saale , Germany 06120
| |
Collapse
|
37
|
Patil AA, Chiang CK, Wen CH, Peng WP. Forced dried droplet method for MALDI sample preparation. Anal Chim Acta 2018; 1031:128-133. [DOI: 10.1016/j.aca.2018.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 01/28/2023]
|
38
|
Banazadeh A, Williamson S, Zabet M, Hussien A, Mechref Y. Magnetic carbon nanocomposites as a MALDI co-matrix enhancing MS-based glycomics. Anal Bioanal Chem 2018; 410:7395-7404. [PMID: 30196422 PMCID: PMC6375713 DOI: 10.1007/s00216-018-1345-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023]
Abstract
More than 50% of all known proteins are glycosylated, which is critical for many biological processes such as protein folding and signal transduction. Glycosylation has proven to be associated with different mammalian diseases such as breast and liver cancers. Therefore, characterization of glycans is highly important to facilitate a better understanding of the development and progression of many human diseases. Although matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) offers several advantages such as ease of operation and short analysis times, however, due to the complexity of glycan structures and their low ionization efficiency, there are still challenges that need to be addressed to achieve sensitive glycan analysis. Here, magnetic carbon nanocomposites (CNPs@Fe3O4 NCs) were used as a new MALDI matrix or co-matrix for the analysis of glycans derived from different model glycoproteins and human blood serum samples. The addition of CNPs@Fe3O4 NCs to the matrix significantly enhanced glycan signal intensity by several orders of magnitude, and effectively controlled/reduced/eliminated in-source decay (ISD) fragmentation. The latter was attained by modulating CNPs@Fe3O4 NCs concentrations and allowed the simultaneous study of intact and fragmented glycans, and pseudo-MS3 analysis. Moreover, CNPs@Fe3O4 NCs was also effectively employed to desalt samples directly on MALDI plate, thus enabling direct MALDI-MS analysis of unpurified permethylated glycans derived from both model glycoproteins and biological samples. On-plate desalting enhanced sensitivity by reducing sample loss. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Seth Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Masoud Zabet
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ahmed Hussien
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
39
|
English SL, Forsythe JG. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of model prebiotic peptides: Optimization of sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1507-1513. [PMID: 29885215 DOI: 10.1002/rcm.8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Depsipeptides, or peptides with a mixture of amide and ester linkages, may have evolved into peptides on primordial Earth. Previous studies on depsipeptides utilized electrospray ionization ion mobility quadrupole time-of-flight (ESI-IM-QTOF) tandem mass spectrometry; such analysis was thorough yet time-consuming. Here, a complementary matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approach was optimized for rapid characterization of depsipeptide length and monomer composition. METHODS Depsipeptide mixtures of varying hydrophobicity were formed by subjecting aqueous mixtures of α-hydroxy acids and α-amino acids to evaporative cycles. Ester and amide content of depsipeptides was orthogonally confirmed using infrared spectroscopy. MALDI-TOF MS analysis was performed on a Voyager DE-STR in reflection geometry and positive ion mode. Optimization parameters included choice of matrix, sample solvent, matrix-to-analyte ratio, and ionization additives. RESULTS It was determined that evaporated depsipeptide samples should be mixed with 2,5-dihydroxybenzoic acid (DHB) matrix in order to detect the highest number of unique signals. Low matrix-to-analyte ratios were found to generate higher quality spectra, likely due to a combination of matrix suppression and improved co-crystallization. Using this optimized protocol, a new depsipeptide mixture was characterized. CONCLUSIONS Understanding the diversity and chemical evolution of proto-peptides is of interest to origins-of-life research. Here, we have demonstrated MALDI-TOF MS can be used to rapidly screen the length and monomer composition of model prebiotic peptides containing a mixture of ester and amide backbone linkages.
Collapse
Affiliation(s)
- Sloane L English
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| | - Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| |
Collapse
|
40
|
Banazadeh A, Peng W, Veillon L, Mechref Y. Carbon Nanoparticles and Graphene Nanosheets as MALDI Matrices in Glycomics: a New Approach to Improve Glycan Profiling in Biological Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1892-1900. [PMID: 29916086 PMCID: PMC6298861 DOI: 10.1007/s13361-018-1985-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 05/15/2023]
Abstract
Glycomics continues to be a highly dynamic and interesting research area due to the need to comprehensively understand the biological attributes of glycosylation in many important biological functions such as the immune response, cell development, cell differentiation/adhesion, and host-pathogen interactions. Although matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) has proven to be suitable for glycomic profiling studies, there is a need for improved sensitivity in the detection of native glycans, which ionize inefficiently. In this study, we investigated the efficiencies of graphene nanosheets (GNs) and carbon nanoparticles (CNPs) as MALDI matrices and co-matrices in glycan profiling. Our results indicated an enhancement of signal intensity by several orders of magnitude upon using GNs and CNPs in MALDI analysis of N-glycans derived from a variety of biological samples. Interestingly, increasing the amounts of CNPs and GNs improved not only the signal intensities but also prompted in-source decay (ISD) fragmentations, which produced extensive glycosidic and cross-ring cleavages. Our results indicated that the extent of ISD fragmentation could be modulated by CNP and GN concentrations, to obtain MS2 and pseudo-MS3 spectra. The results for glycan profiling in high salt solutions confirmed high salt-tolerance capacities for both CNPs and GNs. Finally, the results showed that by using CNPs and GNs as co-matrices, DHB crystal formation was more homogeneous which improved shot-to-shot reproducibility and sensitivity. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
41
|
Rühl M, Schönborn S, Karas M. Detergent-assisted sample preparation for MALDI-MS: Investigation of octylglucoside and docecylmaltoside for matrix crystallization, on-plate digestion, and trypsin activity. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:675-679. [PMID: 29787639 DOI: 10.1002/jms.4203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/17/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
We show an easy and fast method for improved detection of lipophilic peptides with MALDI-MS utilizing the nonionic detergents n-octylglucoside and n-dodecylmaltoside (laurylmaltoside). Investigations comprised on-plate digestion of proteins with trypsin, detergent effects on the protease trypsin, and the changes in MALDI matrix crystallization. Investigations also exhibited a higher tryptic activity in trypsin activity assay of 139% when using laurylmaltoside as supplement. Crystallization changed toward a more homogeneous crystal distribution and especially trypsinized insulin spectra recorded with MALDI-MS showed improved detectability of lipophilic peptides.
Collapse
Affiliation(s)
- Michael Rühl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Stefan Schönborn
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| |
Collapse
|
42
|
Chu KJ, Chen PC, You YW, Chang HY, Kao WL, Chu YH, Wu CY, Shyue JJ. Integration of paper-based microarray and time-of-flight secondary ion mass spectrometry (ToF-SIMS) for parallel detection and quantification of molecules in multiple samples automatically. Anal Chim Acta 2018; 1005:61-69. [DOI: 10.1016/j.aca.2017.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022]
|
43
|
Rapid Food Product Analysis by Surface Acoustic Wave Nebulization Coupled Mass Spectrometry. FOOD ANAL METHOD 2018; 11:2447-2454. [PMID: 30271524 DOI: 10.1007/s12161-018-1232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rapid food product analysis is of great interest for quality control and assurance during the production process. Conventional quality control protocols require time and labor intensive sample preparation for analysis by state-of-the-art analytical methods. To reduce overall cost and facilitate rapid qualitative assessments, food products need to be tested with minimal sample preparation. We present a novel and simple method for assessing food product compositions by mass spectrometry using a novel surface acoustic wave nebulization method. This method provides significant advantages over conventional methods requiring no pumps, capillaries, or additional chemicals to enhance ionization for mass spectrometric analysis. In addition, the surface acoustic wave nebulization - mass spectrometry method is ideal for rapid analysis and to investigate certain compounds by using the mass spectra as a type of species-specific fingerprint analysis. We present for the first time surface acoustic wave nebulization generated mass spectra of a variety of fermented food products from a small selection of vinegars, wines, and beers.
Collapse
|
44
|
Pandeti S, Yerra NV, Raju NP, Thota JR. Naturally occurring chrysophanol as matrix-assisted laser desorption ionization matrix for the analysis of a broad spectrum of analytes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:451-456. [PMID: 29334585 DOI: 10.1002/rcm.8061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Affiliation(s)
- Sukanya Pandeti
- Medicinal and Process Chemistry Division, CSIR - Central Drug Research Institute, Lucknow, 226031, India
- Division of Sophisticated Analytical Instrument Facility, CSIR - Central Drug Research Institute, Lucknow, 226031, India
- Analytical Chemistry and Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Naga Veera Yerra
- Analytical Chemistry and Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Namburi Prasada Raju
- Analytical Chemistry and Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Jagadeshwar Reddy Thota
- Division of Sophisticated Analytical Instrument Facility, CSIR - Central Drug Research Institute, Lucknow, 226031, India
- Analytical Chemistry and Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research, New Delhi, 110001, India
| |
Collapse
|
45
|
O'Rourke MB, Djordjevic SP, Padula MP. The quest for improved reproducibility in MALDI mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:217-228. [PMID: 27420733 DOI: 10.1002/mas.21515] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/19/2016] [Accepted: 06/16/2016] [Indexed: 05/18/2023]
Abstract
Reproducibility has been one of the biggest hurdles faced when attempting to develop quantitative protocols for MALDI mass spectrometry. The heterogeneous nature of sample recrystallization has made automated sample acquisition somewhat "hit and miss" with manual intervention needed to ensure that all sample spots have been analyzed. In this review, we explore the last 30 years of literature and anecdotal evidence that has attempted to address and improve reproducibility in MALDI MS. Though many methods have been attempted, we have discovered a significant publication history surrounding the use of nitrocellulose as a substrate to improve homogeneity of crystal formation and therefore reproducibility. We therefore propose that this is the most promising avenue of research for developing a comprehensive and universal preparation protocol for quantitative MALDI MS analysis. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:217-228, 2018.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Proteomics Core Facility, University of Technology Sydney, Cnr Harris and Thomas St, Ultimo, New South Wales, 2007, Australia
| | - Steven P Djordjevic
- The iThree Institute, University of Technology Sydney, Cnr Harris and Thomas St, Ultimo, New South Wales, 2007, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Cnr Harris and Thomas St, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
46
|
Chang KC, Chung CY, Yeh CH, Hsu KH, Chin YC, Huang SS, Liu BR, Chen HA, Hu A, Soo PC, Peng WP. Direct detection of carbapenemase-associated proteins of Acinetobacter baumannii using nanodiamonds coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Microbiol Methods 2018; 147:36-42. [PMID: 29499232 DOI: 10.1016/j.mimet.2018.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/25/2022]
Abstract
The appearance and spread of carbapenem-resistant Acinetobacter baumannii (CRAB) pose a challenge for optimization of antibiotic therapies and outbreak preventions. The carbapenemase production can be detected through culture-based methods (e.g. Modified Hodge Test-MHT) and DNA based methods (e.g. Polymerase Chain Reaction-PCR). The culture-based methods are time-consuming, whereas those of PCR assays need only a few hours but due to its specificity, can only detect known genetic targets encoding carbapenem-resistance genes. Therefore, new approaches to detect carbapenemase-producing A. baumannii are of great importance. Here, we have developed a rapid and novel method using detonation nanodiamonds (DNDs) as a platform for concentration and extraction of A. baumannii carbapenemase-associated proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS) analysis. To concentrate and extract the A. baumannii carbapenemase-associated proteins, we tested several protein precipitation conditions and found a 0.5% trifluoroacetic acid (TFA) solution within the bacterial suspension could result in strong ion signals with DNDs. A total of 66 A. baumannii clinical-isolates including 51 carbapenem-resistant strains and 15 carbapenem-susceptible strains were tested. Our result showed that among the 51 carbapenem-resistant strains 49 strains had a signal at m/z ~40,279 (±87); among the 15 carbapenem-susceptible strains, 4 strains showed a signal at m/z ~40,279. With on-diamond digestion, we confirmed that the captured protein at m/z ~40,279 was related to ADC family extended-spectrum class C beta-lactamase, from A. baumannii. Using this ADC family protein as a biomarker (m/z ~ 40,279) for carbapenem susceptibility testing of A. baumannii, the sensitivity and the specificity could reach 96% and 73% as compared to traditional imipenem susceptibility testing (MIC results). However, the sensitivity and specificity of this method reached 100% as compared to polymerase chain reaction (PCR) result. Our approach could directly detect the carbapenemase-associated proteins of A. baumannii within 90 min and does not require addition of carbapenemase substrate which is required in the MHT or other mass spectrometric methods. For future applications, our method could be efficiently used in the detection of other carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan; Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chin-Yi Chung
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Chen-Hsing Yeh
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Kuo-Hsiu Hsu
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Ya-Ching Chin
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Sin-Siang Huang
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Bo-Rong Liu
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Hsi-An Chen
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Anren Hu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan.
| |
Collapse
|
47
|
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources mainly by HPLC and mass spectrometry. Mass spectrometry allows the detection of a multitude of single peptides in complex mixtures. The term first appeared in full papers in the year 2001, after over 100 years of peptide research with a main focus on one or a few specific peptides. Within the last 15 years, this new field has grown to over 1200 publications. Mass spectrometry techniques, in combination with other analytical methods, were developed for the fast and comprehensive analysis of peptides in proteomics and specifically adjusted to implement peptidomics technologies. Although peptidomics is closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. The development of peptidomics is described, including the most important implementations for its technological basis. Different strategies are covered which are applied to several important applications, such as neuropeptidomics and discovery of bioactive peptides or biomarkers. This overview includes links to all other chapters in the book as well as recent developments of separation, mass spectrometric, and data processing technologies. Additionally, some new applications in food and plant peptidomics as well as immunopeptidomics are introduced.
Collapse
|
48
|
Luo X, Tue PT, Sugiyama K, Takamura Y. High yield matrix-free ionization of biomolecules by pulse-heating ion source. Sci Rep 2017; 7:15170. [PMID: 29123135 PMCID: PMC5680173 DOI: 10.1038/s41598-017-15259-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has been widely used for biomolecular analysis. However, with conventional MALDI, it is difficult to analyse low-molecular-weight compounds because of the interference of matrix ion signals. Here, we report a matrix-free on-chip pulse-heating desorption/ionization (PHDI) method for a wide range of biomolecules ranging from low molecular-weight substances such as glycine (75.7 Da) to large species such as α-lactalbumin (14.2 kDa). Compared with the conventional MALDI, the matrix-free PHDI method affords high yields of singly charged ions with very less fragmentation and background using only one-pulse without light (laser). We believe that this new technique for matrix-free biomolecules analysis would overcome the limitations of the conventional MALDI.
Collapse
Affiliation(s)
- Xi Luo
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Phan-Trong Tue
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Kiyotaka Sugiyama
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Yuzuru Takamura
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan.
| |
Collapse
|
49
|
Ouyang J, An D, Chen T, Lin Z. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:280-286. [PMID: 29028383 DOI: 10.1177/1469066717712462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.
Collapse
Affiliation(s)
- Jie Ouyang
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Dongli An
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Tengteng Chen
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Zhiwei Lin
- Department of Chemistry, Xiamen University, Xiamen, China
| |
Collapse
|
50
|
Astefanei A, van Bommel M, Corthals GL. Surface Acoustic Wave Nebulisation Mass Spectrometry for the Fast and Highly Sensitive Characterisation of Synthetic Dyes in Textile Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2108-2116. [PMID: 28660500 PMCID: PMC5594053 DOI: 10.1007/s13361-017-1716-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 05/11/2023]
Abstract
Surface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO3 sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner. We have developed SAWN technology for the characterisation of organic colourants in textiles. It generates electrospray-ionisation-like ions in a non-destructive manner during ionisation, as can be observed by the unmodified chemical structure. The sample size is decreased by tenfold to 1000-fold when compared with currently used liquid chromatography-MS methods, with equal or better sensitivity. This work underscores SAWN-MS as an ideal tool for molecular analysis of art objects as it is non-destructive, is rapid, involves minimally invasive sampling and is more sensitive than current MS-based methods. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alina Astefanei
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Maarten van Bommel
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Faculty of Humanities, Conservation and Restoration of Cultural Heritage, University of Amsterdam, Johannes Vermeerplein 1, 1071 DV, Amsterdam, Netherlands
| | - Garry L Corthals
- Van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| |
Collapse
|