1
|
Lavallée-Adam M, Pelletier A, Diedrich JK, Pinto AFM, Martínez-Bartolomé S, Petrascheck M, Moresco JJ, Yates JR. TargetSeeker-MS: A Bayesian Inference Approach for Drug-Target Discovery Using Protein Fractionation Coupled to Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:664-679. [PMID: 40067882 PMCID: PMC11968059 DOI: 10.1021/jasms.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
To understand the mechanism of action of a drug and assess its clinical usefulness and viability, it is imperative that its affinity for its putative targets is determined. When coupled to mass spectrometry (MS), energetics-based protein separation (EBPS) techniques, such as a thermal shift assay, have shown great potential to identify the targets of a drug on a proteome scale. Nevertheless, the computational analyses assessing the confidence of drug-target predictions made by these methods have remained tightly tied to the protocol under which the data were produced. To identify drug targets in data sets produced using different EBPS-MS techniques, we have developed a novel flexible Bayesian inference approach named TargetSeeker-MS. We showed that TargetSeeker-MS identifies known and novel drug targets in Caenorhabditis elegans and HEK 293 samples treated with the fungicide benomyl. We also demonstrated that TargetSeeker-MS' drug-target identifications are reproducible in C. elegans samples that were processed using two different EBPS techniques (thermal shift assay and a differential precipitation of proteins, named DiffPOP). In addition, we validated a novel benomyl target by measuring its altered enzymatic activity upon drug treatment in vitro. TargetSeeker-MS, which is available as a web server (https://targetseeker.scripps.edu/), allows for the rapid, versatile, and confident identification of targets of a drug on a proteome scale, thereby providing a better understanding of its mechanisms and facilitating the evaluation of its clinical viability.
Collapse
Affiliation(s)
- Mathieu Lavallée-Adam
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
- (Current affiliation) Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alexander Pelletier
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
- The Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd., La Jolla, California, 92037, USA
| | - Antonio F. M. Pinto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
- The Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd., La Jolla, California, 92037, USA
| | - Salvador Martínez-Bartolomé
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
- The Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd., La Jolla, California, 92037, USA
- (Current affiliation) Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California, 92037, USA
- The Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd., La Jolla, California, 92037, USA
| |
Collapse
|
2
|
Gudipati RK, Gaidatzis D, Seebacher J, Muehlhaeusser S, Kempf G, Cavadini S, Hess D, Soneson C, Großhans H. Deep quantification of substrate turnover defines protease subsite cooperativity. Mol Syst Biol 2024; 20:1303-1328. [PMID: 39468329 PMCID: PMC11612144 DOI: 10.1038/s44320-024-00071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Substrate specificity determines protease functions in physiology and in clinical and biotechnological applications, yet quantitative cleavage information is often unavailable, biased, or limited to a small number of events. Here, we develop qPISA (quantitative Protease specificity Inference from Substrate Analysis) to study Dipeptidyl Peptidase Four (DPP4), a key regulator of blood glucose levels. We use mass spectrometry to quantify >40,000 peptides from a complex, commercially available peptide mixture. By analyzing changes in substrate levels quantitatively instead of focusing on qualitative product identification through a binary classifier, we can reveal cooperative interactions within DPP4's active pocket and derive a sequence motif that predicts activity quantitatively. qPISA distinguishes DPP4 from the related C. elegans DPF-3 (a DPP8/9-orthologue), and we relate the differences to the structural features of the two enzymes. We demonstrate that qPISA can direct protein engineering efforts like the stabilization of GLP-1, a key DPP4 substrate used in the treatment of diabetes and obesity. Thus, qPISA offers a versatile approach for profiling protease and especially exopeptidase specificity, facilitating insight into enzyme mechanisms and biotechnological and clinical applications.
Collapse
Affiliation(s)
- Rajani Kanth Gudipati
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Sandra Muehlhaeusser
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, 4056, Switzerland.
- Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Hartley B, Bassiouni W, Roczkowsky A, Fahlman R, Schulz R, Julien O. N-Terminomic Identification of Intracellular MMP-2 Substrates in Cardiac Tissue. J Proteome Res 2024; 23:4188-4202. [PMID: 38647137 PMCID: PMC11460328 DOI: 10.1021/acs.jproteome.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Wesam Bassiouni
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| | - Richard Schulz
- Department
of Pharmacology, University of Alberta, Edmonton T6G 2S2, Canada
- Department
of Pediatrics, University of Alberta, Edmonton T6G 2S2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
4
|
Mead TJ, Bhutada S, Foulcer SJ, Peruzzi N, Nelson CM, Seifert DE, Larkin J, Tran-Lundmark K, Filmus J, Apte SS. Combined genetic-pharmacologic inactivation of tightly linked ADAMTS proteases in temporally specific windows uncovers distinct roles for versican proteolysis and glypican-6 in cardiac development. Matrix Biol 2024; 131:1-16. [PMID: 38750698 PMCID: PMC11526477 DOI: 10.1016/j.matbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Simon J Foulcer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Courtney M Nelson
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deborah E Seifert
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Karin Tran-Lundmark
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Jorge Filmus
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
5
|
Chen W, Ji G, Wu R, Fang C, Lu H. Mass spectrometry-based candidate substrate and site identification of PTM enzymes. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Haack AM, Overall CM, Auf dem Keller U. Degradomics technologies in matrisome exploration. Matrix Biol 2022; 114:1-17. [PMID: 36280126 DOI: 10.1016/j.matbio.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Consisting of a defined set of extracellular proteins secreted from resident cells and with minor contributions from serum proteins, the extracellular matrix (ECM) is an essential component of all tissues. Maintaining tissue homeostasis, structural support and cellular control through cell-ECM communication, the ECM has come to be viewed as not just a passive structural entity but rather as a dynamic signaling conduit between cells and the extracellular compartment. Proteins and their cleavage products mediate this communication, and aberrant signaling, either directly or indirectly distorting the ECM, results in pathological conditions including cancer, inflammation, fibrosis, and neurodegenerative diseases. Characterization of ECM components, the matrisome, the extracellular environment and their changes in disease is therefore of importance to understand and mitigate by developing novel therapeutics. Liquid chromatography-mass spectrometry (LC-MS) proteomics has been integral to protein and proteome research for decades and long superseded the obsolescent gel-based approaches. A continuous effort has ensured progress with increased sensitivity and throughput as more advanced equipment has been developed hand in hand with specialized enrichment, detection, and identification methods. Part of this effort lies in the field of degradomics, a branch of proteomics focused on discovering novel protease substrates by identification of protease-generated neo-N termini, the N-terminome, and characterizing the responsible protease networks. Various methods to do so have been developed, some specialized for specific tissue types, others for particular proteases, throughput, or ease of use. This review aims to provide an overview of the state-of-the-art proteomics techniques that have successfully been recently utilized to characterize proteolytic cleavages in the ECM and thereby guided new research and understanding of the ECM and matrisome biology.
Collapse
Affiliation(s)
- Aleksander M Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, Department of Oral Biological and Medical Sciences, Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Abstract
Protein N-termini provide unique and distinguishing information on proteolytically processed or N-terminally modified proteoforms. Also splicing, use of alternative translation initiation sites, and a variety of co- and post-translational N-terminal modifications generate distinct proteoforms that are unambiguously identified by their N-termini. However, N-terminal peptides are only a small fraction among all peptides generated in a shotgun proteome digest, are often of low stoichiometric abundance, and therefore require enrichment. Various protocols for enrichment of N-terminal peptides have been established and successfully been used for protease substrate discovery and profiling of N-terminal modification, but often require large amounts of proteome. We have recently established the High-efficiency Undecanal-based N-Termini EnRichment (HUNTER) as a fast and sensitive method to enable enrichment of protein N-termini from limited sample sources with as little as a few microgram proteome. Here we present our current HUNTER protocol for sensitive plant N-terminome profiling, including sample preparation, enrichment of N-terminal peptides, and mass spectrometry data analysis.
Collapse
Affiliation(s)
- Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany.
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
- Institute of Biochemistry, Department for Chemistry , University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Li F, Chen J, Leier A, Marquez-Lago T, Liu Q, Wang Y, Revote J, Smith AI, Akutsu T, Webb GI, Kurgan L, Song J. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics 2019; 36:1057-1065. [PMID: 31566664 PMCID: PMC8215920 DOI: 10.1093/bioinformatics/btz721] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Proteases are enzymes that cleave target substrate proteins by catalyzing the hydrolysis of peptide bonds between specific amino acids. While the functional proteolysis regulated by proteases plays a central role in the 'life and death' cellular processes, many of the corresponding substrates and their cleavage sites were not found yet. Availability of accurate predictors of the substrates and cleavage sites would facilitate understanding of proteases' functions and physiological roles. Deep learning is a promising approach for the development of accurate predictors of substrate cleavage events. RESULTS We propose DeepCleave, the first deep learning-based predictor of protease-specific substrates and cleavage sites. DeepCleave uses protein substrate sequence data as input and employs convolutional neural networks with transfer learning to train accurate predictive models. High predictive performance of our models stems from the use of high-quality cleavage site features extracted from the substrate sequences through the deep learning process, and the application of transfer learning, multiple kernels and attention layer in the design of the deep network. Empirical tests against several related state-of-the-art methods demonstrate that DeepCleave outperforms these methods in predicting caspase and matrix metalloprotease substrate-cleavage sites. AVAILABILITY AND IMPLEMENTATION The DeepCleave webserver and source code are freely available at http://deepcleave.erc.monash.edu/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - André Leier
- Department of Genetics, USA,Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tatiana Marquez-Lago
- Department of Genetics, USA,Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quanzhong Liu
- College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Yanze Wang
- College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Jerico Revote
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - A Ian Smith
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | | | | |
Collapse
|
10
|
Henriet P, Emonard H. Matrix metalloproteinase-2: Not (just) a "hero" of the past. Biochimie 2019; 166:223-232. [PMID: 31362036 DOI: 10.1016/j.biochi.2019.07.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
The 72-kDa type IV collagenase or gelatinase A is the second member of the matrix metalloproteinase family, MMP-2. Since the discovery of its first two substrates within components of the extracellular matrix, denatured interstitial type I collagen and native type IV collagen, the roles and various levels of regulation of MMP-2 have been intensively studied, mainly in vitro. Its (over)expression in most if not all tumors was considered a hallmark of cancer aggressiveness and boosted investigations aiming at its inhibition. Unfortunately, the enthusiasm subsided like a soufflé after clinical trial failures, mostly because of insufficient knowledge of in vivo MMP-2 activities and detrimental side effects of broad-spectrum MMP inhibition. Nowadays, MMP-2 remains a major topic of interest in research, the second in the MMP family after MMP-9. This review presents a broad overview of the major features of this protease. This knowledge is crucial to identify diagnostic or therapeutic strategies focusing on MMP-2. In this sense, recent publications and clinical trials underline the potential value of measuring circulating or tissular MMP-2 levels as diagnostic or prognostic tools, or as a useful secondary outcome for therapies against other primary targets. Direct MMP-2 inhibition has benefited from substantial progress in the design of more specific inhibitors but their in vivo application remains challenging but certainly worth the efforts it receives.
Collapse
Affiliation(s)
- Patrick Henriet
- de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Hervé Emonard
- CNRS and Université de Reims Champagne-Ardenne, UMR 7369, 51100, Reims, France.
| |
Collapse
|
11
|
Silva LM, Kryza T, Stoll T, Hoogland C, Dong Y, Stephens CR, Hastie ML, Magdolen V, Kleifeld O, Gorman JJ, Clements JA. Integration of Two In-depth Quantitative Proteomics Approaches Determines the Kallikrein-related Peptidase 7 (KLK7) Degradome in Ovarian Cancer Cell Secretome. Mol Cell Proteomics 2019; 18:818-836. [PMID: 30705123 DOI: 10.1074/mcp.ra118.001304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/31/2022] Open
Abstract
Kallikrein-related peptidase 7 (KLK7) is a serine peptidase that is over expressed in ovarian cancer. In vitro functional analyses have suggested KLK7 to play a cancer progressive role, although monitoring of KLK7 expression has suggested a contradictory protective role for KLK7 in ovarian cancer patients. In order to help delineate its mechanism of action and thereby the functional roles, information on its substrate repertoire is crucial. Therefore, in this study a quantitative proteomics approach-PROtein TOpography and Migration Analysis Platform (PROTOMAP)-coupled with SILAC was used for in-depth analysis of putative KLK7 substrates from a representative ovarian cancer cell line, SKOV-3, secreted proteins. The Terminal Amine Isotopic Labeling of Substrates (TAILS) approach was used to determine the exact cleavage sites and to validate qPROTOMAP-identified putative substrates. By employing these two technically divergent approaches, exact cleavage sites on 16 novel putative substrates and two established substrates, matrix metalloprotease (MMP) 2 and insulin growth factor binding protein 3 (IGFBP3), were identified in the SKOV-3 secretome. Eight of these substrates were also identified on TAILS analysis of another ovarian cancer cell (OVMZ-6) secretome, with a further seven OVMZ-6 substrates common to the SKOV-3 qPROTOMAP profile. Identified substrates were significantly associated with the common processes of cell adhesion, extracellular matrix remodeling and cell migration according to the gene ontology (GO) biological process analysis. Biochemical validation supports a role for KLK7 in directly activating pro-MMP10, hydrolysis of IGFBP6 and cleavage of thrombospondin 1 with generation of a potentially bioactive N-terminal fragment. Overall, this study constitutes the most comprehensive analysis of the putative KLK7 degradome in any cancer to date, thereby opening new avenues for KLK7 research.
Collapse
Affiliation(s)
- Lakmali Munasinghage Silva
- From the ‡Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia;; ‖Klinische Forschergruppe der Frauenklinik, Klinikum Rechts der Isar, TU München, Munich, Germany.
| | - Thomas Kryza
- From the ‡Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia;; ‖Klinische Forschergruppe der Frauenklinik, Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Thomas Stoll
- §Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Christine Hoogland
- §Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia;; ‖Klinische Forschergruppe der Frauenklinik, Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Ying Dong
- From the ‡Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Carson Ryan Stephens
- From the ‡Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia;; ‖Klinische Forschergruppe der Frauenklinik, Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Marcus Lachlan Hastie
- §Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Viktor Magdolen
- ‖Klinische Forschergruppe der Frauenklinik, Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Oded Kleifeld
- ¶Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, Australia 3800;; ‖Klinische Forschergruppe der Frauenklinik, Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Jeffrey John Gorman
- §Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland, 4006, Australia
| | - Judith Ann Clements
- From the ‡Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation (IHBI) and School of Biomedical Sciences at the Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia;.
| |
Collapse
|
12
|
Madzharova E, Sabino F, Auf dem Keller U. Exploring Extracellular Matrix Degradomes by TMT-TAILS N-Terminomics. Methods Mol Biol 2019; 1944:115-126. [PMID: 30840238 DOI: 10.1007/978-1-4939-9095-5_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Global characterization of protein N termini provides valuable information on proteome dynamics and diversity in health and disease. Driven by the progress in mass spectrometry-based proteomics, novel approaches for the dedicated investigation of protein N termini and protease substrates have been recently developed. Terminal amine isotopic labeling of substrates (TAILS) is a quantitative proteomics approach suitable for high-throughput and system-wide profiling of protein N termini in complex biological matrices. TAILS employs isotopic labeling of primary amines of intact proteins in combination with an amine-reactive high molecular weight polymer (HPG-ALD) for depletion of internal tryptic peptides and high enrichment of protein N termini by negative selection. Thereby, TAILS allows simultaneous identification of the natural N termini, protease-generated neo-N termini, and endogenously modified (e.g., acetylated) N termini. In this chapter, we provide a protocol for tandem mass tag (TMT)-TAILS analysis and further discuss specific considerations regarding N-terminome data interpretation using Proteome Discoverer™ software.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
13
|
Martins A, Pfirrmann T, Heessen S, Sundqvist G, Bulone V, Andréasson C, Ljungdahl PO. Ssy5 is a signaling serine protease that exhibits atypical biogenesis and marked S1 specificity. J Biol Chem 2018; 293:8362-8378. [PMID: 29661936 DOI: 10.1074/jbc.ra118.002457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Indexed: 11/06/2022] Open
Abstract
Ssy5 is a signaling endoprotease that plays a key role in regulating central metabolism, cellular aging, and morphological transitions important for growth and survival of yeast (Saccharomyces cerevisiae) cells. In response to extracellular amino acids, Ssy5 proteolytically activates the transcription factors Stp1 and Stp2, leading to enhanced Ssy1-Ptr3-Ssy5 (SPS) sensor-regulated gene expression. Ssy5 comprises a catalytic (Cat) domain and an extensive regulatory prodomain. Ssy5 is refractory to both broad-spectrum and serine protease-specific inhibitors, confounding its classification as a protease, and no information about Ssy5's cleavage-site preferences and its mechanism of substrate selection is available. Here, using mutational and inhibition experiments, we investigated the biogenesis and catalytic properties of Ssy5 and conclusively show that it is a serine protease. Atypical for the majority of serine proteases, Ssy5's prodomain was obligatorily required in cis during biogenesis for the maturation of the proteolytic activity of the Cat domain. Autolysis and Stp1 and Stp2 cleavage occurred between a cysteine (at the P1 site) and a serine or alanine (at the P'1 site) and required residues with short side chains at the P1 site. Substitutions in the Cat domain affecting substrate specificity revealed that residues Phe-634, His-661, and Gly-671 in the S1-binding pocket of this domain are important for Ssy5 catalytic function. This study confirms that the signaling protease Ssy5 is a serine protease and provides a detailed understanding of the biogenesis and intrinsic properties of this key enzyme in yeast.
Collapse
Affiliation(s)
- António Martins
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Thorsten Pfirrmann
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Stijn Heessen
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Gustav Sundqvist
- the Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden, and
| | - Vincent Bulone
- the Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden, and.,the ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Urrbra 5064, South Australia, Australia
| | - Claes Andréasson
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden
| | - Per O Ljungdahl
- From the Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University SE-106 91 Stockholm, Sweden,
| |
Collapse
|
14
|
Jagdeo JM, Dufour A, Klein T, Solis N, Kleifeld O, Kizhakkedathu J, Luo H, Overall CM, Jan E. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection. J Virol 2018; 92:e02211-17. [PMID: 29437971 PMCID: PMC5874412 DOI: 10.1128/jvi.02211-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cproin vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner.IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection.
Collapse
Affiliation(s)
- Julienne M Jagdeo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antoine Dufour
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theo Klein
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oded Kleifeld
- School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
16
|
Demir F, Niedermaier S, Kizhakkedathu JN, Huesgen PF. Profiling of Protein N-Termini and Their Modifications in Complex Samples. Methods Mol Biol 2017; 1574:35-50. [PMID: 28315242 DOI: 10.1007/978-1-4939-6850-3_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Protein N termini are a unique window to the functional state of the proteome, revealing translation initiation sites, co-translation truncation and modification, posttranslational maturation, and further proteolytic processing into different proteoforms with distinct functions. As a direct readout of proteolytic activity, protein N termini further reveal proteolytic regulation of diverse biological processes and provide a route to determine specific substrates and hence the physiological functions for any protease of interest. Here, we describe our current protocol of the successful Terminal Amine Isotope Labeling of Substrates (TAILS) technique, which enriches protein N-terminal peptides from complex proteome samples by negative selection. Genome-encoded N termini, protease-generated neo-N termini, and endogenously modified N termini are all enriched simultaneously. Subsequent mass spectrometric analysis therefore profiles all protein N termini and their modifications present in a complex sample in a single experiment. We further provide a detailed protocol for the TAILS-compatible proteome preparation from plant material and discuss specific considerations for N terminome data analysis and annotation.
Collapse
Affiliation(s)
- Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, 52425, Jülich, Germany
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, 52425, Jülich, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology & Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada, V6T 1Z3
- Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada, V6T 1Z3
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, 52425, Jülich, Germany.
| |
Collapse
|
17
|
Schlage P, Egli FE, Auf dem Keller U. Time-Resolved Analysis of Matrix Metalloproteinase Substrates in Complex Samples. Methods Mol Biol 2017; 1579:185-198. [PMID: 28299737 DOI: 10.1007/978-1-4939-6863-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Identification of physiological substrates is the key to understanding the pleiotropic functions of matrix metalloproteinases (MMPs) in health and disease. Quantitative mass spectrometry-based proteomics has revolutionized current approaches in protease substrate discovery and helped to unravel many new MMP activities in complex biological systems. Multiplexing further extended the capabilities of these techniques and facilitated more complicated experimental designs that include multiple proteases or monitoring the activity of a single protease at more than one concentration or at multiple time points with a complex test proteome. In this chapter, we provide a protocol for time-resolved iTRAQ-based Terminal Amine Isotopic Labeling of Substrates (TAILS), with the focus on MMP substrate identification and characterization in cell culture supernatants and introduce an automated procedure for the interpretation of time-resolved iTRAQ-TAILS datasets.
Collapse
Affiliation(s)
- Pascal Schlage
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Fabian E Egli
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Ulrich Auf dem Keller
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093, Zurich, Switzerland.
| |
Collapse
|
18
|
Klein T, Viner RI, Overall CM. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0372. [PMID: 27644975 PMCID: PMC5031638 DOI: 10.1098/rsta.2015.0372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Theo Klein
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| | - Rosa I Viner
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC Canada V6T 1Z3 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada V6T 1Z3
| |
Collapse
|
19
|
TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors. Cell Rep 2016; 16:1762-1773. [PMID: 27477282 DOI: 10.1016/j.celrep.2016.06.086] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022] Open
Abstract
Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS), a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%-44% of 139 cleavages). This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%-83%) for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.
Collapse
|
20
|
Somasundaram P, Koudelka T, Linke D, Tholey A. C-Terminal Charge-Reversal Derivatization and Parallel Use of Multiple Proteases Facilitates Identification of Protein C-Termini by C-Terminomics. J Proteome Res 2016; 15:1369-78. [PMID: 26939532 DOI: 10.1021/acs.jproteome.6b00146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The identification of protein C-termini in complex proteomes is challenging due to the poor ionization efficiency of the carboxyl group. Amidating the negatively charged C-termini with ethanolamine (EA) has been suggested to improve the detection of C-terminal peptides and allows for a directed depletion of internal peptides after proteolysis using carboxyl reactive polymers. In the present study, the derivatization with N,N-dimethylethylenediamine (DMEDA) and (4-aminobutyl)guanidine (AG) leading to a positively charged C-terminus was investigated. C-terminal charge-reversed peptides showed improved coverage of b- and y-ion series in the MS/MS spectra compared to their noncharged counterparts. DMEDA-derivatized peptides resulted in many peptides with charge states of 3+, which benefited from ETD fragmentation. This makes the charge-reversal strategy particularly useful for the analysis of protein C-termini, which may also be post-translationally modified. The labeling strategy and the indirect enrichment of C-termini worked with similar efficiency for both DMEDA and EA, and their applicability was demonstrated on an E. coli proteome. Utilizing two proteases and different MS/MS activation mechanisms allowed for the identification of >400 C-termini, encompassing both canonical and truncated C-termini.
Collapse
Affiliation(s)
- Prasath Somasundaram
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| | - Tomas Koudelka
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| | - Dennis Linke
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| | - Andreas Tholey
- AG Systematische Proteomforschung & Bioanalytik, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel , Niemannsweg 11, 24105 Kiel, Germany
| |
Collapse
|
21
|
Schlage P, Kockmann T, Sabino F, Kizhakkedathu JN, Auf dem Keller U. Matrix Metalloproteinase 10 Degradomics in Keratinocytes and Epidermal Tissue Identifies Bioactive Substrates With Pleiotropic Functions. Mol Cell Proteomics 2015; 14:3234-46. [PMID: 26475864 DOI: 10.1074/mcp.m115.053520] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 01/29/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are important players in skin homeostasis, wound repair, and in the pathogenesis of skin cancer. It is now well established that most of their functions are related to processing of bioactive proteins rather than components of the extracellular matrix (ECM). MMP10 is highly expressed in keratinocytes at the wound edge and at the invasive front of tumors, but hardly any non-ECM substrates have been identified and its function in tissue repair and carcinogenesis is unclear. To better understand the role of MMP10 in the epidermis, we employed multiplexed iTRAQ-based Terminal Amine Isotopic Labeling of Substrates (TAILS) and monitored MMP10-dependent proteolysis over time in secretomes from keratinocytes. Time-resolved abundance clustering of neo-N termini classified MMP10-dependent cleavage events by efficiency and refined the MMP10 cleavage site specificity by revealing a so far unknown preference for glutamate in the P1 position. Moreover, we identified and validated the integrin alpha 6 subunit, cysteine-rich angiogenic inducer 61 and dermokine as novel direct MMP10 substrates and provide evidence for MMP10-dependent but indirect processing of phosphatidylethanolamine-binding protein 1. Finally, we sampled the epidermal proteome and degradome in unprecedented depth and confirmed MMP10-dependent processing of dermokine in vivo by TAILS analysis of epidermis from transgenic mice that overexpress a constitutively active mutant of MMP10 in basal keratinocytes. The newly identified substrates are involved in cell adhesion, migration, proliferation, and/or differentiation, indicating a contribution of MMP10 to local modulation of these processes during wound healing and cancer development. Data are available via ProteomeXchange with identifier PXD002474.
Collapse
Affiliation(s)
- Pascal Schlage
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Tobias Kockmann
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabio Sabino
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Jayachandran N Kizhakkedathu
- §University of British Columbia, Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, 4.401Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Ulrich Auf dem Keller
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland;
| |
Collapse
|
22
|
Marino G, Eckhard U, Overall CM. Protein Termini and Their Modifications Revealed by Positional Proteomics. ACS Chem Biol 2015; 10:1754-64. [PMID: 26042555 DOI: 10.1021/acschembio.5b00189] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A myriad of co- and post-translational modifications occur at protein N- and C-termini, resulting in an extra layer of proteome complexity and an additional source of protein regulation. Here, we review N- and C-terminal modifications and the contemporary positional proteomics techniques used to isolate protein terminal peptides from complex protein mixtures and characterize their diversity and occurrence in biological systems. Furthermore, these degradomics strategies--often referred to as N- and C-terminomics--represent dedicated high-throughput techniques to study proteolysis in dynamic living systems. Over the past decade, terminomics studies have provided indispensable information on the functional states of individual proteins, cell types, tissues, and biological processes and delivered fundamental new data for the Human Proteome Project, including high confidence identifications of many so-called "missing proteins", which had not been identified by traditional proteomics analyses.
Collapse
Affiliation(s)
- Giada Marino
- Centre
for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ulrich Eckhard
- Centre
for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M. Overall
- Centre
for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department
of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Kukreja M, Shiryaev SA, Cieplak P, Muranaka N, Routenberg DA, Chernov AV, Kumar S, Remacle AG, Smith JW, Kozlov IA, Strongin AY. High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family. ACTA ACUST UNITED AC 2015; 22:1122-33. [PMID: 26256476 DOI: 10.1016/j.chembiol.2015.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Matrix metalloproteinases (MMPs) play incompletely understood roles in health and disease. Knowing the MMP cleavage preferences is essential for a better understanding of the MMP functions and design of selective inhibitors. To elucidate the cleavage preferences of MMPs, we employed a high-throughput multiplexed peptide-centric profiling technology involving the cleavage of 18,583 peptides by 18 proteinases from the main sub-groups of the MMP family. Our results enabled comparison of the MMP substrates on a global scale, leading to the most efficient and selective substrates. The data validated the accuracy of our cleavage prediction software. This software allows us and others to locate, with nearly 100% accuracy, the MMP cleavage sites in the peptide sequences. In addition to increasing our understanding of both the selectivity and the redundancy of the MMP family, our study generated a roadmap for the subsequent MMP structural-functional studies and efficient substrate and inhibitor design.
Collapse
Affiliation(s)
| | - Sergey A Shiryaev
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonu Kumar
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Igor A Kozlov
- Prognosys Biosciences Inc., San Diego, CA 92121, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Schlage P, Kockmann T, Kizhakkedathu JN, auf dem Keller U. Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS. Proteomics 2015; 15:2491-502. [PMID: 25871442 DOI: 10.1002/pmic.201400627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 11/07/2022]
Abstract
Secreted proteases act on interstitial tissue secretomes released from multiple cell types. Thus, substrate proteins might be part of higher molecular complexes constituted by many proteins with diverse and potentially unknown cellular origin. In cell culture, these may be reconstituted by mixing native secretomes from different cell types prior to incubation with a test protease. Although current degradomics techniques could identify novel substrate proteins in these complexes, all information on the cellular origin is lost. To address this limitation, we combined iTRAQ-based terminal amine isotopic labeling of substrates (iTRAQ-TAILS) with SILAC to assign proteins to a specific cell type by MS1- and their cleavage by MS2-based quantification in the same experiment. We demonstrate the power of our newly established workflow by monitoring matrix metalloproteinase (MMP) 10 dependent cleavages in mixtures from light-labeled keratinocyte and heavy-labeled fibroblast secretomes. This analysis correctly assigned extracellular matrix components, such as laminins and collagens, to their respective cellular origins and revealed their processing in an MMP10-dependent manner. Hence, our newly devised degradomics workflow facilitates deeper insight into protease activity in complex intercellular compartments such as the epidermal-dermal interface by integrating multiple modes of quantification with positional proteomics. All MS data have been deposited in the ProteomeXchange with identifier PXD001643 (http://proteomecentral.proteomexchange.org/dataset/PXD001643).
Collapse
Affiliation(s)
- Pascal Schlage
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ulrich auf dem Keller
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Proteomic approaches to uncover MMP function. Matrix Biol 2015; 44-46:232-8. [PMID: 25603365 DOI: 10.1016/j.matbio.2015.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/30/2022]
Abstract
Proteomics has revolutionized protease research and particularly contributed to the identification of novel substrates and their sites of cleavage as key determinants of protease function. New technologies and rapid advancements in development of powerful mass spectrometers allowed unprecedented insights into activities of matrix metalloproteinases (MMPs) within their complex extracellular environments. Mass spectrometry-based proteomics extended our knowledge on MMP cleavage specificities and will help to develop more specific inhibitors as new therapeutics. Quantitative proteomics and N-terminal enrichment strategies have revealed numerous novel MMP substrates and shed light on their modes of action in vitro and in vivo. In this review, we provide an overview of current proteomic technologies in protease research and their application to the functional characterization of MMPs.
Collapse
|
26
|
Kraya AA, Piao S, Xu X, Zhang G, Herlyn M, Gimotty P, Levine B, Amaravadi RK, Speicher DW. Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy 2015; 11:60-74. [PMID: 25484078 PMCID: PMC4502670 DOI: 10.4161/15548627.2014.984273] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 01/15/2023] Open
Abstract
Macroautophagy, a catabolic process of cellular self-digestion, is an important tumor cell survival mechanism and a potential target in antineoplastic therapies. Recent discoveries have implicated autophagy in the cellular secretory process, but potential roles of autophagy-mediated secretion in modifying the tumor microenvironment are poorly understood. Furthermore, efforts to inhibit autophagy in clinical trials have been hampered by suboptimal methods to quantitatively measure tumor autophagy levels. Here, we leveraged the autophagy-based involvement in cellular secretion to identify shed proteins associated with autophagy levels in melanoma. The secretome of low-autophagy WM793 melanoma cells was compared to its highly autophagic metastatic derivative, 1205Lu in physiological 3-dimensional cell culture using quantitative proteomics. These comparisons identified candidate autophagy biomarkers IL1B (interleukin 1, β), CXCL8 (chemokine (C-X-C motif) ligand 8), LIF (leukemia inhibitory factor), FAM3C (family with sequence similarity 3, member C), and DKK3 (dickkopf WNT signaling pathway inhibitor 3) with known roles in inflammation and tumorigenesis, and these proteins were subsequently shown to be elevated in supernatants of an independent panel of high-autophagy melanoma cell lines. Secretion levels of these proteins increased when low-autophagy melanoma cells were treated with the autophagy-inducing tat-BECN1 (Beclin 1) peptide and decreased when ATG7 (autophagy-related 7) was silenced in high-autophagy cells, thereby supporting a mechanistic link between these secreted proteins and autophagy. In addition, serum from metastatic melanoma patients with high tumor autophagy levels exhibited higher levels of these proteins than serum from patients with low-autophagy tumors. These results suggest that autophagy-related secretion affects the tumor microenvironment and measurement of autophagy-associated secreted proteins in plasma and possibly in tumors can serve as surrogates for intracellular autophagy dynamics in tumor cells.
Collapse
Key Words
- ATG5, autophagy-related 5
- ATG7, autophagy-related 7
- AV, autophagic vacuole
- BECN1, Beclin 1, autophagy-related
- CXCL8, chemokine (C-X-C motif) ligand 8
- DKK3, dickkopf WNT signaling pathway inhibitor 3
- EGF, epidermal growth factor
- IF, interstitial fluid
- IL1B, interleukin 1, β
- LC3/MAP1LC3, microtubule-associated protein 1 light chain 3
- LIF, leukemia inhibitory factor
- M, media
- PtdIns3K, phosphatidylinositol 3-kinase
- SAM, significance analysis of microarrays
- autophagy
- biomarker
- cancer
- melanoma
- secretome
Collapse
Affiliation(s)
- Adam A. Kraya
- Center for Systems and Computational Biology; The Wistar Institute; Philadelphia, PA USA
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
- Biochemistry and Molecular Biophysics; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | - Shengfu Piao
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
| | - Phyllis Gimotty
- Department of Biostatistics and Epidemiology; University of Pennsylvania; Philadelphia, PA USA
| | - Beth Levine
- Department of Internal Medicine and Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - David W Speicher
- Center for Systems and Computational Biology; The Wistar Institute; Philadelphia, PA USA
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
- Biochemistry and Molecular Biophysics; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| |
Collapse
|
27
|
Identification of Protease Substrates in Complex Proteomes by iTRAQ-TAILS on a Thermo Q Exactive Instrument. ANALYSIS OF POST-TRANSLATIONAL MODIFICATIONS AND PROTEOLYSIS IN NEUROSCIENCE 2015. [DOI: 10.1007/7657_2015_92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Sabino F, Hermes O, Egli FE, Kockmann T, Schlage P, Croizat P, Kizhakkedathu JN, Smola H, auf dem Keller U. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates. Mol Cell Proteomics 2014; 14:354-70. [PMID: 25516628 DOI: 10.1074/mcp.m114.043414] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteases control complex tissue responses by modulating inflammation, cell proliferation and migration, and matrix remodeling. All these processes are orchestrated in cutaneous wound healing to restore the skin's barrier function upon injury. Altered protease activity has been implicated in the pathogenesis of healing impairments, and proteases are important targets in diagnosis and therapy of this pathology. Global assessment of proteolysis at critical turning points after injury will define crucial events in acute healing that might be disturbed in healing disorders. As optimal biospecimens, wound exudates contain an ideal proteome to detect extracellular proteolytic events, are noninvasively accessible, and can be collected at multiple time points along the healing process from the same wound in the clinics. In this study, we applied multiplexed Terminal Amine Isotopic Labeling of Substrates (TAILS) to globally assess proteolysis in early phases of cutaneous wound healing. By quantitative analysis of proteins and protein N termini in wound fluids from a clinically relevant pig wound model, we identified more than 650 proteins and discerned major healing phases through distinctive abundance clustering of markers of inflammation, granulation tissue formation, and re-epithelialization. TAILS revealed a high degree of proteolysis at all time points after injury by detecting almost 1300 N-terminal peptides in ∼450 proteins. Quantitative positional proteomics mapped pivotal interdependent processing events in the blood coagulation and complement cascades, temporally discerned clotting and fibrinolysis during the healing process, and detected processing of complement C3 at distinct time points after wounding and by different proteases. Exploiting data on primary cleavage specificities, we related candidate proteases to cleavage events and revealed processing of the integrin adapter protein kindlin-3 by caspase-3, generating new hypotheses for protease-substrate relations in the healing skin wound in vivo. The data have been deposited to the ProteomeXchange Consortium with identifier PXD001198.
Collapse
Affiliation(s)
- Fabio Sabino
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Olivia Hermes
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabian E Egli
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Tobias Kockmann
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Pascal Schlage
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Pierre Croizat
- §Paul Hartmann AG, Paul Hartmann Strasse 12, 89522 Heidenheim, Germany
| | - Jayachandran N Kizhakkedathu
- ¶University of British Columbia, Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Hans Smola
- §Paul Hartmann AG, Paul Hartmann Strasse 12, 89522 Heidenheim, Germany
| | - Ulrich auf dem Keller
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland;
| |
Collapse
|
29
|
Bellac CL, Dufour A, Krisinger MJ, Loonchanta A, Starr AE, Auf dem Keller U, Lange PF, Goebeler V, Kappelhoff R, Butler GS, Burtnick LD, Conway EM, Roberts CR, Overall CM. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis. Cell Rep 2014; 9:618-32. [PMID: 25310974 DOI: 10.1016/j.celrep.2014.09.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/02/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022] Open
Abstract
Resolution of inflammation reduces pathological tissue destruction and restores tissue homeostasis. Here, we used a proteomic protease substrate discovery approach, terminal amine isotopic labeling of substrates (TAILS), to analyze the role of the macrophage-specific matrix metalloproteinase-12 (MMP12) in inflammation. In murine peritonitis, MMP12 inactivates antithrombin and activates prothrombin, prolonging the activated partial thromboplastin time. Furthermore, MMP12 inactivates complement C3 to reduce complement activation and inactivates the chemoattractant anaphylatoxins C3a and C5a, whereas iC3b and C3b opsonin cleavage increases phagocytosis. Loss of these anti-inflammatory activities in collagen-induced arthritis in Mmp12(-/-) mice leads to unresolved synovitis and extensive articular inflammation. Deep articular cartilage loss is associated with massive neutrophil infiltration and abnormal DNA neutrophil extracellular traps (NETs). The NETs are rich in fibrin and extracellular actin, which TAILS identified as MMP12 substrates. Thus, macrophage MMP12 in arthritis has multiple protective roles in countering neutrophil infiltration, clearing NETs, and dampening inflammatory pathways to prepare for the resolution of inflammation.
Collapse
Affiliation(s)
- Caroline L Bellac
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Antoine Dufour
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael J Krisinger
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anantasak Loonchanta
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Amanda E Starr
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ulrich Auf dem Keller
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Philipp F Lange
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Verena Goebeler
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leslie D Burtnick
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Edward M Conway
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Clive R Roberts
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher M Overall
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
30
|
Marchant DJ, Bellac CL, Moraes TJ, Wadsworth SJ, Dufour A, Butler GS, Bilawchuk LM, Hendry RG, Robertson AG, Cheung CT, Ng J, Ang L, Luo Z, Heilbron K, Norris MJ, Duan W, Bucyk T, Karpov A, Devel L, Georgiadis D, Hegele RG, Luo H, Granville DJ, Dive V, McManus BM, Overall CM. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat Med 2014; 20:493-502. [DOI: 10.1038/nm.3508] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/12/2014] [Indexed: 02/02/2023]
|
31
|
Becker-Pauly C, Broder C, Prox J, Koudelka T, Tholey A. Mapping orphan proteases by proteomics: Meprin metalloproteases deciphered as potential therapeutic targets. Proteomics Clin Appl 2014; 8:382-8. [DOI: 10.1002/prca.201300079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/14/2013] [Accepted: 11/18/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Christoph Becker-Pauly
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Claudia Broder
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Johannes Prox
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Tomas Koudelka
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| | - Andreas Tholey
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| |
Collapse
|
32
|
Lange PF, Huesgen PF, Nguyen K, Overall CM. Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res 2014; 13:2028-44. [PMID: 24555563 PMCID: PMC3979129 DOI: 10.1021/pr401191w] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A goal of the Chromosome-centric Human Proteome Project is to identify all human protein species. With 3844 proteins annotated as "missing", this is challenging. Moreover, proteolytic processing generates new protein species with characteristic neo-N termini that are frequently accompanied by altered half-lives, function, interactions, and location. Enucleated and largely void of internal membranes and organelles, erythrocytes are simple yet proteomically challenging cells due to the high hemoglobin content and wide dynamic range of protein concentrations that impedes protein identification. Using the N-terminomics procedure TAILS, we identified 1369 human erythrocyte natural and neo-N-termini and 1234 proteins. Multiple semitryptic N-terminal peptides exhibited improved mass spectrometric identification properties versus the intact tryptic peptide enabling identification of 281 novel erythrocyte proteins and six missing proteins identified for the first time in the human proteome. With an improved bioinformatics workflow, we developed a new classification system and the Terminus Cluster Score. Thereby we described a new stabilizing N-end rule for processed protein termini, which discriminates novel protein species from degradation remnants, and identified protein domain hot spots susceptible to cleavage. Strikingly, 68% of the N-termini were within genome-encoded protein sequences, revealing alternative translation initiation sites, pervasive endoproteolytic processing, and stabilization of protein fragments in vivo. The mass spectrometry proteomics data have been deposited to ProteomeXchange with the data set identifier <PXD000434>.
Collapse
Affiliation(s)
- Philipp F Lange
- Centre for Blood Research, University of British Columbia , 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
33
|
Yan H, Hao F, Cao Q, Li J, Li N, Tian F, Bai H, Ren X, Li X, Zhang Y, Qian X. A novel method for identification and relative quantification of N-terminal peptides using metal-element-chelated tags coupled with mass spectrometry. Sci China Chem 2014. [DOI: 10.1007/s11426-013-5049-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Shahinian H, Tholen S, Schilling O. Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Rev Proteomics 2014; 10:421-33. [DOI: 10.1586/14789450.2013.841547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Schlage P, Egli FE, Nanni P, Wang LW, Kizhakkedathu JN, Apte SS, auf dem Keller U. Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome. Mol Cell Proteomics 2013; 13:580-93. [PMID: 24281761 DOI: 10.1074/mcp.m113.035139] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteolysis is an irreversible post-translational modification that affects intra- and intercellular communication by modulating the activity of bioactive mediators. Key to understanding protease function is the system-wide identification of cleavage events and their dynamics in physiological contexts. Despite recent advances in mass spectrometry-based proteomics for high-throughput substrate screening, current approaches suffer from high false positive rates and only capture single states of protease activity. Here, we present a workflow based on multiplexed terminal amine isotopic labeling of substrates for time-resolved substrate degradomics in complex proteomes. This approach significantly enhances confidence in substrate identification and categorizes cleavage events by specificity and structural accessibility of the cleavage site. We demonstrate concomitant quantification of cleavage site spanning peptides and neo-N and/or neo-C termini to estimate relative ratios of noncleaved and cleaved forms of substrate proteins. By applying this strategy to dissect the matrix metalloproteinase 10 (MMP10) substrate degradome in fibroblast secretomes, we identified the extracellular matrix protein ADAMTS-like protein 1 (ADAMTSL1) as a direct MMP10 substrate and revealed MMP10-dependent ectodomain shedding of platelet-derived growth factor receptor alpha (PDGFRα) as well as sequential processing of type I collagen. The data have been deposited to the ProteomeXchange Consortium with identifier PXD000503.
Collapse
Affiliation(s)
- Pascal Schlage
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Schafmattstr. 22, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Butler GS, Overall CM. Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontol 2000 2013; 63:123-48. [DOI: 10.1111/prd.12035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
|
37
|
Rogers LD, Overall CM. Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol Cell Proteomics 2013; 12:3532-42. [PMID: 23887885 DOI: 10.1074/mcp.m113.031310] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolytic processing is a ubiquitous and irreversible post-translational modification involving limited and highly specific hydrolysis of peptide and isopeptide bonds of a protein by a protease. Cleavage generates shorter protein chains displaying neo-N and -C termini, often with new or modified biological activities. Within the past decade, degradomics and terminomics have emerged as significant proteomics subfields dedicated to characterizing proteolysis products as well as natural protein N and C termini. Here we provide an overview of contemporary proteomics-based methods, including specific quantitation, data analysis, and curation considerations, and highlight exciting new and emerging applications within these fields enabling in vivo analysis of proteolytic events.
Collapse
Affiliation(s)
- Lindsay D Rogers
- Department of Biochemistry and Molecular Biology, Department of Oral Biological and Medical Sciences, and Centre for Blood Research, University of British Columbia, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | | |
Collapse
|
38
|
Armengaud J, Hartmann EM, Bland C. Proteogenomics for environmental microbiology. Proteomics 2013; 13:2731-42. [PMID: 23636904 DOI: 10.1002/pmic.201200576] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/06/2013] [Accepted: 04/09/2013] [Indexed: 11/09/2022]
Abstract
Proteogenomics sensu stricto refers to the use of proteomic data to refine the annotation of genomes from model organisms. Because of the limitations of automatic annotation pipelines, a relatively high number of errors occur during the structural annotation of genes coding for proteins. Whether putative orphan sequences or short genes encoding low-molecular-weight proteins really exist is still frequently a mystery. Whether start codons are well defined is also an open debate. These problems are exacerbated for genomes of microorganisms belonging to poorly documented genera, as related sequences are not always available for homology-guided annotation. The functional annotation of a significant proportion of genes is also another well-known issue when annotating environmental microorganisms. High-throughput shotgun proteomics has recently greatly evolved, allowing the exploration of the proteome from any microorganism at an unprecedented depth. The structural and functional annotation process may be usefully complemented with experimental data. Indeed, proteogenomic mapping has been successfully performed for a wide variety of organisms. Specific approaches devoted to systematically establishing the N-termini of a large set of proteins are being developed. N-terminomics is giving rise to datasets of experimentally proven translational start codons as well as validated peptide signals for secreted proteins. By extension, combining genomic and proteomic data is becoming routine in many research projects. The proteomic analysis of organisms with unfinished genome sequences, the so-called composite proteomics, and the search for microbial biomarkers by bottom-up and top-down combined approaches are some examples of proteogenomic-flavored studies. They illustrate the advent of a new era of environmental microbiology where proteomics and genomics are intimately integrated to answer key biological questions.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | | | | |
Collapse
|
39
|
Fuchs JE, von Grafenstein S, Huber RG, Margreiter MA, Spitzer GM, Wallnoefer HG, Liedl KR. Cleavage entropy as quantitative measure of protease specificity. PLoS Comput Biol 2013; 9:e1003007. [PMID: 23637583 PMCID: PMC3630115 DOI: 10.1371/journal.pcbi.1003007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/07/2013] [Indexed: 01/05/2023] Open
Abstract
A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. Proteases show a broad range of cleavage specificities. Promiscuous proteases as digestive enzymes unspecifically degrade peptides, whereas highly specific proteases are involved in signaling cascades. As a quantitative index of substrate specificity was lacking, we introduce cleavage entropy as a measure of substrate specificity of proteases. This quantitative score allows for straight-forward rationalization of substrate recognition by a subpocket-wise assessment of substrate readout leading to specificity profiles of individual proteases as well as an estimate of overall substrate promiscuity. We present an exemplary application of the descriptor ‘cleavage entropy’ to trace substrate specificity through the evolution of different protease folds. Our score highlights the diversity of substrate specificity within evolutionary related proteases and hence the complex relationship between sequence, structure and substrate recognition. By taking into account the whole distribution of known substrates rather than simple substrate counting, cleavage entropy provides the unique opportunity to dissect the molecular origins of protease substrate specificity.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Roland G. Huber
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Michael A. Margreiter
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Gudrun M. Spitzer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hannes G. Wallnoefer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
40
|
The metalloproteases meprin α and meprin β: unique enzymes in inflammation, neurodegeneration, cancer and fibrosis. Biochem J 2013; 450:253-64. [PMID: 23410038 PMCID: PMC3573791 DOI: 10.1042/bj20121751] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The metalloproteases meprin α and meprin β exhibit structural and functional features that are unique among all extracellular proteases. Although meprins were discovered more than 30 years ago, their precise substrates and physiological roles have been elusive. Both enzymes were originally found to be highly expressed in kidney and intestine, which focused research on these particular tissues and associated pathologies. Only recently it has become evident that meprins exhibit a much broader expression pattern, implicating functions in angiogenesis, cancer, inflammation, fibrosis and neurodegenerative diseases. Different animal models, as well as proteomics approaches for the identification of protease substrates, have helped to reveal more precise molecular signalling events mediated by meprin activity, such as activation and release of pro-inflammatory cytokines. APP (amyloid precursor protein) is cleaved by meprin β in vivo, reminiscent of the β-secretase BACE1 (β-site APP-cleaving enzyme 1). The subsequent release of Aβ (amyloid β) peptides is thought to be the major cause of the neurodegenerative Alzheimer's disease. On the other hand, ADAM10 (a disintegrin and metalloprotease domain 10), which is the constitutive α-secretase, was shown to be activated by meprin β, which is itself shed from the cell surface by ADAM10. In skin, both meprins are overexpressed in fibrotic tumours, characterized by massive accumulation of fibrillar collagens. Indeed, procollagen III is processed to its mature form by meprin α and meprin β, an essential step in collagen fibril assembly. The recently solved crystal structure of meprin β and the unique cleavage specificity of these proteases identified by proteomics will help to generate specific inhibitors that could be used as therapeutics to target meprins under certain pathological conditions.
Collapse
|
41
|
Stegemann C, Didangelos A, Barallobre-Barreiro J, Langley SR, Mandal K, Jahangiri M, Mayr M. Proteomic Identification of Matrix Metalloproteinase Substrates in the Human Vasculature. ACTA ACUST UNITED AC 2013; 6:106-17. [DOI: 10.1161/circgenetics.112.964452] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Matrix metalloproteinases (MMPs) play a key role in cardiovascular disease, in particular aneurysm formation and plaque rupture. Surprisingly, little is known about MMP substrates in the vasculature.
Methods and Results—
We used a proteomics approach to identify vascular substrates for 3 MMPs, 1 of each of the 3 major classes of MMPs: Human arteries were incubated with MMP-3 (a member of stromelysins), MMP-9 (considered a gelatinase), and MMP-14 (considered a member of the collagenases and of the membrane-bound MMPs). Candidate substrates were identified by mass spectrometry based on increased release from the arterial tissue on digestion, spectral evidence for proteolytic degradation after gel separation, and identification of nontryptic cleavage sites. Using this approach, novel candidates were identified, including extracellular matrix proteins associated with the basement membrane, elastic fibers (emilin-1), and other extracellular proteins (periostin, tenascin-X). Seventy-four nontryptic cleavage sites were detected, many of which were shared among different MMPs. The proteomics findings were validated by immunoblotting and by digesting recombinant/purified proteins with exogenous MMPs. As proof-of-principle, results were related to in vivo pathology by searching for corresponding degradation products in human aortic tissue with different levels of endogenous MMP-9.
Conclusions—
The application of proteomics to identify MMP targets is a new frontier in cardiovascular research. Our current classification of MMPs based on few substrates is an oversimplification of a complex area of biology. This study provides a more comprehensive assessment of potential MMP substrates in the vasculature and represents a valuable resource for future investigations.
Collapse
Affiliation(s)
- Christin Stegemann
- From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.)
| | - Athanasios Didangelos
- From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.)
| | - Javier Barallobre-Barreiro
- From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.)
| | - Sarah R. Langley
- From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.)
| | - Kaushik Mandal
- From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.)
| | - Marjan Jahangiri
- From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.)
| | - Manuel Mayr
- From the King’s British Heart Foundation Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); The James Black Centre, King’s College London, London, United Kingdom (C.S., A.D., J.B.-B., S.L., M.M.); Division of Cardiac Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD (K.M.); and Department of Cardiac Surgery, St. George’s Healthcare NHS Trust, London, United Kingdom (M.J.)
| |
Collapse
|
42
|
Lange PF, Overall CM. Protein TAILS: when termini tell tales of proteolysis and function. Curr Opin Chem Biol 2013; 17:73-82. [DOI: 10.1016/j.cbpa.2012.11.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
43
|
auf dem Keller U, Prudova A, Eckhard U, Fingleton B, Overall CM. Systems-level analysis of proteolytic events in increased vascular permeability and complement activation in skin inflammation. Sci Signal 2013; 6:rs2. [PMID: 23322905 DOI: 10.1126/scisignal.2003512] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During inflammation, vascular permeability is increased by various proteolytic events, such as the generation of bradykinin, that augment local tissue responses by enabling tissue penetration of serum proteins, including complement and acute-phase proteins. Proteases also govern inflammatory responses by processing extracellular matrix proteins and soluble bioactive mediators. We quantified changes in the proteome and the nature of protein amino termini (the N-terminome) and the altered abundance of murine proteases and inhibitors during skin inflammation. Through analysis of the N-terminome by iTRAQ-TAILS, we identified cotranslational and posttranslational αN-acetylation motifs, quantitative increases in protein abundance, and qualitative changes in the proteolytic signature during inflammation. Of the proteins identified in normal skin, about half were cleaved, and phorbol ester-induced inflammation increased the proportion of cleaved proteins, including chemokines and complement proteins, that were processed at previously uncharacterized sites. In response to phorbol ester-induced inflammation, mice deficient in matrix metalloproteinase 2 (MMP2) showed reduced accumulation of serum proteins in the skin and exhibited different proteolytic networks from those of wild-type mice. We found that the complement 1 (C1) inhibitor attenuated the increase in serum protein accumulation in inflamed skin. Cleavage and inactivation of the C1 inhibitor by MMP2 increased complement activation and bradykinin generation in wild-type mice, leading to increased vessel permeability during inflammation, which was diminished in Mmp2(-/-) mice. Thus, our systems-level analysis of proteolysis dissected cleavage events associated with skin inflammation and demonstrated that loss of a single protease could perturb the proteolytic signaling network and enhance inflammation.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- Department of Oral Biological and Medical Sciences, 4.401 Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
44
|
Abstract
Mass spectrometry (MS) analysis of peptides and proteins has evolved dramatically over the last 20 years. Improvement of MS instrumentation, computational data analysis, and the availability of complete sequence databases for many species have made large-scale proteomics analyses possible. The measurement of global protein abundance by quantitative mass spectrometry has the potential to increase both speed and impact of biological and clinical research. However, to be able to detect and identify potential biomarkers, reproducible and accurate quantification is essential. The following chapter describes how to perform quantitative protein profiling using stable isotope labeling methods. Throughout, there is a focus on guidance in selection of an appropriate labeling strategy. With that in mind, we have included a section on acquisition and understanding of the liquid chromatography-mass spectrometry (LC-MS) data format. Further, we describe the different stable isotope labeling methods and their pros and cons. We start by giving an overview of the overall quantitative proteomics workflow in which extracting relevant biological information from the acquired data is the ultimate goal.
Collapse
Affiliation(s)
- Johan Lengqvist
- Biopharmaceutical Research Unit, Department of Protein Science, Novo Nordisk A/S, Måløv, Denmark
| | | |
Collapse
|
45
|
Jefferson T, Auf dem Keller U, Bellac C, Metz VV, Broder C, Hedrich J, Ohler A, Maier W, Magdolen V, Sterchi E, Bond JS, Jayakumar A, Traupe H, Chalaris A, Rose-John S, Pietrzik CU, Postina R, Overall CM, Becker-Pauly C. The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin β and ADAM10. Cell Mol Life Sci 2012; 70:309-33. [PMID: 22940918 PMCID: PMC3535375 DOI: 10.1007/s00018-012-1106-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023]
Abstract
The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.
Collapse
Affiliation(s)
- Tamara Jefferson
- Institute of Biochemistry, Christian-Albrechts-University, 24118, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Laurent‐Matha V, Huesgen PF, Masson O, Derocq D, Prébois C, Gary‐Bobo M, Lecaille F, Rebière B, Meurice G, Oréar C, Hollingsworth RE, Abrahamson M, Lalmanach G, Overall CM, Liaudet‐Coopman E. Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB J 2012; 26:5172-81. [DOI: 10.1096/fj.12-205229] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valérie Laurent‐Matha
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896, Université Montpellier1MontpellierFrance
- Centre Régional de Lutte Contre le Cancer (CRLC) Val d'Aurelle Paul LamarqueMontpellierFrance
| | - Pitter F. Huesgen
- Centre for Blood ResearchUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Olivier Masson
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896, Université Montpellier1MontpellierFrance
- Centre Régional de Lutte Contre le Cancer (CRLC) Val d'Aurelle Paul LamarqueMontpellierFrance
| | - Danielle Derocq
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896, Université Montpellier1MontpellierFrance
- Centre Régional de Lutte Contre le Cancer (CRLC) Val d'Aurelle Paul LamarqueMontpellierFrance
| | - Christine Prébois
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896, Université Montpellier1MontpellierFrance
- Centre Régional de Lutte Contre le Cancer (CRLC) Val d'Aurelle Paul LamarqueMontpellierFrance
| | - Magali Gary‐Bobo
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896, Université Montpellier1MontpellierFrance
- Centre Régional de Lutte Contre le Cancer (CRLC) Val d'Aurelle Paul LamarqueMontpellierFrance
| | - Fabien Lecaille
- INSERM U1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Faculté de MédecineUniversité François RabelaisToursFrance
| | - Bertrand Rebière
- Centre de Recherche de Biochimie Macromoléculaire (CRBM)Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5237MontpellierFrance
| | | | - Cédric Oréar
- Functional Genomic PlatformInstitut Gustave RoussyVillejuifFrance
| | | | - Magnus Abrahamson
- Department of Laboratory Medicine, Division of Clinical ChemistryLund UniversityUniversity HospitalLundSweden
| | - Gilles Lalmanach
- INSERM U1100, Pathologies Respiratoires: Protéolyse et Aérosolthérapie, Faculté de MédecineUniversité François RabelaisToursFrance
| | | | - Emmanuelle Liaudet‐Coopman
- Institut de Recherche en Cancérologie de Montpellier (IRCM)Institut National de la Santé et de la Recherche Médicale (INSERM) U896, Université Montpellier1MontpellierFrance
- Centre Régional de Lutte Contre le Cancer (CRLC) Val d'Aurelle Paul LamarqueMontpellierFrance
| |
Collapse
|
47
|
Mommen GPM, van de Waterbeemd B, Meiring HD, Kersten G, Heck AJR, de Jong APJM. Unbiased selective isolation of protein N-terminal peptides from complex proteome samples using phospho tagging (PTAG) and TiO(2)-based depletion. Mol Cell Proteomics 2012; 11:832-42. [PMID: 22729381 DOI: 10.1074/mcp.o112.018283] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A positional proteomics strategy for global N-proteome analysis is presented based on phospho tagging (PTAG) of internal peptides followed by depletion by titanium dioxide (TiO(2)) affinity chromatography. Therefore, N-terminal and lysine amino groups are initially completely dimethylated with formaldehyde at the protein level, after which the proteins are digested and the newly formed internal peptides modified with the PTAG reagent glyceraldhyde-3-phosphate in nearly perfect yields (> 99%). The resulting phosphopeptides are depleted through binding onto TiO(2), keeping exclusively a set of N-acetylated and/or N-dimethylated terminal peptides for analysis by liquid chromatography-tandem MS. Analysis of peptides derivatized with differentially labeled isotopic analogs of the PTAG reagent revealed a high depletion efficiency (> 95%). The method enabled identification of 753 unique N-terminal peptides (428 proteins) in N. meningitidis and 928 unique N-terminal peptides (572 proteins) in S. cerevisiae. These included verified neo-N termini from subcellular-relocalized membrane and mitochondrial proteins. The presented PTAG approach is therefore a novel, versatile, and robust method for mass spectrometry-based N-proteome analysis and identification of protease-generated cleavage products.
Collapse
Affiliation(s)
- Geert P M Mommen
- Unit Vaccinology, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Huesgen PF, Overall CM. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. PHYSIOLOGIA PLANTARUM 2012; 145:5-17. [PMID: 22023699 DOI: 10.1111/j.1399-3054.2011.01536.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proteolysis is an irreversible post-translational modification that regulates many intra- and intercellular processes, including essential go/no-go decisions during cell proliferation, development and cell death. Hundreds of protease-coding genes have been identified in plants, but few have been linked to specific substrates. Conversely, proteolytic processes are frequently observed in plant biology but rarely have they been ascribed to specific proteases. In mammalian systems, unbiased system-wide proteomics analyses of protease activities have recently been tremendously successful in the identification of protease substrate repertoires, also known as substrate degradomes. Knowledge of the substrate degradome is key to understand the role of proteases in vivo. Quantitative shotgun proteomic studies have been successful in identifying protease substrates, but while simple to perform they are biased toward abundant proteins and do not reveal precise cleavage sites. Current degradomics techniques overcome these limitations by focusing on the information-rich amino- and carboxy-terminal peptides of the original mature proteins and the protease-generated neo-termini. Targeted quantitative analysis of protein termini identifies precise cleavage sites in protease substrates with exquisite sensitivity and dynamic range in in vitro and in vivo systems. This review provides an overview of state-of-the-art methods for enrichment of protein terminal peptides, and their application to protease research. These emerging degradomics techniques promise to clarify the elusive biological roles of proteases and proteolysis in plants.
Collapse
Affiliation(s)
- Pitter F Huesgen
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
49
|
Cardoza JD, Parikh JR, Ficarro SB, Marto JA. Mass spectrometry-based proteomics: qualitative identification to activity-based protein profiling. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2012; 4:141-62. [PMID: 22231900 PMCID: PMC3288153 DOI: 10.1002/wsbm.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mass spectrometry has become the method of choice for proteome characterization, including multicomponent protein complexes (typically tens to hundreds of proteins) and total protein expression (up to tens of thousands of proteins), in biological samples. Qualitative sequence assignment based on MS/MS spectra is relatively well-defined, while statistical metrics for relative quantification have not completely stabilized. Nonetheless, proteomics studies have progressed to the point whereby various gene-, pathway-, or network-oriented computational frameworks may be used to place mass spectrometry data into biological context. Despite this progress, the dynamic range of protein expression remains a significant hurdle, and impedes comprehensive proteome analysis. Methods designed to enrich specific protein classes have emerged as an effective means to characterize enzymes or other catalytically active proteins that are otherwise difficult to detect in typical discovery mode proteomics experiments. Collectively, these approaches will facilitate identification of biomarkers and pathways relevant to diagnosis and treatment of human disease.
Collapse
Affiliation(s)
- Job D. Cardoza
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jignesh R. Parikh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Bioinformatics Program, Boston University, Boston, MA 02115
| | - Scott B. Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jarrod A. Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
50
|
Starr AE, Bellac CL, Dufour A, Goebeler V, Overall CM. Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. J Biol Chem 2012; 287:13382-95. [PMID: 22367194 PMCID: PMC3339980 DOI: 10.1074/jbc.m111.314179] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutrophil-specific protease membrane-type 6 matrix metalloproteinase (MT6-MMP)/MMP-25/leukolysin is implicated in multiple sclerosis and cancer yet remains poorly characterized. To characterize the biological roles of MT6-MMP, it is critical to identify its substrates for which only seven are currently known. Here, we biochemically characterized MT6-MMP, profiled its tissue inhibitor of metalloproteinase inhibitory spectrum, performed degradomics analyses, and screened 26 chemokines for cleavage using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. MT6-MMP processes seven each of the CXC and CC chemokine subfamilies. Notably, cleavage of the neutrophil chemoattractant CXCL5 activates the chemokine, thereby increasing its agonist activity, indicating a feed-forward mechanism for neutrophil recruitment. Likewise, cleavage also activated CCL15 and CCL23 to increase monocyte recruitment. Utilizing the proteomics approach proteomic identification of cleavage site specificity (PICS), we identified 286 peptidic cleavage sites spanning from P6 to P6′ from which an unusual glutamate preference in P1 was identified. The degradomics screen terminal amine isotopic labeling of substrates (TAILS), which enriches for neo-N-terminal peptides of cleaved substrates, was used to identify 58 new native substrates in fibroblast secretomes after incubation with MT6-MMP. Vimentin, cystatin C, galectin-1, IGFBP-7, and secreted protein, acidic and rich in cysteine (SPARC) were among those substrates we biochemically confirmed. An extracellular “moonlighting” form of vimentin is a chemoattractant for THP-1 cells, but MT6-MMP cleavage abolished monocyte recruitment. Unexpectedly, the MT6-MMP-cleaved vimentin potently stimulated phagocytosis, which was not a property of the full-length protein. Hence, MT6-MMP regulates neutrophil and monocyte chemotaxis and by generating “eat-me” signals upon vimentin cleavage potentially increases phagocytic removal of neutrophils to resolve inflammation.
Collapse
Affiliation(s)
- Amanda E Starr
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|