1
|
Torabinavid P, Khosropanah MH, Azimzadeh A, Kajbafzadeh AM. Current strategies on kidney regeneration using tissue engineering approaches: a systematic review. BMC Nephrol 2025; 26:66. [PMID: 39934739 PMCID: PMC11816546 DOI: 10.1186/s12882-025-03968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Over the past two decades, there has been a notable rise in the number of individuals afflicted with End-Stage Renal Disease, resulting in an increased demand for renal replacement therapies. While periodic dialysis is beneficial, it can negatively impact a patient's quality of life and does not fully replicate the secretory functions of the kidneys. Additionally, the scarcity of organ donors and complications associated with organ transplants have underscored the importance of tissue engineering. Regenerative medicine is revolutionized by developing decellularized organs and tissue engineering, which is considered a cutting-edge area of study with enormous potential. Developing bioengineered kidneys using tissue engineering approaches for renal replacement therapy is promising. METHOD AND MATERIALS We aimed to systematically review the essential preclinical data to promote the translation of tissue engineering research for kidney repair from the laboratory to clinical practice. A PubMed search strategy was systematically implemented without any linguistic restrictions. The assessment focused on complete circumferential and inlay procedures, thoroughly evaluating parameters such as cell seeding, decellularization techniques, recellularization protocols, and biomaterial types. RESULTS Of the 1,484 studies retrieved from the following primary searches, 105 were included. Kidneys were harvested from eight different species. Nine studies performed kidney decellularization from discarded human kidneys. Sixty-four studies performed whole organ decellularization. Some studies used acellular scaffolds to produce hydrogels, sheets, and solutions. Decellularization is achieved through physical, chemical, or enzymatic treatment or a combination of them. Sterilization of acellular scaffolds was also thoroughly and comparatively evaluated. Lastly, different recellularization protocols and types of cells used for further cell seeding were demonstrated. CONCLUSION A comprehensive review of the existing literature about kidney tissue engineering was conducted to evaluate its effectiveness in preclinical investigations. Our findings indicate that enhancements in the design of preclinical studies are necessary to facilitate the successful translation of tissue engineering technologies into clinical applications.
Collapse
Affiliation(s)
- Parham Torabinavid
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Khosropanah
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, No. 62, Dr. Qarib's St, Keshavarz Blvd, Tehran, 14194 33151, Iran.
| |
Collapse
|
2
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
3
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Fiordalisi MF, Ferreira JR, Pinto ML, Ribeiro-Machado C, Teixeira Pinto M, Oliveira MJ, Barbosa MA, Madeira Gonçalves R, Caldeira J. The impact of matrix age on intervertebral disc regeneration. BIOMATERIALS ADVANCES 2022; 143:213192. [PMID: 36403438 DOI: 10.1016/j.bioadv.2022.213192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the lack of effective treatments for low back pain, the use of extracellular matrix (ECM)-based biomaterials have emerged with undeniable promise for IVD regeneration. Decellularized scaffolds can recreate an ideal microenvironment inducing tissue remodeling and repair. In particular, fetal tissues have a superior regenerative capacity given their ECM composition. In line with this, we unraveled age-associated alterations of the nucleus pulposus (NP) matrisome. Thus, the aim of the present work was to evaluate the impact of ECM donor age on IVD de/regeneration. Accordingly, we optimized an SDS (0.1 %, 1 h)-based decellularization protocol that preserves ECM cues in bovine NPs from different ages. After repopulation with adult NP cells, younger matrices showed the highest repopulation efficiency. Most importantly, cells seeded on younger scaffolds produced healthy ECM proteins suggesting an increased capacity to restore a functional IVD microenvironment. In vivo, only fetal matrices decreased neovessel formation, showing an anti-angiogenic potential. Our findings demonstrate that ECM donor age has a strong influence on angiogenesis and ECM de novo synthesis, opening new avenues for novel therapeutic strategies for the IVD. Additionally, more appropriate 3D models to study age-associated IVD pathology were unveiled.
Collapse
Affiliation(s)
- Morena Francesca Fiordalisi
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Rita Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Marta Laranjeiro Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal
| | - Marta Teixeira Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto 4200-135, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal; Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - Mário Adolfo Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Raquel Madeira Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Joana Caldeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Porto 4200-135, Portugal.
| |
Collapse
|
5
|
Shahraki S, Bideskan AE, Aslzare M, Tavakkoli M, Bahrami AR, Hosseinian S, Matin MM, Rad AK. Renal bioengineering with scaffolds prepared from discarded human kidneys by human mesenchymal stem cells. Life Sci 2021; 295:120167. [PMID: 34822795 DOI: 10.1016/j.lfs.2021.120167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
AIMS Regeneration of discarded human kidneys has been considered as an ideal approach to overcome organ shortage for the end-stage renal diseases (ESRDs). The aim of this study was to develop an effective method for preparation of kidney scaffolds that retain the matrix structure required for proliferation and importantly, differentiation of human adipose-derived mesenchymal stem cells (hAd-MSCs) into renal cells. MAIN METHODS we first compared two different methods using triton X-100 and sodium dodecyl sulfate (SDS) for human kidney decellularization; and characterized developed human renal extracellular matrix (ECM) scaffolds. Then, hAd-MSCs were seeded on human decellularized kidney scaffolds and cultured for up to 3 weeks. Next, viability, proliferation, and migration of seeded hAd-MSCs within the scaffolds, underwent histological and scanning electron microscopy (SEM) assessments. Moreover, differentiation of hAd-MSCs into kidney-specific cell types was examined using immunohistochemistry (IHC) staining and qRT-PCR. KEY FINDINGS Our results indicated that triton X-100 was a more effective detergent for decellularization of human kidneys compared with SDS. Moreover, attachment and proliferation of hAd-MSCs within the recellularized human kidney scaffolds, were confirmed. Seeded cells expressed epithelial and endothelial differentiation markers, and qRT-PCR results indicated increased expression of platelet and endothelial cell adhesion Molecule 1 (PECAM-1), paired box 2 (PAX2), and e-cadherine (E-CDH) as factors required for differentiation of hAd-MSCs into epithelial and endothelial cells. SIGNIFICANCE These observations indicate effectiveness of decellularization by triton X-100 to generate suitable human ECM renal scaffolds, which supported adhesion and proliferation of hAd-MSCs and could induce their differentiation towards a renal lineage.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Aslzare
- Urology and Nephrology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Tavakkoli
- Department of Urology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| | - Abolfazl Khajavi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Fetal Lung Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34582011 DOI: 10.1007/978-3-030-82735-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Lung transplantation may be considered as a final treatment option for diseases such as chronic lung disease, pulmonary hypertension, bronchopulmonary dysplasia, pulmonary fibrosis, and end-stage lung disease. The five-year survival rate of lung transplants is nearly 50%. Unfortunately, many patients will die before a suitable lung donor can be found. Importantly, the shortage of donor organs has been a significant problem in lung transplantation. The tissue engineering approach uses de- and recellularization of lung tissue to create functional lung substitutes to overcome donor lung limitations. Decellularization is hope for generating an intact ECM in the development of the engineered lung. The goal of decellularization is to prepare a suitable scaffold of lung tissue that contains an appropriate framework for the functionality of regenerated lung tissue. In this chapter, we aim to describe the decellularization protocols for lung tissue regenerative purposes.
Collapse
|
7
|
Sobreiro‐Almeida R, Quinteira R, Neves NM. Renal Regeneration: The Role of Extracellular Matrix and Current ECM-Based Tissue Engineered Strategies. Adv Healthc Mater 2021; 10:e2100160. [PMID: 34137210 DOI: 10.1002/adhm.202100160] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECM) are currently being studied as an alternative source for organ transplantation or as new solutions to treat kidney injuries, which can evolve to end-stage renal disease, a life devastating condition. This paper provides an overview on the current knowledge in kidney ECM and its usefulness on future investigations. The composition and structure of kidney ECM is herein associated with its intrinsic capacity of remodeling and repair after insult. Moreover, it provides a deeper insight on altered ECM components during disease. The use of decellularized kidney matrices is discussed in the second part of the review, with emphasis on how these matrices contribute to tissue-specific differentiation of embryonic, pluripotent, and other stem cells. The evolution on the field toward different uses of xenogeneic ECM as a biological scaffold material is discussed, namely the major outcomes on whole kidney recellularization and its in vivo implantation. At last, the recent literature on the use of processed kidney decellularized ECM to produce diverse biomaterial substrates, such as hydrogels, membranes, and bioinks are reviewed, with emphasis on future perspectives of its translation into the clinic.
Collapse
Affiliation(s)
- Rita Sobreiro‐Almeida
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Quinteira
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
8
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Shahraki S, Moghaddam Matin M, Ebrahimzadeh Bideskan A, Aslzare M, Bahrami AR, Hosseinian S, Iranpour S, Samadi Noshahr Z, Khajavi Rad A. Kidney tissue engineering using a well-preserved acellular rat kidney scaffold and mesenchymal stem cells. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:339-348. [PMID: 34815846 PMCID: PMC8576151 DOI: 10.30466/vrf.2019.104640.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/14/2019] [Indexed: 11/29/2022]
Abstract
The aim of this study was to acquire an effective method for preparation of rat decellularized kidney scaffolds capable of supporting proliferation and differentiation of human adipose tissue derived mesenchymal stem cells (AD-MSCs) into kidney cells. We compared two detergents, the sodium dodecyl sulfate (SDS) and triton X-100 for decellularization. The efficiency of these methods was assessed by Hematoxylin and Eosin (H&E), 4', 6 diamidino-2-phenylindole and immunohistochemistry (IHC) staining. In the next step, AD-MSCs were seeded into the SDS-treated scaffolds and assessed after three weeks of culture. Proliferation and differentiation of AD-MSCs into kidney-specific cell types were then analyzed by H&E and IHC staining. The histological examinations revealed that SDS was more efficient in removing kidney cells at all-time points compared to triton X-100. Also, in the SDS-treated sections the native extracellular matrix was more preserved than the triton-treated samples. Laminin was completely preserved during decellularization procedure using SDS. Cell attachment in the renal scaffold was observed after recellularization. Furthermore, differentiation of AD-MSCs into epithelial and endothelial cells was confirmed by expression of Na-K ATPase and vascular endothelial growth factor receptor 2 (VEGFR-2) in seeded rat renal scaffolds, respectively. Our findings illustrated that SDS was more effective for decellularization of rat kidney compared to triton X-100. We presented an optimized method for decellularization and recellularization of rat kidneys to create functional renal natural scaffolds. These natural scaffolds supported the growth of AD-MSCs and could also induce differentiation of these cells into epithelial and endothelial cells.
Collapse
Affiliation(s)
- Samira Shahraki
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; ,Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Maryam Moghaddam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; ,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; ,Correspondence Abolfazl Khajavi Rad. MD, PhD , Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran . E-mail: . Maryam Moghaddam Matin. PhD , Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, E-mail:
| | | | - Mohammad Aslzare
- Urology and Nephrology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; ,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; ,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Zahra Samadi Noshahr
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Abolfazl Khajavi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; ,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. ,Correspondence Abolfazl Khajavi Rad. MD, PhD , Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran . E-mail: . Maryam Moghaddam Matin. PhD , Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran, E-mail:
| |
Collapse
|
10
|
The Renal Extracellular Matrix as a Supportive Scaffold for Kidney Tissue Engineering: Progress and Future Considerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:103-118. [PMID: 34582017 DOI: 10.1007/978-3-030-82735-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During the past decades, diverse methods have been used toward renal tissue engineering in order to replace renal function. The goals of all these techniques included the recapitulation of renal filtration, re-absorptive, and secretary functions, and replacement of endocrine/metabolic activities. It is also imperative to develop a reliable, up scalable, and timely manufacturing process. Decellularization of the kidney with intact ECM is crucial for in-vivo compatibility and targeted clinical application. Contemporarily there is an increasing interest and research in the field of regenerative medicine including stem cell therapy and tissue bioengineering in search for new and reproducible sources of kidneys. In this chapter, we sought to determine the most effective method of renal decellularization and recellularization with emphasis on biologic composition and support of stem cell growth. Current barriers and limitations of bioengineered strategies will be also discussed, and strategies to overcome these are suggested.
Collapse
|
11
|
Whole Organ Engineering: Approaches, Challenges, and Future Directions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124277] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
End-stage organ failure remains a leading cause of morbidity and mortality across the globe. The only curative treatment option currently available for patients diagnosed with end-stage organ failure is organ transplantation. However, due to a critical shortage of organs, only a fraction of these patients are able to receive a viable organ transplantation. Those patients fortunate enough to receive a transplant must then be subjected to a lifelong regimen of immunosuppressant drugs. The concept of whole organ engineering offers a promising alternative to organ transplantation that overcomes these limitations. Organ engineering is a discipline that merges developmental biology, anatomy, physiology, and cellular interactions with enabling technologies such as advanced biomaterials and biofabrication to create bioartificial organs that recapitulate native organs in vivo. There have been numerous developments in bioengineering of whole organs over the past two decades. Key technological advancements include (1) methods of whole organ decellularization and recellularization, (2) three-dimensional bioprinting, (3) advanced stem cell technologies, and (4) the ability to genetically modify tissues and cells. These advancements give hope that organ engineering will become a commercial reality in the next decade. In this review article, we describe the foundational principles of whole organ engineering, discuss key technological advances, and provide an overview of current limitations and future directions.
Collapse
|
12
|
Moradi L, Mohammadi Jobania B, Jafarnezhad-Ansariha F, Ghorbani F, Esmaeil-Pour R, Majidi Zolbina M, Kajbafzadeh AM. Evaluation of different sterilization methods for decellularized kidney tissue. Tissue Cell 2020; 66:101396. [PMID: 32933719 DOI: 10.1016/j.tice.2020.101396] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
The main goal of this study was to assess the effect of different sterilization treatment for sterilization of decellularized kidney tissue. Rabbit kidneys were decellularized by the perfusion-based method using sodium dodecyl sulfate (SDS) and Triton X-100. Then, decellularized kidney slices were prepared and sterilized by an antibiotic cocktail, PAA (0.5 %, 1% and 1.5 %), 5KG γ-irradiation and 320-480 nm UV-irradiation. Histological evaluations, DNA quantification assay, MTT assay, scanning electron microscopy (SEM), mechanical test and bacterial and fungal culture tests were performed to determine the quality of decellularization and sterilization processes. The kidney slices were seeded by adipose-derived mesenchymal stem cells (ASCs) to assess the cell adhesion capability after treatment. The results of the current study indicated that PAA 0.5 % was the most efficient method to completely decontaminate rabbit decellularized kidney tissue while preserving the mechanical properties and main components of the matrix which are necessary for cell-matrix interaction and cell adhesion. The 5KG γ-irradiation was determined to be the most destructive sterilization method, with reduced the mechanical strengths as well as altered microstructure of the kidney matrix and no cell adhesion. In addition, UV-irradiation is not able to sterile the decellularized tissues. Therefore PAA 0.5 % sterilization method can be a powerful means for sterilization of biological scaffolds.
Collapse
Affiliation(s)
- Lida Moradi
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobania
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Jafarnezhad-Ansariha
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Ghorbani
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Esmaeil-Pour
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbina
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Fiordalisi M, Silva AJ, Barbosa M, Gonçalves R, Caldeira J. Decellularized Scaffolds for Intervertebral Disc Regeneration. Trends Biotechnol 2020; 38:947-951. [PMID: 32466967 DOI: 10.1016/j.tibtech.2020.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, intervertebral disc (IVD) decellularization has gained significant attention for tissue regenerative purposes as a successful therapeutic alternative for low back pain (LBP). We discuss the recent advances in IVD decellularization, repopulation, and sterilization procedures, highlighting the major challenges that need to be addressed for clinical translation.
Collapse
Affiliation(s)
- Morena Fiordalisi
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana João Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Raquel Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Joana Caldeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
14
|
Peired AJ, Mazzinghi B, De Chiara L, Guzzi F, Lasagni L, Romagnani P, Lazzeri E. Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opin Biol Ther 2020; 20:467-480. [DOI: 10.1080/14712598.2020.1709439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Benedetta Mazzinghi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Letizia De Chiara
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesco Guzzi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Wragg NM, Burke L, Wilson SL. A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. RENAL REPLACEMENT THERAPY 2019. [DOI: 10.1186/s41100-019-0218-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
17
|
Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 2017; 15:e326-e333. [PMID: 29131298 DOI: 10.5301/jabfm.5000393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Renal transplantation is currently the most effective treatment for end-stage renal disease, which represents one of the major current public health problems. However, the number of available donor kidneys is drastically insufficient to meet the demand, causing prolonged waiting lists. For this reason, tissue engineering offers great potential to increase the pool of donated organs for kidney transplantation, by way of seeding cells on supporting scaffolding material. Biological scaffolds are prepared by removing cellular components from the donor organs using a decellularization process with detergents, enzymes or other cell lysing solutions. Extracellular matrix which makes up the scaffold is critical to directing the cell attachment and to creating a suitable environment for cell survival, proliferation and differentiation. Researchers are now studying whole intact scaffolds produced from the kidneys of animals or humans without adversely affecting extracellular matrix, biological activity and mechanical integrity. The process of recellularization includes cell seeding strategies and the choice of the cell source to repopulate the scaffold. This is the most difficult phase, due to the complexity of the kidney. Indeed, no studies have provided sufficient results of complete renal scaffold repopulation and differentiation. This review summarizes the research that has been conducted to obtain decellularized kidney scaffolds and to repopulate the scaffolds, evaluating the best cell sources, the cell seeding methods and the cell differentiation in kidney scaffolds.
Collapse
|
18
|
The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Stem Cell Rev Rep 2017; 13:50-67. [PMID: 27826794 DOI: 10.1007/s12015-016-9699-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some decellularized musculoskeletal extracellular matrices (ECM)s derived from tissues such as bone, tendon and fibrocartilaginous meniscus have already been clinical use for tissue reconstruction. Repair of articular cartilage with its unique zonal ECM architecture and composition is still an unsolved problem, and the question is whether allogenic or xenogeneic decellularized cartilage ECM could serve as a biomimetic scaffold for this purpose.Hence, this survey outlines the present state of preparing decellularized cartilage ECM-derived scaffolds or composites for reconstruction of different cartilage types and of reseeding it particularly with mesenchymal stromal cells (MSCs).The preparation of natural decellularized cartilage ECM scaffolds hampers from the high density of the cartilage ECM and lacking interconnectivity of the rather small natural pores within it: the chondrocytes lacunae. Nevertheless, the reseeding of decellularized ECM scaffolds before implantation provided superior results compared with simply implanting cell-free constructs in several other tissues, but cartilage recellularization remains still challenging. Induced by cartilage ECM-derived scaffolds MSCs underwent chondrogenesis.Major problems to be addressed for the application of cell-free cartilage were discussed such as to maintain ECM structure, natural chemistry, biomechanics and to achieve a homogenous and stable cell recolonization, promote chondrogenic and prevent terminal differentiation (hypertrophy) and induce the deposition of a novel functional ECM. Some promising approaches were proposed including further processing of the decellularized ECM before recellularization of the ECM with MSCs, co-culturing of MSCs with chondrocytes and establishing bioreactor culture e.g. with mechanostimulation, flow perfusion pressure and lowered oxygen tension. Graphical Abstract Synopsis of tissue engineering approaches based on cartilage-derived ECM.
Collapse
|
19
|
Bombelli S, Meregalli C, Scalia C, Bovo G, Torsello B, De Marco S, Cadamuro M, Viganò P, Strada G, Cattoretti G, Bianchi C, Perego RA. Nephrosphere-Derived Cells Are Induced to Multilineage Differentiation when Cultured on Human Decellularized Kidney Scaffolds. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:184-195. [PMID: 29037855 DOI: 10.1016/j.ajpath.2017.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
In end-stage chronic kidney disease, the option of organ transplantation is limited because of the scarce availability of kidneys. The combination of stem cell research, regenerative medicine, and tissue engineering seems a promising approach to produce new transplantable kidneys. Currently, the possibility to repopulate naturally obtained scaffolds with cells of different sources is advancing. Our aim was to test, for the first time, whether the nephrosphere (NS) cells, composed by renal stem/progenitor-like cells, were able to repopulate different nephron portions of renal extracellular matrix scaffolds obtained after decellularization of human renal tissue slices. Our decellularization protocol enabled us to obtain a completely acellular renal scaffold while maintaining the extracellular matrix structure and composition in terms of collagen IV, laminin, and fibronectin. NS cells, cultured on decellularized renal scaffolds with basal medium, differentiated into proximal and distal tubules as well as endothelium, as highlighted by histology and by the specific expression of epithelial cytokeratin 8.18, proximal tubular CD10, distal tubular cytokeratin 7, and endothelial von Willebrand factor markers. Endothelial medium promoted the differentiation toward the endothelium, whereas epithelial medium promoted the differentiation toward the epithelium. NS cells seem to be a good tool for scaffold repopulation, paving the way for experimental investigations focused on whole-kidney reconstruction.
Collapse
Affiliation(s)
- Silvia Bombelli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Chiara Meregalli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Carla Scalia
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Giorgio Bovo
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Barbara Torsello
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | | | - Paolo Viganò
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Guido Strada
- Urology Unit, Bassini Hospital, Cinisello Balsamo, Italy
| | - Giorgio Cattoretti
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy; Anatomo-Pathology Unit, San Gerardo Hospital, Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy.
| |
Collapse
|
20
|
Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol 2017; 5:34. [PMID: 28620603 PMCID: PMC5451511 DOI: 10.3389/fbioe.2017.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol.
Collapse
Affiliation(s)
- Afrânio Côgo Destefani
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| | - Gabriela Modenesi Sirtoli
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Breno Valentim Nogueira
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| |
Collapse
|
21
|
Sánchez-Romero N, Schophuizen CM, Giménez I, Masereeuw R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur J Pharmacol 2016; 790:36-45. [DOI: 10.1016/j.ejphar.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
|
22
|
Extracellular matrix scaffolds as a platform for kidney regeneration. Eur J Pharmacol 2016; 790:21-27. [DOI: 10.1016/j.ejphar.2016.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/25/2022]
|
23
|
Timsit MO, Branchereau J, Thuret R, Kleinclauss F. [Renal transplantation in 2046: Future and perspectives]. Prog Urol 2016; 26:1132-1142. [PMID: 27665406 DOI: 10.1016/j.purol.2016.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To report major findings that may build the future of kidney transplantation. MATERIAL AND METHODS Relevant publications were identified through Medline (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) database from 1960 to 2016 using the following keywords, in association, "bio-engineering; heterotransplantation; immunomodulation; kidney; regenerative medicine; xenotransplantation". Articles were selected according to methods, language of publication and relevance. A total of 5621 articles were identified including 2264 for xenotransplantation, 1058 for regenerative medicine and 2299 for immunomodulation; after careful selection, 86 publications were eligible for our review. RESULTS Despite genetic constructs, xenotransplantation faces the inevitable obstacle of species barrier. Uncertainty regarding xenograft acceptance by recipients as well as ethical considerations due to the debatable utilization of animal lives, are major limits for its future. Regenerative medicine and tridimensional bioprinting allow successful implantation of organs. Bioengineering, using decellularized tissue matrices or synthetic scaffold, seeded with pluripotent cells and assembled using bioreactors, provide exciting results but remain far for reconstituting renal complexity and vascular patency. Immune tolerance may be achieved through a tough initial T-cell depletion or a combined haplo-identical bone marrow transplant leading to lymphohematopoietic chimerism. CONCLUSION Current researches aim to increase the pool of organs available for transplantation (xenotransplants and bio-artificial kidneys) and to increase allograft survival through the induction of immune tolerance. Reported results suggest the onset of a thrilling new era for renal transplantation providing end-stage renal disease-patients with an improved survival and quality of life.
Collapse
Affiliation(s)
- M-O Timsit
- Service d'urologie, hôpital européen Georges-Pompidou, AP-HP, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France.
| | - J Branchereau
- Service d'urologie et transplantation, CHU de Nantes, 44000 Nantes, France
| | - R Thuret
- Service d'urologie et transplantation rénale, CHU de Montpellier, 34090 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - F Kleinclauss
- Service d'urologie et transplantation rénale, CHRU de Besançon, 25000 Besançon, France; Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France
| |
Collapse
|
24
|
Paoli R, Samitier J. Mimicking the Kidney: A Key Role in Organ-on-Chip Development. MICROMACHINES 2016; 7:E126. [PMID: 30404298 PMCID: PMC6190229 DOI: 10.3390/mi7070126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022]
Abstract
Pharmaceutical drug screening and research into diseases call for significant improvement in the effectiveness of current in vitro models. Better models would reduce the likelihood of costly failures at later drug development stages, while limiting or possibly even avoiding the use of animal models. In this regard, promising advances have recently been made by the so-called "organ-on-chip" (OOC) technology. By combining cell culture with microfluidics, biomedical researchers have started to develop microengineered models of the functional units of human organs. With the capacity to mimic physiological microenvironments and vascular perfusion, OOC devices allow the reproduction of tissue- and organ-level functions. When considering drug testing, nephrotoxicity is a major cause of attrition during pre-clinical, clinical, and post-approval stages. Renal toxicity accounts for 19% of total dropouts during phase III drug evaluation-more than half the drugs abandoned because of safety concerns. Mimicking the functional unit of the kidney, namely the nephron, is therefore a crucial objective. Here we provide an extensive review of the studies focused on the development of a nephron-on-chip device.
Collapse
Affiliation(s)
- Roberto Paoli
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain.
| | - Josep Samitier
- Nanobioengineering Laboratory, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain.
- Department of Electronics, Universitat de Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
25
|
Silva AC, Rodrigues SC, Caldeira J, Nunes AM, Sampaio-Pinto V, Resende TP, Oliveira MJ, Barbosa MA, Thorsteinsdóttir S, Nascimento DS, Pinto-do-Ó P. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials 2016; 104:52-64. [PMID: 27424216 DOI: 10.1016/j.biomaterials.2016.06.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair.
Collapse
Affiliation(s)
- A C Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal; Gladstone Institutes, University of California San Francisco, San Francisco 94158, USA
| | - S C Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - J Caldeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - A M Nunes
- Centre for Ecology, Evolution and Environmental Change, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - V Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
| | - T P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - M J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - M A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
| | - S Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - D S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.
| | - P Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal; Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur. Institut Pasteur, Paris, France.
| |
Collapse
|
26
|
Attanasio C, Latancia MT, Otterbein LE, Netti PA. Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:330-40. [PMID: 26905099 DOI: 10.1089/ten.teb.2015.0467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent advances in the fields of artificial organs and regenerative medicine are now joining forces in the areas of organ transplantation and bioengineering to solve continued challenges for patients with end-stage renal disease. The waiting lists for those needing a transplant continue to exceed demand. Dialysis, while effective, brings different challenges, including quality of life and susceptibility to infection. Unfortunately, the majority of research outputs are far from delivering satisfactory solutions. Current efforts are focused on providing a self-standing device able to recapitulate kidney function. In this review, we focus on two remarkable innovations that may offer significant clinical impact in the field of renal replacement therapy: the implantable artificial renal assist device (RAD) and the transplantable bioengineered kidney. The artificial RAD strategy utilizes micromachining techniques to fabricate a biohybrid system able to mimic renal morphology and function. The current trend in kidney bioengineering exploits the structure of the native organ to produce a kidney that is ready to be transplanted. Although these two systems stem from different technological approaches, they are both designed to be implantable, long lasting, and free standing to allow patients with kidney failure to be autonomous. However, for both of them, there are relevant issues that must be addressed before translation into clinical use and these are discussed in this review.
Collapse
Affiliation(s)
- Chiara Attanasio
- 1 Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia , Napoli, Italy
| | - Marcela T Latancia
- 2 Department of Surgery, Transplant Institute , Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Leo E Otterbein
- 2 Department of Surgery, Transplant Institute , Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Paolo A Netti
- 1 Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia , Napoli, Italy
| |
Collapse
|
27
|
Godin LM, Sandri BJ, Wagner DE, Meyer CM, Price AP, Akinnola I, Weiss DJ, Panoskaltsis-Mortari A. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice. PLoS One 2016; 11:e0150966. [PMID: 26954258 PMCID: PMC4783067 DOI: 10.1371/journal.pone.0150966] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.
Collapse
Affiliation(s)
- Lindsay M. Godin
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian J. Sandri
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Darcy E. Wagner
- Department of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Carolyn M. Meyer
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Andrew P. Price
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Ifeolu Akinnola
- MSTP Program, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
28
|
3D Printing of Organs for Transplantation: Where Are We and Where Are We Heading? CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0089-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Lin YQ, Wang LR, Pan LL, Wang H, Zhu GQ, Liu WY, Wang JT, Braddock M, Zheng MH. Kidney bioengineering in regenerative medicine: An emerging therapy for kidney disease. Cytotherapy 2016; 18:186-197. [PMID: 26596504 DOI: 10.1016/j.jcyt.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
The prevalence of end-stage renal disease is emerging as a serious worldwide public health problem because of the shortage of donor organs and the need to take lifelong immunosuppressive medication in patients who receive a transplanted kidney. Recently, tissue bioengineering of decellularization and recellularization scaffolds has emerged as a novel strategy for organ regeneration, and we review the critical technologies supporting these methods. We present a summary of factors associated with experimental protocols that may shed light on the future development of kidney bioengineering and we discuss the cell sources and bioreactor techniques applied to the recellularization process. Finally, we review some artificial renal engineering technologies and their future prospects, such as kidney on a chip and the application of three-dimensional and four-dimensional printing in kidney tissue engineering.
Collapse
Affiliation(s)
- Yi-Qian Lin
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Renji School of Wenzhou Medical University, Wenzhou, China
| | - Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang-Liang Pan
- School of Laboratory and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Qi Zhu
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Tao Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Martin Braddock
- Global Medicines Development, AstraZeneca R&D, Alderley Park, United Kingdom
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
30
|
Petrosyan A, Zanusso I, Lavarreda-Pearce M, Leslie S, Sedrakyan S, De Filippo RE, Orlando G, Da Sacco S, Perin L. Decellularized Renal Matrix and Regenerative Medicine of the Kidney: A Different Point of View. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:183-92. [PMID: 26653996 DOI: 10.1089/ten.teb.2015.0368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past years, extracellular matrix (ECM) obtained from whole organ decellularization has been investigated as a platform for organ engineering. The ECM is composed of fibrous and nonfibrous molecules providing structural and biochemical support to the surrounding cells. Multiple decellularization techniques, including ours, have been optimized to maintain the composition, microstructure, and biomechanical properties of the native renal ECM that are difficult to obtain during the generation of synthetic substrates. There are evidences suggesting that in vivo implanted renal ECM has the capacity to induce formation of vasculature-like structures, but long-term in vivo transplantation and filtration activity by these tissue-engineered constructs have not been investigated or reported. Therefore, even if the process of renal decellularization is possible, the repopulation of the renal matrix with functional renal cell types is still very challenging. This review aims to summarize the current reports on kidney tissue engineering with the use of decellularized matrices and addresses the challenges in creating functional kidney units. Finally, this review discusses how future studies investigating cell-matrix interaction may aid the generation of a functional renal unit that would be transplantable into patients one day.
Collapse
Affiliation(s)
- Astgik Petrosyan
- 1 Department of Development, Stem Cells and Regenerative Medicine, University of Southern California , Los Angeles, California
| | - Ilenia Zanusso
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | | | - Scott Leslie
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Sargis Sedrakyan
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Roger E De Filippo
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Giuseppe Orlando
- 3 Department of General Surgery, Wake Forest School of Medicine , Winston Salem, North Carolina
| | - Stefano Da Sacco
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| | - Laura Perin
- 2 Department of Urology, Children's Hospital Los Angeles , Los Angeles, California
| |
Collapse
|
31
|
Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater 2016; 29:52-61. [PMID: 26596567 DOI: 10.1016/j.actbio.2015.11.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/23/2022]
Abstract
The only definitive treatment for end stage renal disease is renal transplantation, however the current shortage of organ donors has resulted in a long list of patients awaiting transplant. Whole organ engineering based on decellularization/recellularization techniques has provided the possibility of creating engineered kidney constructs as an alternative to donor organ transplantation. Previous studies have demonstrated that small units of engineered kidney are able to maintain function in vivo. However, an engineered kidney with sufficient functional capacity to replace normal renal function has not yet been developed. One obstacle in the generation of such an organ is the development of effective cell seeding methods for robust colonization of engineered kidney scaffolds. We have developed cell culture methods that allow primary porcine renal cells to be efficiently expanded while maintaining normal renal phenotype. We have also established an effective cell seeding method for the repopulation of acellular porcine renal scaffolds. Histological and immunohistochemical analyses demonstrate that a majority of the expanded cells are proximal tubular cells, and the seeded cells formed tubule-like structures that express normal renal tubule phenotypic markers. Functional analysis revealed that cells within the kidney construct demonstrated normal renal functions such as re-adsorption of sodium and protein, hydrolase activity, and production of erythropoietin. These structural and functional outcomes suggest that engineered kidney scaffolds may offer an alternative to donor organ transplant. STATEMENT OF SIGNIFICANCE Kidney transplantation is the only definitive treatment for end stage renal disease, however the current shortage of organ donors has limited the treatment. Whole organ engineering based on decellularization/recellularization techniques has provided the possibility of creating engineered kidney constructs as an alternative to donor organ transplantation. While previous studies have shown that small units of engineered kidneys are able to maintain function in animal studies, engineering of kidneys with sufficient functional capacity to replace normal renal function is still challenging due to inefficient cell seeding methods. This study aims to establish an effective cell seeding method using pig kidney cells for the repopulation of acellular porcine kidney scaffolds, suggesting that engineered kidneys may offer an alternative to donor organ transplant.
Collapse
|
32
|
Batchelder CA, Martinez ML, Tarantal AF. Natural Scaffolds for Renal Differentiation of Human Embryonic Stem Cells for Kidney Tissue Engineering. PLoS One 2015; 10:e0143849. [PMID: 26645109 PMCID: PMC4672934 DOI: 10.1371/journal.pone.0143849] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/01/2023] Open
Abstract
Despite the enthusiasm for bioengineering of functional renal tissues for transplantation, many obstacles remain before the potential of this technology can be realized in a clinical setting. Viable tissue engineering strategies for the kidney require identification of the necessary cell populations, efficient scaffolds, and the 3D culture conditions to develop and support the unique architecture and physiological function of this vital organ. Our studies have previously demonstrated that decellularized sections of rhesus monkey kidneys of all age groups provide a natural extracellular matrix (ECM) with sufficient structural properties with spatial and organizational influences on human embryonic stem cell (hESC) migration and differentiation. To further explore the use of decellularized natural kidney scaffolds for renal tissue engineering, pluripotent hESC were seeded in whole- or on sections of kidney ECM and cell migration and phenotype compared with the established differentiation assays for hESC. Results of qPCR and immunohistochemical analyses demonstrated upregulation of renal lineage markers when hESC were cultured in decellularized scaffolds without cytokine or growth factor stimulation, suggesting a role for the ECM in directing renal lineage differentiation. hESC were also differentiated with growth factors and compared when seeded on renal ECM or a new biologically inert polysaccharide scaffold for further maturation. Renal lineage markers were progressively upregulated over time on both scaffolds and hESC were shown to express signature genes of renal progenitor, proximal tubule, endothelial, and collecting duct populations. These findings suggest that natural scaffolds enhance expression of renal lineage markers particularly when compared to embryoid body culture. The results of these studies show the capabilities of a novel polysaccharide scaffold to aid in defining a protocol for renal progenitor differentiation from hESC, and advance the promise of tissue engineering as a source of functional kidney tissue.
Collapse
Affiliation(s)
- Cynthia A. Batchelder
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Michele L. Martinez
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Alice F. Tarantal
- California National Primate Research Center, University of California, Davis, California, United States of America
- Department of Pediatrics, School of Medicine, University of California, Davis, California, United States of America
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Peloso A, Petrosyan A, Da Sacco S, Booth C, Zambon JP, OʼBrien T, Aardema C, Robertson J, De Filippo RE, Soker S, Stratta RJ, Perin L, Orlando G. Renal Extracellular Matrix Scaffolds From Discarded Kidneys Maintain Glomerular Morphometry and Vascular Resilience and Retains Critical Growth Factors. Transplantation 2015; 99:1807-16. [PMID: 26018349 DOI: 10.1097/tp.0000000000000811] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extracellular matrix (ECM) scaffolds, obtained through detergent-based decellularization of native kidneys, represent the most promising platform for investigations aiming at manufacturing kidneys for transplant purposes. We previously showed that decellularization of the human kidney yields renal ECM scaffolds (hrECMs) that maintain their basic molecular components, are cytocompatible, stimulate angiogenesis, and show an intact innate vasculature. However, evidence that the decellularization preserves glomerular morphometric characteristics, physiological parameters (pressures and resistances of the vasculature bed), and biological properties of the renal ECM, including retention of important growth factors (GFs), is still missing. METHODS To address these issues, we studied the morphometry and resilience of hrECMs' native vasculature with resin casting at electronic microscopy and pulse-wave measurements, respectively. Moreover, we determined the fate of 40 critical GFs post decellularization with a glass chip-based multiplex enzyme-linked immunosorbent assay array and in vitro immunofluorescence. RESULTS Our method preserves the 3-dimensional conformation of the native glomerulus. Resin casting and pulse-wave measurements, showed that hrECMs preserves the microvascular morphology and morphometry, and physiological function. Moreover, GFs including vascular endothelial growth factor and its receptors are retained within the matrices. CONCLUSIONS Our results indicate that discarded human kidneys are a suitable source of renal scaffolds because they maintain a well-preserved structure and function of the vasculature, as well as GFs that are fundamental to achieve a satisfying recellularization of the scaffold in vivo due to their angiogenic properties.
Collapse
Affiliation(s)
- Andrea Peloso
- 1 Wake Forest School of Medicine, Winston Salem, NC. 2 General Surgery, Fondazione IRCCS Policlinico San Matteo Pavia and University of Pavia, Pavia, Italy. 3 GOFARR Laboratory, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA. 4 Department of Urology, University of Southern California, Los Angeles, CA. 5 Departments of Biomedical and Mechanical Engineering, Virginia Tech, Blacksburg, VA. 6 Smart Perfusion LLC, Denver, NC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lynch K, Pei M. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis 2015; 10:289-98. [PMID: 25482504 DOI: 10.4161/15476278.2014.970089] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A recent paper demonstrated that decellularized extracellular matrix (DECM) deposited by synovium-derived stem cells (SDSCs), especially from fetal donors, could rejuvenate human adult SDSCs in both proliferation and chondrogenic potential, in which expanded cells and corresponding culture substrate (such as DECM) were found to share a mutual reaction in both elasticity and protein profiles (see ref. (1) ). It seems that young DECM may assist in the development of culture strategies that optimize proliferation and maintain "stemness" of mesenchymal stem cells (MSCs), helping to overcome one of the primary difficulties in MSC-based regenerative therapies. In this paper, the effects of age on the proliferative capacity and differentiation potential of MSCs are reviewed, along with the ability of DECM from young cells to rejuvenate old cells. In an effort to highlight some of the potential molecular mechanisms responsible for this phenomenon, we discuss age-related changes to extracellular matrix (ECM)'s physical properties and chemical composition.
Collapse
Key Words
- ACAN, aggrecan
- ADSC, adipose derived mesenchymal stem cell
- ALP, alkaline phosphatase
- BMSC, bone marrow derived mesenchymal stem cell
- CBFA1, core binding factor α 1
- CFU-OB, colony forming unit of osteoblasts
- COL2A1, collagen type 2 alpha1
- DECM, decellularized extracellular matrix
- ECM, extracellular matrix
- ESC, embryonic stem cell
- FGF2, fibroblast growth factor basic
- GAG, glycosaminoglycan
- HGF, hepatocyte growth factor
- HSC, haematopoietic stem cell
- IGF-I, insulin-like growth factor I
- LOXL1, lysyl oxidase-like 1
- LPL, lipopolysaccharide
- LV, left ventricle
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cell
- ON, osteonectin
- PPARG, peroxisome proliferator active receptor gamma
- ROS, reactive oxygen species
- RUNX2, runt-related transcription factor 2
- SD, Sprague-Dawley
- SDSC, synovium derived stem cell
- SIS-ECM, small intestinal submucosa extracellular matrix
- SOX9, SRY (sex determining region-Y)-box 9
- SPARC, secreted protein, acidic and rich in cysteine
- TGFβ, transforming growth factor β
- TIMP, tissue inhibitor of metalloproteinases
- UDSC, umbilical cord derived mesenchymal stem cell
- VEGF, vascular endothelial growth factor
- aging
- differentiation
- extracellular matrix
- mRNA, mRNA
- mesenchymal stem cells
- miRNA, micro-RNA
- microenvironment
- proliferation
- tissue engineering
Collapse
Affiliation(s)
- Kevin Lynch
- a Stem Cell and Tissue Engineering Laboratory; Department of Orthopaedics ; West Virginia University ; Morgantown , WV USA
| | | |
Collapse
|
35
|
Batchelder CA, Martinez ML, Duru N, Meyers FJ, Tarantal AF. Three Dimensional Culture of Human Renal Cell Carcinoma Organoids. PLoS One 2015; 10:e0136758. [PMID: 26317980 PMCID: PMC4552551 DOI: 10.1371/journal.pone.0136758] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.
Collapse
Affiliation(s)
- Cynthia A. Batchelder
- California National Primate Research Center, University of California Davis, Davis, CA, United States of America
| | - Michele L. Martinez
- California National Primate Research Center, University of California Davis, Davis, CA, United States of America
| | - Nadire Duru
- California National Primate Research Center, University of California Davis, Davis, CA, United States of America
| | - Frederick J. Meyers
- Department of Internal Medicine, School of Medicine, University of California Davis, Davis, CA, United States of America
- Comprehensive Cancer Center, University of California Davis, Davis, CA, United States of America
| | - Alice F. Tarantal
- California National Primate Research Center, University of California Davis, Davis, CA, United States of America
- Comprehensive Cancer Center, University of California Davis, Davis, CA, United States of America
- Department of Pediatrics, School of Medicine, University of California Davis, Davis, CA, United States of America
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Çevik K, Ulusoy S. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2'-bipyridyl, lipoic, kojic and picolinic acids. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:758-63. [PMID: 26557964 PMCID: PMC4633458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. MATERIALS AND METHODS The inhibitory activity of 2,2'-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. RESULTS The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. CONCLUSION It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.
Collapse
Affiliation(s)
- Kübra Çevik
- Department of Biology, Suleyman Demirel University, 32260 Isparta, Türkiye
| | - Seyhan Ulusoy
- Department of Biology, Suleyman Demirel University, 32260 Isparta, Türkiye,Corresponding author: Seyhan Ulusoy. Department of Biology, Suleyman Demirel University, 32260 Isparta, Türkiye Tel: 0 246 211 1790; Fax: 0 246 211 1776;
| |
Collapse
|
37
|
Decellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:788-98. [PMID: 26557968 PMCID: PMC4633462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Use of biological scaffolds and automating the cells directing process with materials such as growth factors and glycosaminoglycans (GAGs) in a certain path may have beneficial effects in tissue engineering and regenerative medicine in future. In this research, chondroitin sulfate sodium was used for impregnation of the scaffolds. It is a critical component in extracellular matrix and plays an important role in signaling pathway; however, little is known about its role within mammalian development and cell linage specification. MATERIALS AND METHODS Due to its porous and appropriate structure and for putting cells in 3D space, the kidney of BALB/c mouse was selected and decellulalized using physical and chemical methods. After decellularization, the scaffold was impregnated in chondroitin sulfate solution (CS) for 24 hr. Then, 60×10(5) human adipose-derived mesenchymal stem cells were seeded on the scaffold to assess their behavior on day 5, 10, 15, 20, and 25. RESULTS After 48 hr, DAPI staining approved completed decellularized kidney by 1% SDS (sodium dodecyl sulfate). Migration and establishment of a number of cells to the remaining area of the glomerulus was observed. In addition, cell accumulation on the scaffold surface as well as cells migration to the depth of kidney formed an epithelium-like structure. Up to the day 15, microscopic study of different days of seeding showed the gradual adhesion of large number of cells to the scaffold. CONCLUSION Glycosaminoglycan could be a right option for impregnation. It is used for smartification and strengthening of natural scaffolds and induction of some behaviors in stem cells.
Collapse
|
38
|
Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 2015; 3:43. [PMID: 25870857 PMCID: PMC4378188 DOI: 10.3389/fbioe.2015.00043] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
With the advent of whole organ decellularization, extracellular matrix scaffolds suitable for organ engineering were generated from numerous tissues, including the heart, lung, liver, kidney, and pancreas, for use as alternatives to traditional organ transplantation. Biomedical researchers now face the challenge of adequately and efficiently recellularizing these organ scaffolds. Herein, an overview of whole organ decellularization and a thorough review of the current literature for whole organ recellularization are presented. The cell types, delivery methods, and bioreactors employed for recellularization are discussed along with commercial and clinical considerations, such as immunogenicity, biocompatibility, and Food and Drug Administartion regulation.
Collapse
Affiliation(s)
- Michelle E Scarritt
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA
| | - Nicholas C Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA ; Bioinnovation PhD Program, Tulane University , New Orleans, LA , USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, LA , USA ; Department of Pharmacology, Tulane University School of Medicine , New Orleans, LA , USA
| |
Collapse
|
39
|
Peloso A, Katari R, Murphy SV, Zambon JP, DeFrancesco A, Farney AC, Rogers J, Stratta RJ, Manzia TM, Orlando G. Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther 2015; 15:547-58. [PMID: 25640286 DOI: 10.1517/14712598.2015.993376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dialysis and renal transplantation are the only two therapeutic options offered to patients affected by end-stage kidney disease; however, neither treatment can be considered definitive. In fact, dialysis is able to replace only the filtration function of the kidney without substituting its endocrine and metabolic roles, and dramatically impacts on patient's quality of life. On the other hand, kidney transplantation is severely limited by the shortage of transplantable organs, the need for immunosuppressive therapies and a narrow half-life. Regenerative medicine approaches are promising tools aiming to improve this condition. AREAS COVERED Cell therapies, bioartificial kidney, organ bioengineering, 3D printer and kidney-on-chip represent the most appealing areas of research for the treatment of end-stage kidney failure. The scope of this review is to summarize the state of the art, limits and directions of each branch. EXPERT OPINION In the future, these emerging technologies could provide definitive, curative and theoretically infinite options for the treatment of end-stage kidney disease. Progress in stem cells-based therapies, decellularization techniques and the more recent scientific know-how for the use of the 3D printer and kidney-on-chip could lead to a perfect cellular-based therapy, the futuristic creation of a bioengineered kidney in the lab or to a valid bioartificial alternative.
Collapse
Affiliation(s)
- Andrea Peloso
- Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Finesilver G, Kahana M, Mitrani E. Kidney-Specific Microscaffolds and Kidney-Derived Serum-Free Conditioned Media Support In Vitro Expansion, Differentiation, and Organization of Human Embryonic Stem Cells. Tissue Eng Part C Methods 2014; 20:1003-15. [DOI: 10.1089/ten.tec.2013.0574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gershon Finesilver
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meygal Kahana
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduardo Mitrani
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
41
|
Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix. Exp Cell Res 2014; 330:311-324. [PMID: 25220424 DOI: 10.1016/j.yexcr.2014.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/20/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022]
Abstract
We have previously reported a unique response of traction force generation for cells grown on mature cardiac ECM, where traction force was constant over a range of stiffnesses. In this study we sought to further investigate the role of the complex mixture of ECM on this response and assess the potential mechanism behind it. Using traction force microscopy, we measured cellular traction forces and stresses for mesenchymal stem cells (MSCs) grown on polyacrylamide gels at a range of stiffnesses (9, 25, or 48 kPa) containing either adult rat heart ECM, different singular ECM proteins including collagen I, fibronectin, and laminin, or ECM mimics comprised of varying amounts of collagen I, fibronectin, and laminin. We also measured the expression of integrins on these different substrates as well as probed for β1 integrin binding. There was no significant change in traction force generation for cells grown on the adult ECM, as previously reported, whereas cells grown on singular ECM protein substrates had increased traction force generation with an increase in substrate stiffness. Cells grown on ECM mimics containing collagen I, fibronectin and laminin were found to be reminiscent of the traction forces generated by cells grown on native ECM. Integrin expression generally increased with increasing stiffness except for the β1 integrin, potentially implicating it as playing a role in the response to adult cardiac ECM. We inhibited binding through the β1 integrin on cells grown on the adult ECM and found that the inhibition of β1 binding led to a return to the typical response of increasing traction force generation with increasing stiffness. Our data demonstrates that cells grown on the mature cardiac ECM are able to circumvent typical stiffness related cellular behaviors, likely through β1 integrin binding to the complex composition.
Collapse
|
42
|
Abstract
One in 10 Americans suffers from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the transplantation option is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein, we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need.
Collapse
Affiliation(s)
- Maria Lucia L Madariaga
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
43
|
Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater 2014; 10:1806-16. [PMID: 24486910 DOI: 10.1016/j.actbio.2014.01.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/15/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Decades of research have been undertaken towards the goal of tissue engineering using xenogeneic scaffolds. The primary advantages associated with use of xenogeneic tissue-derived scaffolds for in vitro development of replacement tissues and organs stem from the inherent extracellular matrix (ECM) composition and architecture. Native ECM possesses appropriate mechanical properties for physiological function of the biomaterial and signals for cell binding, growth and differentiation. Additionally, xenogeneic tissue is readily available. However, translation of xenogeneic scaffold-derived engineered tissues or organs into clinical therapies requires xenoantigenicity of the material to be adequately addressed prior to implantation. Failure to achieve this goal will result in a graft-specific host immune rejection response, jeopardizing in vivo survival of the resultant scaffold, tissue or organ. This review explores (i) the appropriateness of scaffold acellularity as an outcome measure for assessing reduction of the immunological barriers to the use of xenogeneic scaffolds for tissue engineering applications and (ii) the need for tissue engineers to strive for antigen removal during xenogeneic scaffold generation.
Collapse
Affiliation(s)
- Maelene L Wong
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Department of Biomedical Engineering, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
44
|
DesRochers TM, Palma E, Kaplan DL. Tissue-engineered kidney disease models. Adv Drug Deliv Rev 2014; 69-70:67-80. [PMID: 24361391 DOI: 10.1016/j.addr.2013.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023]
Abstract
Renal disease represents a major health problem that often results in end-stage renal failure necessitating dialysis and eventually transplantation. Historically these diseases have been studied with patient observation and screening, animal models, and two-dimensional cell culture. In this review, we focus on recent advances in tissue engineered kidney disease models that have the capacity to compensate for the limitations of traditional modalities. The cells and materials utilized to develop these models are discussed and tissue engineered models of polycystic kidney disease, drug-induced nephrotoxicity, and the glomerulus are examined in detail. The application of these models has the potential to direct future disease treatments and preclinical drug development.
Collapse
|
45
|
Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater 2014; 10:194-204. [PMID: 24012606 DOI: 10.1016/j.actbio.2013.08.037] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/01/2013] [Accepted: 08/27/2013] [Indexed: 02/02/2023]
Abstract
A major limitation to cardiac tissue engineering and regenerative medicine strategies is the lack of proliferation of postnatal cardiomyocytes. The extracellular matrix (ECM) is altered during heart development, and studies suggest that it plays an important role in regulating myocyte proliferation. Here, the effects of fetal, neonatal and adult cardiac ECM on the expansion of neonatal rat ventricular cells in vitro are studied. At 24h, overall cell attachment was lowest on fetal ECM; however, ~80% of the cells were cardiomyocytes, while many non-myocytes attached to older ECM and poly-l-lysine controls. After 5 days, the cardiomyocyte population remained highest on fetal ECM, with a 4-fold increase in number. Significantly more cardiomyocytes stained positively for the mitotic marker phospho-histone H3 on fetal ECM compared with other substrates at 5 days, suggesting that proliferation may be a major mechanism of cardiomyocyte expansion on young ECM. Further study of the beneficial properties of early developmental aged cardiac ECM could advance the design of novel biomaterials aimed at promoting cardiac regeneration.
Collapse
|
46
|
Batchelder CA, Keyser JL, Lee CCI, Tarantal AF. Characterization of growth, glomerular number, and tubular proteins in the developing rhesus monkey kidney. Anat Rec (Hoboken) 2013; 296:1747-57. [PMID: 23997038 DOI: 10.1002/ar.22756] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 05/12/2013] [Indexed: 12/12/2022]
Abstract
An essential step in the translation of cell-based therapies for kidney repair involves preclinical studies in relevant animal models. Regenerative therapies in children with congenital kidney disease may provide benefit, but limited quantitative data on normal development is available to aid in identifying efficient protocols for repair. Nonhuman primates share many developmental similarities with humans and provide an important translational model for understanding nephrogenesis and morphological changes across gestation. These studies assessed monkey kidney size and weight during development and utilized stereological methods to quantitate total number of glomeruli. Immunohistochemical methods were included to identify patterns of expression of tubular proteins including Aquaporin-1 (AQP1), AQP2, Calbindin, E-Cadherin, and Uromodulin. Results have shown that glomerular number increased linearly with kidney weight, from 1.1 × 10(3) in the late first trimester to 3.5 × 10(5) near term (P < 0.001). The ratio of glomeruli to body weight tripled from the late first to early second trimester then remained relatively unchanged. Only AQP1 was expressed in the proximal tubule and descending Loop of Henle. The ascending Loop of Henle was positive for AQP2, Calbindin, and Uromodulin; distal convoluted tubules stained for Calbindin only; and collecting tubules expressed AQP2 and E-Cadherin with occasional Calbindin-positive cells. These findings provide quantitative information on normal kidney ontogeny in rhesus monkeys and further support the importance of this model for human kidney development.
Collapse
|
47
|
Gershlak JR, Resnikoff JIN, Sullivan KE, Williams C, Wang RM, Black LD. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem Biophys Res Commun 2013; 439:161-6. [PMID: 23994333 DOI: 10.1016/j.bbrc.2013.08.074] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/01/2023]
Abstract
In this study we present a novel method for studying cellular traction force generation and mechanotransduction in the context of cardiac development. Rat hearts from three distinct stage of development (fetal, neonatal and adult) were isolated, decellularized and characterized via mechanical testing and protein compositional analysis. Stiffness increased ~2-fold between fetal and neonatal time points but not between neonatal and adult. Composition of structural extracellular matrix (ECM) proteins was significantly different between all three developmental ages. ECM that was solubilized via pepsin digestion was cross-linked into polyacrylamide gels of varying stiffness and traction force microscopy was used to assess the ability of mesenchymal stem cells (MSCs) to generate traction stress against the substrates. The response to increasing stiffness was significantly different depending on the developmental age of the ECM. An investigation into early cardiac differentiation of MSCs demonstrated a dependence of the level of expression of early cardiac transcription factors on the composition of the complex ECM. In summary, this study found that complex ECM composition plays an important role in modulating a cell's ability to generate traction stress against a substrate, which is a significant component of mechanotransductive signaling.
Collapse
Affiliation(s)
- Joshua R Gershlak
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nakayama KH, Lee CCI, Batchelder CA, Tarantal AF. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One 2013; 8:e64134. [PMID: 23717553 PMCID: PMC3661477 DOI: 10.1371/journal.pone.0064134] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/11/2013] [Indexed: 12/20/2022] Open
Abstract
Initial steps in establishing an optimal strategy for functional bioengineered tissues is generation of three-dimensional constructs containing cells with the appropriate organization and phenotype. To effectively utilize rhesus monkey decellularized kidney scaffolds, these studies evaluated two key parameters: (1) residual scaffold components after decellularization including proteomics analysis, and (2) the use of undifferentiated human embryonic stem cells (hESCs) for recellularization in order to explore cellular differentiation in a tissue-specific manner. Sections of kidney and lung were selected for a comparative evaluation because of their similar pattern of organogenesis. Proteomics analysis revealed the presence of growth factors and antimicrobial proteins as well as stress proteins and complement components. Immunohistochemistry of recellularized kidney scaffolds showed the generation of Cytokeratin+ epithelial tubule phenotypes throughout the scaffold that demonstrated a statistically significant increase in expression of kidney-associated genes compared to baseline hESC gene expression. Recellularization of lung scaffolds showed that cells lined the alveolar spaces and demonstrated statistically significant upregulation of key lung-associated genes. However, overall expression of kidney and lung-associated markers was not statistically different when the kidney and lung recellularized scaffolds were compared. These results suggest that decellularized scaffolds have an intrinsic spatial ability to influence hESC differentiation by physically shaping cells into tissue-appropriate structures and phenotypes, and that additional approaches may be needed to ensure consistent recellularization throughout the matrix.
Collapse
Affiliation(s)
- Karina H. Nakayama
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - C. Chang I. Lee
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Cynthia A. Batchelder
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Alice F. Tarantal
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To briefly show which are the mechanisms and cell types involved in kidney regeneration and describe some of the therapies currently under study in regenerative medicine for kidney transplantation. RECENT FINDINGS The kidney contains cell progenitors that under specific circumstances have the ability to regenerate specific structures. Apart from the knowledge gained in the self-regenerative properties of the kidney, new concepts in regenerative medicine such as organ engineering and the use of mesenchymal stem cell-based therapies are currently the focus of attention in the field. SUMMARY Overall, kidney regeneration is a reality and the knowledge on how to control it will be one of the main scopes in the present and future.
Collapse
|
50
|
Abstract
Decellularized tissues have been successfully used in a variety of tissue engineering/regenerative medicine applications, and more recently decellularized organs have been utilized in the first stages of organ engineering. The protocols used to decellularize simple tissues versus intact organs differ greatly. Herein, the most commonly used decellularization methods for both surgical mesh materials and whole organs are described, with consideration given to how these different processes affect the extracellular matrix and the host response to the scaffold.
Collapse
Affiliation(s)
- Thomas W Gilbert
- Cardiothoracic Surgery, and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, USA.
| |
Collapse
|