1
|
Olsmats E, Rennie AR, Bonn D. What makes oil-in-water emulsions with pea protein stable? The role of excess protein in network formation and yield stress development. SOFT MATTER 2025. [PMID: 40241601 DOI: 10.1039/d5sm00082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Emulsions stabilized with pea protein exhibit enhanced stability only if excess protein is present in the continuous aqueous phase. We hypothesize that the additional protein, beyond the interfacial layer surrounding the oil droplets, is important for the emergence of a yield stress as well as for the overall stability and properties. Stable emulsions with oil concentrations of 40-60% v/v were prepared and compared to layers from various separated emulsions. Confocal microscopy visualized both the oil droplets and the protein distribution. Rheological measurements were used to assess mechanical properties and network formation. Small angle X-ray scattering provided quantitative structural information. Results identified that stable emulsions have a protein layer encapsulating the oil droplets and that excess protein forms irregular aggregates in the aqueous phase. Rheological analysis indicated that the protein aggregates contribute to network formation and give rise to a yield stress which enhances stability. Only for sufficiently high protein concentrations were the emulsions stable. Other samples separated and the upper phases were always similar in emulsion composition regardless of the initial component fractions. This study highlights the dual role of pea protein in emulsions as a dispersed protein network and as interfacial material. Determination of the most favourable emulsion composition provides insight into design of stable emulsions for applications.
Collapse
Affiliation(s)
- Eleonora Olsmats
- Macromolecular Chemistry, Department of Chemistry -Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| | - Adrian R Rennie
- Macromolecular Chemistry, Department of Chemistry -Ångström, Uppsala University, Box 538, 75121 Uppsala, Sweden.
| | - Daniel Bonn
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tang D, Zhu J, Wang H, Chen N, Wang H, Huang Y, Jiang L. Universal membranization of synthetic coacervates and biomolecular condensates towards ultrastability and spontaneous emulsification. Nat Chem 2025:10.1038/s41557-025-01800-4. [PMID: 40211087 DOI: 10.1038/s41557-025-01800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 03/10/2025] [Indexed: 04/12/2025]
Abstract
Membranization of membraneless coacervates and condensates is emerging as a promising strategy to resolve their inherent susceptibility to fusion, ripening and environmental variations. Yet current membranization agents by design are largely limited to a subclass or a specific kind of coacervate or condensate systems. Here we develop a library of condensate-amphiphilic block polymers that can efficiently form a polymeric layer on the droplet interface for a wide spectrum of synthetic coacervates and biomolecular condensates. Condensate-amphiphilic block polymers are designed with a condenophilic block firmly anchored to the condensed phase, a condenophobic block extended to the dilute phase and a self-association block to promote membrane formation. Critical to our design is the condenophilic block of phenylboronic acid and amidoamine that target the disparate chemistry of condensed droplets via multivalent affinities. The condensate-amphiphilic block polymer membranes render the droplets mechanically robust against fusion, regulate interfacial properties such as permeability and stiffness, and substantially improve droplet tolerance to challenging conditions of temperature, salinity, pH and organic solvents.
Collapse
Affiliation(s)
- Da Tang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Hao Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), State Key Laboratory of Pulp and Paper Engineering, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Liu D, Zhu Z, Cao A, Li Y, Yin Y. Asymmetric Self-Assembly of Colloidal Superstructures in Nested Transient Emulsion Aerosols. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420269. [PMID: 40195899 DOI: 10.1002/adma.202420269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Emulsions are versatile and robust platforms for colloidal self-assembly, but their ability to create complex and functional superstructures is hindered by the inherent symmetry of droplets. Here the creation of an aerosol of nested transient emulsion droplets with inherent asymmetry is reported, achieved by converging beams of water and 1-butanol mists. Self-assembly of nanoparticles occurs within such emulsion droplets as driven by the rapid two-phase interface diffusion, producing anisotropic superstructures. A unique hollowing process is observed due to the asymmetric diffusion of solvents, akin to the Kirkendall effect. This novel assembly platform offers several advantages, including asymmetric self-assembly in air, surfactant-free operation, and tunable droplet size. It enables the creation of clean, functional nanoparticle superstructures that can be easily disassembled when needed. These advancements pave the way for exploring intricate, anisotropic superstructures with diverse applications that are unavailable in conventional superstructures of spherical symmetry.
Collapse
Affiliation(s)
- Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Zhaoting Zhu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Physical Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
4
|
Kaptay G. The Generalized Phase Rule, the Extended Definition of the Degree of Freedom, the Component Rule and the Seven Independent Non-Compositional State Variables: To the 150th Anniversary of the Phase Rule of Gibbs. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6048. [PMID: 39769646 PMCID: PMC11728324 DOI: 10.3390/ma17246048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
The phase rule of Gibbs is one of the basic equations in phase equilibria. Although it has been with us for 150 years, discussions, interpretations and extensions have been published. Here, the following new content is provided: (i). the choice of independent components is discussed, and the component rule is introduced, (ii). independent state variables are divided into compositional and non-compositional ones, (iii). the generalized phase rule is derived replacing number two in the original phase rule by the number of independent non-compositional state variables introduced above, (iv). the degree of freedom is decreased by the number of compositional constraints in special points (azeotrope and congruent melting) of phase diagrams, (v). a rule is derived connecting the maximum number of coexisting phases with the dimensions of the phase diagram, (vi). examples show how to apply the phase rule to unary, binary and ternary phase diagrams and their sections, (vii). the same is extended with the discussion of calculable and not calculable phase fractions, (viii). it is shown that the current definition of the degree of freedom is not sufficient in the number of cases, (ix). the current definition of the degree of freedom is extended, (x). the application of the generalized phase rule is demonstrated when other non-compositional state variables are applied for nano-phase diagrams, and/or for phase diagrams under the influence of electric potential difference, external magnetic field, mechanical strain or the gravitational field.
Collapse
Affiliation(s)
- George Kaptay
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515 Miskolc, Hungary; ; Tel.: +36-30-415-0002
- HUN-REN-ME Materials Science Research Group, University of Miskolc, 3515 Miskolc, Hungary
| |
Collapse
|
5
|
Solis FJ, Jadhao V. Conduction in heterogeneous systems in the low-frequency regime: variational principles and boundary integral equations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:60. [PMID: 39331219 DOI: 10.1140/epje/s10189-024-00449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
The response of a homogeneous material to the presence of an external low-frequency oscillating electric field can be described by means of an effective complex conductivity. Low frequencies are characterized by negligible magnetic and radiative effects. The properties of heterogeneous systems, composed of multiple homogeneous regions, can be determined from those of the individual components and their geometric arrangement. Examples of such heterogeneous systems include soft materials such as colloidal suspensions, electrolyte systems, and biological tissues. The difference in the intrinsic conductivities between the homogeneous regions leads to the creation of an oscillating charge density localized at the interfaces between these regions. We show how to express key properties of these systems using this dynamic charge as a fundamental variable. We derive a boundary integral equation for the charges and reconstruct potentials and fields from its solution. We present a variational principle that recovers the fundamental equations for the system in terms of the oscillating charge and show that, in some formulations, the associated functional can be interpreted in terms of the power dissipated in the system. The boundary integral equations are numerically solved using a finite element method for a few illustrative cases.
Collapse
Affiliation(s)
- Francisco J Solis
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, 85306, USA.
| | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47408, USA
| |
Collapse
|
6
|
Kamp M, Sacanna S, Dullens RPA. Spearheading a new era in complex colloid synthesis with TPM and other silanes. Nat Rev Chem 2024; 8:433-453. [PMID: 38740891 DOI: 10.1038/s41570-024-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs.
Collapse
Affiliation(s)
- Marlous Kamp
- Van 't Hoff Laboratory for Physical & Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY, USA
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Zou H, Ren Y. Synthetic strategies for nonporous organosilica nanoparticles from organosilanes. NANOSCALE 2023. [PMID: 37326150 DOI: 10.1039/d3nr00791j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organosilica nanoparticles refer to silica nanoparticles containing carbon along with organic or functional groups and can be divided into mesoporous organosilica nanoparticles and nonporous organosilica nanoparticles. During the past few decades, considerable efforts have been devoted to the development of organosilica nanoparticles directly from organosilanes. However, most of the reports have focused on mesoporous organosilica nanoparticles, while relatively few are concerned with nonporous organosilica nanoparticles. The synthesis of nonporous organosilica nanoparticles typically involves (i) self-condensation of an organosilane as the single source, (ii) co-condensation of two or more types of organosilanes, (iii) co-condensation of tetraalkoxysilane and an organosilane, and (iv) spontaneous emulsification and the subsequent radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TPM). This article aims to provide a review on the synthetic strategies of this important type of colloidal particle, followed by a brief discussion on their applications and future perspectives.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Yuhang Ren
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
8
|
Ding B, Ahmadi SH, Babak P, Bryant SL, Kantzas A. On the Stability of Pickering and Classical Nanoemulsions: Theory and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6975-6991. [PMID: 37083472 DOI: 10.1021/acs.langmuir.3c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Emulsification is a crucial technique for mixing immiscible liquids into droplets in various industries, such as food, cosmetics, biomedicine, agrochemistry, and petrochemistry. Quantitative analysis of the stability is pivotal before the utilization of these emulsions. Differences in X-ray attenuation for emulsion components and surface relaxation of the droplets may contribute to X-ray CT imaging and low-field NMR spectroscopy as viable techniques to quantify emulsion stability. In this study, Pickering (stabilized solely by nanoparticles) and Classical (stabilized solely by low molecular weight polymers) nanoemulsions were prepared with a high-energy method. NMR and X-ray CT were employed to constantly monitor the two types of nanoemulsions until phase separation. The creaming rates calculated from NMR match well with the results obtained from X-ray CT. Furthermore, we show that Stokes' law coupled with the classical Lifshitz-Slyozov-Wagner theory underestimates the creaming rate of the nanoemulsions compared to the experimental results from NMR and X-ray CT imaging. A new theory is proposed by fully incorporating the effects of Pickering nanoparticles, hydrocarbon types, volume fraction, size distribution, and flocculation on the droplet coarsening. The theoretical results agree well with the experimentally measured creaming rates. It reveals that the attachment of nanoparticles onto a droplet surface decreases the mass transfer for hydrocarbon molecules to move from the bulk aqueous phase into other droplets, thus slowing the Ostwald ripening. Therefore, Pickering nanoemulsions show a better stability behavior compared to Classical nanoemulsions. The impacts of hydrocarbon and emulsification energy on the stability of nanoemulsions are reported. These findings demonstrate that the stability of the nanoemulsions can be manipulated and optimized for a specific application, setting the stage for subsequent investigations of these nanodroplets.
Collapse
Affiliation(s)
- Boxin Ding
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Reservoir Engineering Research Institute, Palo Alto, California 94301, United States
| | - Seyedeh Hannaneh Ahmadi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Petro Babak
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Southern Alberta Institute of Technology, Calgary, AB T2M 0L4, Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Canada Excellence Research Chair in Materials Engineering for Unconventional Oil Reservoirs, Calgary, AB T2N 1N4, Canada
| | - Apostolos Kantzas
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- TIPM Laboratory, PERM Inc., Calgary, AB T2E 6P2, Canada
| |
Collapse
|
9
|
Patil U, Gulzar S, Ma L, Zhang B, Benjakul S. Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods 2023; 12:foods12071556. [PMID: 37048376 PMCID: PMC10094371 DOI: 10.3390/foods12071556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A novel food-grade, particles-based Pickering emulsion (PE) was prepared from a marine source. Yellow stripe trevally is an under-utilized species. The use of its muscle protein as solid food-grade particles for the preparation of a Pickering emulsion can be a potential means of obtaining the natural nutritive emulsifier/stabilizer. Fish myofibrillar proteins (FMP) were modified with tannic acid (TA) at varying concentrations (0.125, 0.25, and 0.5%) followed by freeze-drying (FD) or spray-drying (SD). Physicochemical characteristics and emulsifying properties of obtained FMP-TA complexed particles were assessed for structural changes and oil-in-water emulsion stabilization. The addition of TA caused a reduction in surface hydrophobicity and total sulfhydryl content values for either FD-FMP or SD-FMP. Conversely, disulfide bond content was significantly increased, particularly when TA at 0.5% was used (p < 0.05). FTIR, spectrofluorometer, and the protein pattern also confirmed the cross-linking between FMP and TA. SD-FMP modified with 0.5% TA (SD-FMP-0.5TA) rendered the highest emulsifying stability index but had a lowered emulsifying activity index (p < 0.05). Confocal microscopic images, droplet size, and rheological properties revealed that a SD-FMP-0.5TA-stabilized emulsion had higher stability after 45 days of storage than an FD-FMP-0.5TA-stabilized emulsion. Therefore, the SD-FMP-0.5TA complex could be used as a potential food-grade stabilizer/emulsifier for PE with enhanced emulsifying properties.
Collapse
Affiliation(s)
- Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Ni J, Wang K, Yu D, Tan M. Pickering emulsions stabilized by Chlorella pyrenoidosa protein-chitosan complex for lutein encapsulation. Food Funct 2023; 14:2807-2821. [PMID: 36866667 DOI: 10.1039/d3fo00476g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Lutein has many physiological functions like antioxidation, anti-cancer, and anti-inflammation, which presents good potential in the development of functional food for eye protection. However, the hydrophobicity and harsh environment factors during digestive absorption process will greatly reduce lutein bioavailability. In this study, Chlorella pyrenoidosa protein-chitosan complex stabilized Pickering emulsions were prepared, and lutein was encapsulated into corn oil droplets to increase its stability and bioavailability in gastrointestinal digestion. The interaction between Chlorella pyrenoidosa protein (CP) and chitosan (CS), and the effect of chitosan concentration on the emulsifying ability of the complex and emulsion stability were studied. With the increase of CS concentration from 0% to 0.8%, the emulsion droplet size obviously decreased, and the emulsion stability and viscosity increased significantly. In particular, when the concentration was 0.8%, the emulsion system was stable at 80 °C and 400 mM sodium chloride. After ultraviolet irradiation for 48 h, the retention rate of lutein encapsulated in Pickering emulsions was 54.33%, which was significantly higher than that (30.67%) of lutein dissolved in corn oil. The retention rate of lutein in Pickering emulsions stabilized by CP-CS complex was significantly higher than that in Pickering emulsions stabilized by CP only and corn oil after heating at 90 °C for 8 h. The results of simulated gastrointestinal digestion showed that the bioavailability of lutein encapsulated in Pickering emulsions stabilized by CP-CS complex reached 44.83%. These results explored the high-value utilization of Chlorella pyrenoidosa and provided new insights into the preparation of Pickering emulsions and the protection for lutein.
Collapse
Affiliation(s)
- Jialu Ni
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
11
|
Li Z, Wu J, Wang Y, Li Y, Huang G, Fei B, Xu Z, Zhang Y, Li Y. A facile approach to obtain super-hydrophobicity for cotton fiber fabrics. RSC Adv 2023; 13:9237-9241. [PMID: 36959882 PMCID: PMC10028497 DOI: 10.1039/d2ra08189j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
It is a challenging task to directly apply emulsified silicone oil to the surface of cotton fabric to obtain superhydrophobic properties. In this work, a temperature-responsive microgel was first synthesized and the particle size and distribution of the microgel, thermo-responsiveness, and hydrophobicity of the microgel membrane were investigated. Then, through an emulsifying PMHS/water system with microgels as a Pickering emulsifier, a series of Pickering emulsions were obtained. The results showed that the emulsion had the best stability when the microgel content was 2.14 wt% and the mass ratio of PMHS/water was 3/7. The optical microscopy showed that the oil phase could be uniformly dispersed in aqueous solution, and the liquid phase particle size was about 10-22 μm. And stratification of the Pickering emulsion did not occur when placed at room temperature for over one month. Finally, when the addition of Pickering emulsion is 50 g L-1 and the rolling rate is 80%, through a simple two-dip-two-padding treatment, a cotton fabric can obtain the superhydrophobic effect with a static contact angle of 149.6° at 25 °C and 156.4° at 45 °C. The development of this work provides a simple method to make cotton fabric obtain superhydrophobic effects.
Collapse
Affiliation(s)
- Zhengrong Li
- School of Textile Materials and Engineering, Wuyi University Jiangmen 529020 China
| | - Junxin Wu
- School of Textile Materials and Engineering, Wuyi University Jiangmen 529020 China
| | - Yidi Wang
- Nano Center, Institute of Textiles & Clothing, Hong Kong Polytechnic University Hong Kong China
| | - Yuxin Li
- School of Textile Materials and Engineering, Wuyi University Jiangmen 529020 China
| | - Gang Huang
- School of Textile Materials and Engineering, Wuyi University Jiangmen 529020 China
| | - Bin Fei
- Nano Center, Institute of Textiles & Clothing, Hong Kong Polytechnic University Hong Kong China
| | - Zhixiong Xu
- CCOBATO (Dongguan) Technology, Ltd Dongguan 523000 China
| | - Yong Zhang
- CCOBATO (Dongguan) Technology, Ltd Dongguan 523000 China
| | - Yangling Li
- School of Textile Materials and Engineering, Wuyi University Jiangmen 529020 China
- CCOBATO (Dongguan) Technology, Ltd Dongguan 523000 China
| |
Collapse
|
12
|
Wang P, Wang Y, Chen C, Fu X. The stability mechanism of Pickering emulsions fabricated by multi-functional amylose-based nanoparticles in a delivery system. Food Funct 2023; 14:2338-2348. [PMID: 36825859 DOI: 10.1039/d2fo02827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, multi-functional amylose-based nanoparticles (OSA-AM-9/VE NPs) were fabricated via simple and sustainable esterification, encapsulation, and co-precipitation processes of amylose (AM), octenyl succinic anhydride (OSA), and vitamin E (VE). These nanoparticles showed a nanometer size of 243.2 nm and a regular spherical shape which contributed to their excellent physical and oxidative stability and the outstanding pH-responsive performance of a Pickering emulsion. Compared with OSA-AM-9 and OSA-AM-9 NPs, the Pickering emulsion stabilized by OSA-AM-9/VE NPs presented higher stability and stronger antioxidant capacity. The delivery system of the OSA-AM-9/VE NP stabilized emulsion could protect fish oil from gastric juice and then was digested to facilitate the absorption of ω-3 polyunsaturated fatty acids in the intestine due to the pH-induced protonation/deprotonation of carboxyl groups in OSA-AM-9/VE NPs.
Collapse
Affiliation(s)
- Pingping Wang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
| | - Yang Wang
- Logistics Management Center of Huangpu Customs, Guangzhou 510700, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
13
|
Rawal K, Annamalai PK, Bhandari B, Prakash S. Oat flour as a novel stabiliser for designing plant-based Pickering emulsion. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Meng X, Qiu D. Surface morphology regulation of colloidal Nanoparticles: A convenient Kinetically-Controlled seeded growth strategy. J Colloid Interface Sci 2023; 633:284-290. [PMID: 36459933 DOI: 10.1016/j.jcis.2022.11.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Except for chemical composition, surface morphology may endue colloidal nanoparticles with special interfacial behaviors, which is highly desired in certain scenarios, for example, ultra-stable Pickering emulsion for pharmaceutical applications where only limited chemicals are allowed. Herein, silica colloidal nanoparticle was chosen as a demo to illustrate a kinetically-controlled seeded growth strategy for the surface morphology regulation of colloidal nanoparticles. EXPERIMENTS Surface chemical heterogeneity was primarily introduced to the silica seed nanoparticles by a seeded growth process in the presence of mixed silicate moieties with thermodynamical incompatibility. Then a further kinetically-controlled seeded growth step was performed to regulate the surface morphology of silica nanoparticles by promoting the selective condensation of tetraethoxysilane on the hydrophilic microdomains. FINDINGS Upon reducing the growing rate, tetraethoxysilane hydrolysates tend to condensate on silica microdomains, resulting in the formation of raspberry-like nanoparticles. The generality of the kinetically-controlled seeded growth strategy was validated by its success on differently-sized silica seeds modified with a range of silane coupling agents. This established strategy is facile and effective for massive production of raspberry-like silica colloidal nanoparticles with precisely-designed surface morphology and size, offering an ideal platform for the investigation on the exclusive contribution of morphology to the interfacial behaviors of nanoparticles.
Collapse
Affiliation(s)
- Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
15
|
Assembled crystal structures of cubic patchy colloid-droplet mixtures: theoretical prediction and simulation study. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-022-05048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Stern Y, Tadmor R, Multanen V, Oren G. A first order-based model for the kinetics of formation of Pickering emulsions. J Colloid Interface Sci 2022; 628:409-416. [DOI: 10.1016/j.jcis.2022.07.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
|
17
|
Guan X, Sheng Y, Jiang H, Binks BP, Ngai T. Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil. J Colloid Interface Sci 2022; 623:476-486. [PMID: 35597017 DOI: 10.1016/j.jcis.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Alcohols can strongly reduce the interfacial tension between immiscible liquids, thus facilitating the formation of emulsions. By combining non-surface-active hydrophobic particles with medium-chain alcohols, stable water-in-oil (w/o) high internal phase Pickering emulsions (HIPPEs) can be easily prepared without high-energy emulsification methods. EXPERIMENTS The emulsions containing acrylate monomer as the oil phase were prepared at different pH values in the presence of hydrophobic silica particles. Further, by replacing monomer oil with organic solvents (e.g., toluene) and a certain concentration of alcohol, the promoted particle adsorption at the oil-water interface has been systematically investigated. The morphology and interfacial structure of HIPPEs were visualized by confocal laser scanning microscopy (CLSM). FINDING At high pH, stable water-in-acrylate monomer HIPPEs can be formed using commercial fumed silica nanoparticles alone with simple stirring or vortexing. The hydrolysis of the acrylate group at high pH can generate alcohols in situ which adsorb at the oil-water interface to reduce the interfacial tension and promote particle adsorption to hinder droplet coalescence. The novel strategy for forming stable and processable HIPPEs can be universally applied to different hydrophobic silica particles with the help of various alcohols as the co-stabilizer, which provides a flexible approach for the fabrication of lightweight, closed-cell solid foams for a range of applications.
Collapse
Affiliation(s)
- Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yifeng Sheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, HU6 7RX, United Kingdom.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
18
|
Nawaz MA, Buckow R, Jegasothy H, Stockmann R. Enzymatic hydrolysis improves the stability of UHT treated faba bean protein emulsions. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Abdolhosseinzadeh S, Zhang CJ, Schneider R, Shakoorioskooie M, Nüesch F, Heier J. A Universal Approach for Room-Temperature Printing and Coating of 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103660. [PMID: 34693561 DOI: 10.1002/adma.202103660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Processing 2D materials into printable or coatable inks for the fabrication of functional devices has proven to be quite difficult. Additives are often used in large concentrations to address the processing challenges, but they drastically degrade the electronic properties of the materials. To remove the additives a high-temperature post-deposition treatment can be used, but this complicates the fabrication process and limits the choice of materials (i.e., no heat-sensitive materials). In this work, by exploiting the unique properties of 2D materials, a universal strategy for the formulation of additive-free inks is developed, in which the roles of the additives are taken over by van der Waals (vdW) interactions. In this new class of inks, which is termed "vdW inks", solvents are dispersed within the interconnected network of 2D materials, minimizing the dispersibility-related limitations on solvent selection. Furthermore, flow behavior of the inks and mechanical properties of the resultant films are mainly controlled by the interflake vdW attractions. The structure of the vdW inks, their rheological properties, and film-formation behavior are discussed in detail. Large-scale production and formulation of the vdW inks for major high-throughput printing and coating methods, as well as their application for room-temperature fabrication of functional films/devices are demonstrated.
Collapse
Affiliation(s)
- Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
- Institute of Materials Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Chuanfang John Zhang
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - René Schneider
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | - Mahdieh Shakoorioskooie
- Laboratory for Concrete and Asphalt, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
- Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
- Institute for Building Materials, Swiss Federal Institute of Technology Zürich (ETHZ), Zürich, Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
- Institute of Materials Science and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| |
Collapse
|
20
|
Liu F, Guan X, Liu X, McClements DJ, Ngai T. Bioinspired Eggosomes with Dual Stimuli-Responsiveness. ACS APPLIED BIO MATERIALS 2021; 4:7825-7835. [DOI: 10.1021/acsabm.1c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fuguo Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
21
|
Qian X, Peng G, Ge L, Wu D. Water-in-water Pickering emulsions stabilized by the starch nanocrystals with various surface modifications. J Colloid Interface Sci 2021; 607:1613-1624. [PMID: 34592548 DOI: 10.1016/j.jcis.2021.09.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Using the platelet-like starch nanocrystals (SNCs) to stabilize emulsions is attractive because as-prepared emulsions have promising applications in cosmetics and food fields. Limited studies mainly focus on the oil-in-water system, and another important system, the water-in-water emulsions stabilized by SNCs, has not yet been unveiled. EXPERIMENTS Two surface modification strategies, crosslinking and acetylation, were applied to tune surface property and aggregation of SNCs, and a common all-aqueous system (dextran/poly(ethylene glycol)) was used here as template. The viscoelasticity and morphology of emulsions were studied in terms of the SNC loadings and polymer ratios. FINDINGS Crosslinking results in aggregation of SNCs, and the particle size increases (from 110 nm to 370 nm) with increased levels of substitution. This favors improving emulsifying ability of particles. Acetylation decreases the particle size (∼90 nm) and weakens the affinity of SNCs to the two aqueous phases, improving the emulsifying efficiency of SNCs. More intriguingly, the two emulsion systems show different phase inversion behaviors. The depletion-stabilization mechanism for the cross-linked SNCs and the diffusion-controlled mechanism for the acetylated SNCs are proposed using the emulsion viscoelasticity as probe. This study makes a comprehensive insight into the regulation of water-in-water emulsion morphology and types with the platelet-like SNCs.
Collapse
Affiliation(s)
- Xiaoli Qian
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Lingling Ge
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Engineering & Materials, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
22
|
Zia TUH, Ali Shah AUH. Understanding the adsorption of 1 NLB antibody on polyaniline nanotubes as a function of zeta potential and surface charge density for detection of hepatitis C core antigen: A label-free impedimetric immunosensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Solis FJ, Olvera de la Cruz M. Pimples reduce and dimples enhance flat dielectric surface image repulsion. J Chem Phys 2021; 155:104703. [PMID: 34525828 DOI: 10.1063/5.0058810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In solid-liquid, or liquid-liquid, interfaces with dielectric contrast, charged particles interact with the induced polarization charge of the interface. These interactions contribute to an effective self-energy of the bulk ions and mediate ion-ion interactions. For flat interfaces, the self-energy and the mediated interactions are neatly constructed by the image charge method. For other geometries, explicit results are scarce and the problem must be treated via approximations or direct computation. The case of interfaces with roughness is of great practical importance. This article provides analytical results, valid to first-order in perturbation theory, for the self-energy of particles near rough substrates. Explicit formulas are provided for the case of a sinusoidal deformation of a flat surface. Generic deformations can be treated by superposition. In addition to results for the self-energy, the surface polarization charge is presented as a quadrature. The interaction between an ion and the deformed surface is modified by the change in relative distance as well as by the local curvature of the surface. Solid walls, with a lower dielectric constant than the liquid, repel all ions. We show that the repulsion is reduced by local convexity and enhanced by concavity; dimples are more repulsive than pimples.
Collapse
Affiliation(s)
- Francisco J Solis
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona 85306, USA
| | - Monica Olvera de la Cruz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
24
|
Cimino R, Bhangu SK, Baral A, Ashokkumar M, Cavalieri F. Ultrasound-Assisted Microencapsulation of Soybean Oil and Vitamin D Using Bare Glycogen Nanoparticles. Molecules 2021; 26:molecules26175157. [PMID: 34500590 PMCID: PMC8434121 DOI: 10.3390/molecules26175157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 01/27/2023] Open
Abstract
Ultrasonically synthesized core-shell microcapsules can be made of synthetic polymers or natural biopolymers, such as proteins and polysaccharides, and have found applications in food, drug delivery and cosmetics. This study reports on the ultrasonic synthesis of microcapsules using unmodified (natural) and biodegradable glycogen nanoparticles derived from various sources, such as rabbit and bovine liver, oyster and sweet corn, for the encapsulation of soybean oil and vitamin D. Depending on their source, glycogen nanoparticles exhibited differences in size and 'bound' proteins. We optimized various synthetic parameters, such as ultrasonic power, time and concentration of glycogens and the oil phase to obtain stable core-shell microcapsules. Particularly, under ultrasound-induced emulsification conditions (sonication time 45 s and sonication power 160 W), native glycogens formed microcapsules with diameter between 0.3 μm and 8 μm. It was found that the size of glycogen as well as the protein component play an important role in stabilizing the Pickering emulsion and the microcapsules shell. This study highlights that native glycogen nanoparticles without any further tedious chemical modification steps can be successfully used for the encapsulation of nutrients.
Collapse
Affiliation(s)
- Rita Cimino
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | | | - Anshul Baral
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Muthupandian Ashokkumar
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence: (M.A.); (F.C.)
| | - Francesca Cavalieri
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
- School of Science, RMIT University, Melbourne, VIC 3000, Australia;
- Correspondence: (M.A.); (F.C.)
| |
Collapse
|
25
|
Zhang H, Yu S, Cao S, Liu X, Tang J, Zhu L, Ji J, Wang J. Stabilizing Triglyceride in Methanol Emulsions via a Magnetic Pickering Interfacial Catalyst for Efficient Transesterification under Static Conditions. ACS OMEGA 2021; 6:14138-14147. [PMID: 34124436 PMCID: PMC8190790 DOI: 10.1021/acsomega.1c00629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Pickering emulsion systems provide potential platforms for simultaneously intensifying and catalyzing transesterification between triglyceride and methanol under static conditions. However, realizing static transesterification with high biodiesel yield is still challenging due to low emulsion stability at the reaction temperature. Here, a series of magnetically recyclable Pickering interfacial catalysts (PICs) with similar surface affinities but different densities were constructed as stabilizers of a soybean oil/methanol emulsion. The variations in the emulsion volume fraction and droplet size were comparatively studied and analyzed from the viewpoint of droplet settling and catalyst particle shedding. It is found that, except for surface affinity, PIC density also plays a pivotal role in emulsion stability owing to the non-negligible effect of gravity on catalyst adsorption in triglyceride/methanol emulsion (especially at elevated temperature). By reducing the density, finely improving the lipophilicity, and optimizing the addition amount of PIC, the obtained soybean oil/methanol emulsion can remain stable for at least 12 h at 60 °C, enabling static transesterification with a high biodiesel yield of 95.6%. Moreover, the best performing PIC can be reused for at least 7 cycles. This efficient static transesterification system offers a green strategy for biodiesel production.
Collapse
|
26
|
Gorbacheva SN, Ilyin SO. Structure, rheology and possible application of water-in-oil emulsions stabilized by asphaltenes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Dlamini N, Prestipino S, Pellicane G. Self-Assembled Structures of Colloidal Dimers and Disks on a Spherical Surface. ENTROPY (BASEL, SWITZERLAND) 2021; 23:585. [PMID: 34065124 PMCID: PMC8151720 DOI: 10.3390/e23050585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
We study self-assembly on a spherical surface of a model for a binary mixture of amphiphilic dimers in the presence of guest particles via Monte Carlo (MC) computer simulation. All particles had a hard core, but one monomer of the dimer also interacted with the guest particle by means of a short-range attractive potential. We observed the formation of aggregates of various shapes as a function of the composition of the mixture and of the size of guest particles. Our MC simulations are a further step towards a microscopic understanding of experiments on colloidal aggregation over curved surfaces, such as oil droplets.
Collapse
Affiliation(s)
- Nkosinathi Dlamini
- School of Chemistry and Physics, University of Kwazulu-Natal and National Institute of Theoretical Physics (NIThEP), Pietermaritzburg 3209, South Africa;
| | - Santi Prestipino
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
| | - Giuseppe Pellicane
- School of Chemistry and Physics, University of Kwazulu-Natal and National Institute of Theoretical Physics (NIThEP), Pietermaritzburg 3209, South Africa;
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, 98125 Messina, Italy
- CNR-IPCF, Viale F. Stagno d’Alcontres, 98158 Messina, Italy
| |
Collapse
|
28
|
Tham FK, Ng WM, Leong SS, Yeap SP, Low SC, Lee HL, Lim J. Magnetophoresis of Magnetic Pickering Emulsions Under Low Field Gradient: Macroscopic and Microscopic Motion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1811-1822. [PMID: 33496594 DOI: 10.1021/acs.langmuir.0c03153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monodispersed iron oxide nanoparticles (IONPs) coated with polystyrenesulfonate (PSS) and cetrimonium bromide (CTAB) have been used to stabilize magnetic Pickering emulsions (MPEs). Magnetophoresis of MPEs under the influence of a low gradient magnetic field (∇B < 100 T/m) was investigated at the macroscopic and microscopic scale. At the macroscopic scale, for the case of pH 7, the MPE achieved a magnetophoretic velocity of 70.9 μm/s under the influence of ∇B at 93.8 T/m. The magnetic separation efficiency of the MPE at 90% was achieved within 30 min for pH 3, 7, and 10. At pH 10, the colloidal stability of the MPE was the lowest compared to that for pH 3 and 7. Thus, MPE at pH 10 required the shortest time for achieving the highest separation efficiency, as the MPE experienced cooperative magnetophoresis at alkaline pH. The creaming rate of the MPE at all conditions was still lower compared to magnetophoresis and was negligible in influencing its separation kinetics profiles. At the microscopic scale, the migration pathways of the MPEs (with diameters between 2.5 and 7.5 μm) undergoing magnetophoresis at ∇B ∼ 13.0 T/m were recorded by an optical microscope. From these experiments, and taking into consideration the MPE size distribution from the dynamic light scattering (DLS) measurement, we determined the averaged microscopic magnetophoretic velocity to be 7.8 ± 5.5 μm/s. By making noncooperative magnetophoresis assumptions (with negligible interactions between the MPEs along their migration pathways), the calculated velocity of individual MPEs was 9.8 μm/s. Such a value was within the percentage error of the experimental result of 7.8 ± 5.5 μm/s. This finding allows for an easy and quick estimation of the magnetophoretic velocity of MPEs at the microscale by using macroscopic separation kinetics data.
Collapse
Affiliation(s)
- Foo Kean Tham
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Sim Siong Leong
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
- Department of PetroChemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Swee Pin Yeap
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University Kuala Lumpur, Cheras 56000, Kuala Lumpur, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
| | - Hooi Ling Lee
- Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Penang, Malaysia
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
29
|
Anzivino C, Soligno G, van Roij R, Dijkstra M. Chains of cubic colloids at fluid-fluid interfaces. SOFT MATTER 2021; 17:965-975. [PMID: 33284927 DOI: 10.1039/d0sm01815e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by recent experimental observations of spontaneous chain formation of cubic particles adsorbed at a fluid-fluid interface, we theoretically investigate whether capillary interactions can be responsible for this self-assembly process. We calculate adsorption energies, equilibrium particle orientations, and interfacial deformations, not only for a variety of contact angles but also for single cubes as well as an infinite 2D lattice of cubes at the interface. This allows us to construct a ground-state phase diagram as a function of areal density for several contact angles, and upon combining the capillary energy of a 2D lattice with a simple expression for the entropy of a 2D fluid we also construct temperature-density or size-density phase diagrams that exhibit large two-phase regions and triple points. We identify several regimes with stable chainlike structures, in line with the experimental observations.
Collapse
Affiliation(s)
- Carmine Anzivino
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Hasnain J, Jiang Y, Hou H, Yan J, Athanasopoulou L, Forth J, Ashby PD, Helms BA, Russell TP, Geissler PL. Spontaneous emulsification induced by nanoparticle surfactants. J Chem Phys 2020; 153:224705. [PMID: 33317311 DOI: 10.1063/5.0029016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use. Nanoparticle surfactants, on the other hand, are a promising alternative because the surface chemistry needed to make them bind to a liquid-liquid interface is both well flexible and understood. Here, we derive a thermodynamic model predicting the conditions in which nanoparticle surfactants drive spontaneous emulsification that agrees quantitatively with experiments using Noria nanoparticles. This new class of microemulsions inherits the mechanical, chemical, and optical properties of the nanoparticles used to form them, leading to novel applications.
Collapse
Affiliation(s)
- J Hasnain
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Y Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - H Hou
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Yan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L Athanasopoulou
- Faculty of Mathematics and Physics, University of Ljubjana, Jadranska 19, SI-1000 Ljubjana, Slovenia
| | - J Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - P D Ashby
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - B A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - P L Geissler
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Balaj RV, Zarzar LD. Reconfigurable complex emulsions: Design, properties, and applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0028606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren D. Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
32
|
Bretonnet JL, Bomont JM. Structure of self-assembly amphiphilic systems: Relation between phenomenological parameters and microscopic potential parameters. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Benhamou M, Kaidi H, Hachem EK. Effective pair-potentials between droplets with end-grafted polymers within Pickering emulsions versus grafting-density, solvent quality and monomer concentration and phase diagrams architectures. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Hu M, Hsu CP, Isa L. Particle Surface Roughness as a Design Tool for Colloidal Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11171-11182. [PMID: 32897078 DOI: 10.1021/acs.langmuir.0c02050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Control over the surface roughness of colloidal particles offers exciting opportunities to tailor the properties and the processing of a broad range of soft matter systems. Moreover, identifying surface roughness as a design parameter reveals the possibility to connect seemingly distinct phenomena and materials via the role played by roughness effects. In this feature article, we concisely review some approaches to synthesize and characterize rough colloidal particles, with a focus on model spherical colloids. We then discuss the impact that surface roughness has on both the high-shear rheology of dense suspensions and the stabilization of Pickering emulsions. Commenting on developments of our own research, we aim to offer an original perspective for a property-oriented development of colloidal particles that transcends classical divisions between materials and processes toward innovative solutions.
Collapse
Affiliation(s)
- Minghan Hu
- Department of Materials ETH Zurich, Laboratory for Soft Materials and Interfaces, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Chiao-Peng Hsu
- Department of Materials ETH Zurich, Laboratory for Soft Materials and Interfaces, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Lucio Isa
- Department of Materials ETH Zurich, Laboratory for Soft Materials and Interfaces, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
35
|
Opdam J, Tuinier R, Hueckel T, Snoeren TJ, Sacanna S. Selective colloidal bonds via polymer-mediated interactions. SOFT MATTER 2020; 16:7438-7446. [PMID: 32633315 DOI: 10.1039/d0sm00942c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Regioselectivity in colloidal self-assembly typically requires specific chemical interactions to guide particle binding. In this paper, we describe a new method to form selective colloidal bonds that relies solely on polymer adsorption. Mixtures of polymer-coated and bare particles are initially stable due to long-ranged electrostatic repulsion. When their charge is screened, the two species can approach each other close enough for polymer bridges to form, binding the particles together. By utilizing colloidal dumbbells, where each lobe is coated with polymer brushes of differing lengths, we demonstrate that the Debye screening length serves as a selective switch for the assembly of bare tracer particles onto the two lobes. We model the interaction using numerical self-consistent field lattice computations and show how regioselectivity arises from just a few nanometers difference in polymer brush length.
Collapse
Affiliation(s)
- Joeri Opdam
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, & Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, & Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Theodore Hueckel
- Molecular Design Institute, Department of Chemistry, New York University, 29 Washington Place, New York 10003, USA.
| | - Thom J Snoeren
- Molecular Design Institute, Department of Chemistry, New York University, 29 Washington Place, New York 10003, USA.
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, 29 Washington Place, New York 10003, USA.
| |
Collapse
|
36
|
Hunter SJ, Penfold NJW, Chan DH, Mykhaylyk OO, Armes SP. How Do Charged End-Groups on the Steric Stabilizer Block Influence the Formation and Long-Term Stability of Pickering Nanoemulsions Prepared Using Sterically Stabilized Diblock Copolymer Nanoparticles? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:769-780. [PMID: 31899941 DOI: 10.1021/acs.langmuir.9b03389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) solution polymerization is used to prepare well-defined poly(glycerol monomethacrylate) (PGMA) chains bearing carboxylic acid, tertiary amine, or neutral end-groups. Each of these PGMA precursors was then chain-extended in turn via RAFT aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate to form spherical nanoparticles as confirmed by transmission electron microscopy (TEM) analysis. Dynamic light scattering studies indicated an intensity-average diameter of approximately 25 nm. Aqueous electrophoresis measurements confirmed that the amine-functional nanoparticles became cationic at low pH owing to end-group protonation. In contrast, carboxylic acid-functional nanoparticles became appreciably anionic at pH 10 owing to end-group ionization. Finally, nanoparticles bearing neutral end-groups exhibited zeta potentials close to zero over a range of solution pH. High-shear homogenization of n-dodecane in the presence of such sterically stabilized nanoparticles led to the formation of oil-in-water Pickering macroemulsions with volume-average diameters of 20-30 μm. High-pressure microfluidization was then used to prepare the three corresponding Pickering nanoemulsions. Each Pickering nanoemulsion was characterized by analytical centrifugation and TEM studies of the dried nanoemulsion droplets confirmed their original nanoparticle superstructure. The nanoparticle adsorption efficiency at the oil-water interface was assessed by gel permeation chromatography (using a UV detector) for each nanoparticle type at both pH 3 and 7. Nanoparticles with charged end-groups exhibited relatively low adsorption efficiency, whereas up to 90% of the neutral nanoparticles were adsorbed onto the oil droplets. This observation was supported by small-angle X-ray scattering experiments, which indicated that the packing efficiency of neutral nanoparticles around oil droplets was higher than that of nanoparticles bearing charged end-groups. Analytical centrifugation was used to evaluate the colloidal stability of the aged Pickering nanoemulsions. Pickering nanoemulsions stabilized with nanoparticles bearing charged end-groups proved to be significantly less stable than those prepared using neutral end-groups.
Collapse
Affiliation(s)
- Saul J Hunter
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Nicholas J W Penfold
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Derek H Chan
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Oleksandr O Mykhaylyk
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| |
Collapse
|
37
|
Zhou H, Lv S, Liu J, Tan Y, Muriel Mundo JL, Bai L, Rojas OJ, McClements DJ. Modulation of Physicochemical Characteristics of Pickering Emulsions: Utilization of Nanocellulose- and Nanochitin-Coated Lipid Droplet Blends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:603-611. [PMID: 31860287 DOI: 10.1021/acs.jafc.9b06846] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mixed Pickering emulsions were prepared by blending anionic nanocellulose-stabilized lipid droplets with cationic nanochitin-stabilized lipid droplets. Changes in the surface potential, particle size, shear viscosity, and morphology of the mixed emulsions were characterized when the droplet mixing ratio was varied. Emulsion properties could be tailored by altering the pH and mixing ratio. Surface potential measurements suggested that the nanochitin-coated lipid droplets adsorbed to the surfaces of the nanocellulose-coated lipid droplets, thereby dominating the overall electrical characteristics of the mixed emulsions. As a result, the mixed emulsions had better stability to coalescence than the single emulsions containing only nanocellulose-coated lipid droplets. Our results suggest that the physicochemical properties, shelf life, and functional performance of Pickering emulsions may be modulated by blending different kinds of particle-stabilized lipid droplets together.
Collapse
Affiliation(s)
- Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Shanshan Lv
- Biopolymers and Colloids Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jinning Liu
- Biopolymers and Colloids Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Yunbing Tan
- Biopolymers and Colloids Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jorge L Muriel Mundo
- Biopolymers and Colloids Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Long Bai
- Bio-Based Colloids and Materials, Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16300, F IN-00076 , Espoo , Finland
| | - Orlando J Rojas
- Bio-Based Colloids and Materials, Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16300, F IN-00076 , Espoo , Finland
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
- Department of Food Science & Bioengineering , Zhejiang Gongshang University , 18 Xuezheng Street , Hangzhou Zhejiang 310018 , China
| |
Collapse
|
38
|
Neibloom D, Bevan MA, Frechette J. Surfactant-Stabilized Spontaneous 3-(Trimethoxysilyl) Propyl Methacrylate Nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:284-292. [PMID: 31838848 DOI: 10.1021/acs.langmuir.9b03412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoemulsions are a versatile means to create a variety of consumer products and complex materials. Producing nanoemulsions with a high volume fraction of the dispersed phase is generally limited to mechanically intensive processes, such as high-pressure homogenization, and often results in polydisperse droplet size distributions. Low-energy methods, such as spontaneous emulsification, can produce monodispersed droplets, but the volume fraction of the dispersed phase is usually much lower. Here, we report on the spontaneous emulsification of 3-(trimethoxysilyl) propyl methacrylate (TPM) into an alkaline aqueous phase (pH > 10.0) that contains surfactants (Tween 20, sodium dodecyl sulfate (SDS), or cetyltrimethylammonium bromide (CTAB)). The nanoemulsions are monodisperse with droplet diameters that range between 15 and 500 nm. The small droplet size is due to the presence of surfactants that stabilize the droplets against coalescence. The spontaneous emulsion process can produce emulsions with a dispersed volume fraction of up to 10% in CTAB solutions and up to 30% using Tween 20 and SDS. After the emulsification process, the TPM droplets can be polymerized to produce nanoparticles. Using dynamic light scattering and scanning electron microscopy, we characterize the relationship between the surfactant concentration and the size of the droplets in the nanoemulsions. We find that the droplet diameter is primarily determined by the molar ratio of oil to surfactant. We also find that the pH in the aqueous phase also modulates the droplet diameter when using an ionic surfactant. This work expands the spontaneous emulsification of TPM in the absence of stabilizing particles to the nanoscale while producing one of the highest volume fractions of nanoemulsion droplets obtained via a low-energy mechanism.
Collapse
Affiliation(s)
- Denise Neibloom
- Chemical and Biomolecular Engineering Department , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Michael A Bevan
- Chemical and Biomolecular Engineering Department , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
39
|
One-step processing of highly viscous multiple Pickering emulsions. J Colloid Interface Sci 2019; 560:536-545. [PMID: 31679780 DOI: 10.1016/j.jcis.2019.10.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Solid-stabilized Pickering emulsions have attracted a lot of attention recently due to their surfactant-free character, and exceptional stability. At the moment, how the viscosities of the liquid phases impact the processing of Pickering emulsions remain to be clearly understood - it is however an important parameter to consider when developing chemical engineering processes employing these multiphase liquids. Our first assumption was that the amount of emulsified dispersed phase would drastically decrease as viscosity increases. EXPERIMENTS AND FINDINGS In this work, we demonstrate that double water-in-oil-in-water (W/O/W) Pickering emulsions are obtained in a single processing step when using very high viscosity silicone oils (≥10,000 cSt) and a single type of sub-μm silica particles modified with two grafted silanes and sodium alginate. The formation of water sub-inclusions proceeds via a phase-inversion mechanism. These sub-inclusions are subsequently stabilized and retained in the oil phase due to its viscosity, limiting sub-inclusions mobility, and the presence of adsorbed particles forming dense layers at oil-water interfaces, acting as barriers. The process we present is simple, requires a minimum number of components, and allows the preparation of multiple emulsions which could then be used to efficiently protect and/or transport a variety of sensitive encapsulated compounds.
Collapse
|
40
|
Dieng SM, Anton N, Bouriat P, Thioune O, Sy PM, Massaddeq N, Enharrar S, Diarra M, Vandamme T. Pickering nano-emulsions stabilized by solid lipid nanoparticles as a temperature sensitive drug delivery system. SOFT MATTER 2019; 15:8164-8174. [PMID: 31593197 DOI: 10.1039/c9sm01283d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of biomaterials with low environmental impact has seen increased interest in recent years. In this field, lipid nanoparticles have found a privileged place in research and industry. The purpose of this study was to develop Pickering O/W nano-emulsions only stabilized by solid lipid nanoparticles (SLNs), as a new generation of safe, non-toxic, biocompatible, and temperature-sensitive lipid nano-carriers. The first part is dedicated to understanding the interfacial behavior of SLNs and their related stabilization mechanisms onto nano-emulsions formulated by ultrasonication. Investigations were focused on the surface coverage as a function of the SLN size and volume fraction of dispersed oil, in order to prove that the droplet stabilization is effectively performed by the nanoparticles, and to disclose the limitations of this formulation. Characterization is performed by dynamic light scattering and transmission electron microscopy. The second part of the study investigated SLN adsorption on a model oil/water interface (surface tension and rheology) through an axisymmetrical drop shape analysis (drop tensiometer), following the interfacial tension and the rheological behavior. The objective of this part is to characterize the phenomenon governing the droplet/interface interactions, and disclose the rheological behavior of the interfacial SLN monolayer. The effect of temperature was also investigated, proving a real destabilization of the nano-suspension when the sample is heated above a temperature threshold, impacting on the integrity of the SLNs, which partially melt, and strongly enhancing the release of a model drug (ketoprofen) encapsulated in the nano-emulsion oil core. To conclude, Pickering nano-emulsions only stabilized by SLNs appear to be a very efficient innovative drug nano-carrier, opening new doors as a potential temperature-sensitive drug delivery system.
Collapse
Affiliation(s)
- Sidy Mouhamed Dieng
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France. and Université Cheikh Anta Diop de Dakar, Laboratoire de Pharmacie Galénique, Laboratoire de Physique et Biophysique Pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie Faculté de Médecine, de Pharmacie et d'Odontologie, BP: 5005, Dakar Fann, Senegal and Université de Thiès, Laboratoire de Pharmacie Galénique, UFR santé de Thiès, Cité Malick SY BP 967 Thiès, Thies, Senegal
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Patrick Bouriat
- University of Pau & Pays Adour, CNRS, TOTAL - UMR 5150 - LFC-R - Laboratoire des Fluides Complexes et leurs Réservoirs, BP 1155, Pau, F-64013, France
| | - Oumar Thioune
- Université Cheikh Anta Diop de Dakar, Laboratoire de Pharmacie Galénique, Laboratoire de Physique et Biophysique Pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie Faculté de Médecine, de Pharmacie et d'Odontologie, BP: 5005, Dakar Fann, Senegal
| | - Papa Mady Sy
- Université Cheikh Anta Diop de Dakar, Laboratoire de Pharmacie Galénique, Laboratoire de Physique et Biophysique Pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie Faculté de Médecine, de Pharmacie et d'Odontologie, BP: 5005, Dakar Fann, Senegal
| | - Nadia Massaddeq
- Université de Strasbourg, IGBMC, Inserm U964, CNRS UMR7104, F-67000 Strasbourg, France
| | - Said Enharrar
- Université de Strasbourg, IPHC, UMR 7178, IPHC-DSA, CNRS, Illkirch-Graffenstaden 67400, France
| | - Mounibé Diarra
- Université Cheikh Anta Diop de Dakar, Laboratoire de Pharmacie Galénique, Laboratoire de Physique et Biophysique Pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie Faculté de Médecine, de Pharmacie et d'Odontologie, BP: 5005, Dakar Fann, Senegal
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| |
Collapse
|
41
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
42
|
Hao B, Yu W. A New Solid-like State for Liquid/Liquid/Particle Mixtures with Bicontinuous Morphology of Concentrated Emulsion and Concentrated Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9529-9537. [PMID: 31251879 DOI: 10.1021/acs.langmuir.9b01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Research in exploring the microstructures of the ternary liquid/liquid/particle mixture is still a challenging task due to the complex interface properties and compositions of each phase. In this work, we report a new kind of solid-like state for ternary mixtures after the addition of a surfactant, which has the bicontinuous morphology of two phases, that is, the concentrated emulsion and the concentrated noncolloidal suspension. The bicontinuous morphology was justified by optical microscopy and the unique two-step yielding behavior under large oscillatory shear flow, which has the yielding character of a noncolloidal suspension at smaller strain and that of a concentrated emulsion at larger strain. A phase diagram is constructed from the rheological measurements and morphological observations. The boundaries of the new solid-like state can be well predicted from three basic requirements on the glass forming or jamming conditions in the aqueous noncolloidal suspension phase, the aqueous emulsion phase, and the whole ternary mixture.
Collapse
Affiliation(s)
- Bonan Hao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
43
|
Liu X, Peng M, Li G, Miao Y, Luo H, Jing G, He Y, Zhang C, Zhang F, Fan H. Ultrasonication-Triggered Ubiquitous Assembly of Magnetic Janus Amphiphilic Nanoparticles in Cancer Theranostic Applications. NANO LETTERS 2019; 19:4118-4125. [PMID: 31140281 DOI: 10.1021/acs.nanolett.9b01524] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ultrasonication-triggered interfacial assembly approach was developed to synthesize magnetic Janus amphiphilic nanoparticles (MJANPs) for cancer theranostic applications, where the biocompatible octadecylamine is used as a molecular linker to mediate the interactions between hydrophobic and hydrophilic nanoparticles across the oil-water interface. The obtained Co cluster-embedded Fe3O4 nanoparticles-graphene oxide (CCIO-GO) MJANPs exhibited superior magnetic heating efficiency and transverse relaxivity, 64 and 4 times higher than that of commercial superparamagnetic iron oxides, respectively. The methodology has been applicable to nanoparticles of various dimensions (5-100 nm), morphologies (sphere, ring, disk, and rod), and composition (metal oxides, noble metal and semiconductor compounds, etc.), thereby greatly enriching the array of MJANPs. In vivo theranostic applications using the tumor-bearing mice model further demonstrated the effectiveness of these MJANPs in high-resolution multimodality imaging and high-efficiency cancer therapeutics. The ubiquitous assembly approach developed in the current study pave the way for on-demand design of high-performance Janus amphiphilic nanoparticles for various clinical diagnoses and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science & The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710127 , People's Republic of China
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science & The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710127 , People's Republic of China
| | - Galong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science & The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710127 , People's Republic of China
| | - Yuqing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science & The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710127 , People's Republic of China
| | - Hao Luo
- School of Physics , Northwest University , Xi'an , Shanxi 710069 , People's Republic of China
| | - Guangyin Jing
- School of Physics , Northwest University , Xi'an , Shanxi 710069 , People's Republic of China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science & The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710127 , People's Republic of China
| | - Ce Zhang
- School of Physics , Northwest University , Xi'an , Shanxi 710069 , People's Republic of China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials , Fudan University , Shanghai 200433 , People's Republic of China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science & The College of Life Sciences , Northwest University , Xi'an , Shaanxi 710127 , People's Republic of China
| |
Collapse
|
44
|
Jeon I, Peeks MD, Savagatrup S, Zeininger L, Chang S, Thomas G, Wang W, Swager TM. Janus Graphene: Scalable Self-Assembly and Solution-Phase Orthogonal Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900438. [PMID: 30968473 DOI: 10.1002/adma.201900438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Orthogonal functionalization of 2D materials by selective assembly at interfaces provides opportunities to create new materials with transformative properties. Challenges remain in realizing controllable, scalable surface-selective, and orthogonal functionalization. Herein, dynamic covalent assembly is reported that directs the functionalization of graphene surfaces at liquid-liquid interfaces. This process allows facile addition and segregation of chemical functionalities to impart Janus characteristics to graphenes. Specifically, dynamic covalent functionalization is accomplished via Meisenheimer complexes produced by reactions of primary amines with pendant dinitroaromatics attached to graphenes. Janus graphenes are demonstrated to be powerful surfactants that organize at water/organic, water/fluorocarbon, and organic/fluorocarbon liquid interfaces. This approach provides general access to the creation of diverse surfactant materials and promising building blocks for 2D materials.
Collapse
Affiliation(s)
- Intak Jeon
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Martin D Peeks
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Suchol Savagatrup
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lukas Zeininger
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sehoon Chang
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Gawain Thomas
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Wei Wang
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
45
|
Ballard N, Law AD, Bon SAF. Colloidal particles at fluid interfaces: behaviour of isolated particles. SOFT MATTER 2019; 15:1186-1199. [PMID: 30601564 DOI: 10.1039/c8sm02048e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adsorption of colloidal particles to fluid interfaces is a phenomenon that is of interest to multiple disciplines across the physical and biological sciences. In this review we provide an entry level discussion of our current understanding on the physical principles involved and experimental observations of the adsorption of a single isolated particle to a liquid-liquid interface. We explore the effects that a variation of the morphology and surface chemistry of a particle can have on its ability to adhere to a liquid interface, from a thermodynamic as well as a kinetic perspective, and the impact of adsorption behaviour on potential applications. Finally, we discuss recent developments in the measurement of the interfacial behaviour of nanoparticles and highlight open questions for future research.
Collapse
Affiliation(s)
- Nicholas Ballard
- POLYMAT - University of the Basque Country (UPV/EHU), Centro Joxe Mari Korta, Avenida de Tolosa 72, 20018, Donostia-San Sebastian, Spain.
| | | | | |
Collapse
|
46
|
Luo AM, Vermant J, Ilg P, Zhang Z, Sagis LM. Self-assembly of ellipsoidal particles at fluid-fluid interfaces with an empirical pair potential. J Colloid Interface Sci 2019; 534:205-214. [DOI: 10.1016/j.jcis.2018.08.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
|
47
|
Liu Z, Zhang Y, Chen C, Yang T, Wang J, Guo L, Liu P, Kong T. Larger Stabilizing Particles Make Stronger Liquid Marble. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804549. [PMID: 30548921 DOI: 10.1002/smll.201804549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Understanding the mechanical stability of granular-armored liquid marbles is prerequisite for their applications including encapsulation, sensors, microreactions, and miniaturized liquid storage. Most liquid marbles are armored with agglomerated granular structure which complicates the wetting and interacting states of particles, hence, impeding one from understanding the effect of granular size on the mechanical stability of marbles. In this work, using a custom-built platform to examine the liquid marbles armored by a single layer of uniform grains, it is revealed that larger microsized grains produce stronger liquid marble. This finding is attributed to the gravity-induced capillary attraction which dominates the interaction of particles and provides additional tension to the granular network of the marble surface, which enhances the mechanical stability of marbles. In addition, different granular network structures are formed at the marble surface by using a binary mixture of monodisperse grains, and their effect on the mechanical stability of marbles is explored. The understandings offer important insights for application involving liquid marbles and provides guideline to formulate robust marble-based products.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yuyan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chengliu Chen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Tiyun Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jidong Wang
- Central Laboratory, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ling Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Peng Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
48
|
Zhao G, Li Y, Hong B, Han X, Zhao S, Pera-Titus M, Liu H. Nanomixing Effects in Glycerol/Dodecanol Pickering Emulsions for Interfacial Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15587-15592. [PMID: 30472857 DOI: 10.1021/acs.langmuir.8b02892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pickering emulsions offer a promising platform for conducting interfacial reactions between immiscible reagents. Despite the significant progress in the engineering of amphiphilic catalysts for such reactions, the mechanism behind their enhanced activity is still poorly understood. Herein, using the glycerol/dodecanol system as a case study, we conducted a combined meso- and microscale study of Pickering emulsions stabilized by amphiphilic silica nanoparticles bearing acid centers by marrying dissipative particle dynamics simulations with emulsification experiments. The optimal surface properties of the silica particles in terms of length and density of alkyl chains were identified, matching the experimental results. The local distribution of glycerol and dodecanol near the acid centers was ascertained, unraveling potential reactivity zones near the catalytic acid centers due to an enhanced nanomixing between glycerol and dodecanol.
Collapse
Affiliation(s)
- Guolin Zhao
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 201108 Shanghai , China
| | - Yao Li
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 201108 Shanghai , China
| | - Bing Hong
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 201108 Shanghai , China
| | | | | | - Marc Pera-Titus
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay , 201108 Shanghai , China
| | | |
Collapse
|
49
|
Thompson KL, Derry MJ, Hatton FL, Armes SP. Long-Term Stability of n-Alkane-in-Water Pickering Nanoemulsions: Effect of Aqueous Solubility of Droplet Phase on Ostwald Ripening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9289-9297. [PMID: 29999324 PMCID: PMC6085727 DOI: 10.1021/acs.langmuir.8b01835] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/10/2018] [Indexed: 05/19/2023]
Abstract
High-pressure microfluidization is used to prepare a series of oil-in-water Pickering nanoemulsions using sterically-stabilized diblock copolymer nanoparticles as the Pickering emulsifier. The droplet phase comprised either n-octane, n-decane, n-dodecane, or n-tetradecane. This series of oils enabled the effect of aqueous solubility on Ostwald ripening to be studied, which is the primary instability mechanism for such nanoemulsions. Analytical centrifugation (LUMiSizer instrument) was used to evaluate the long-term stability of these Pickering nanoemulsions over time scales of weeks/months. This technique enables convenient quantification of the fraction of growing oil droplets and confirmed that using n-octane (aqueous solubility = 0.66 mg dm-3 at 20 °C) leads to instability even over relatively short time periods. However, using n-tetradecane (aqueous solubility = 0.386 μg dm-3 at 20 °C) leads to significantly improved long-term stability with respect to Ostwald ripening, with all droplets remaining below 1 μm diameter after 6 weeks storage at 20 °C. In the case of n-dodecane, the long-term stability of these new copolymer-stabilized Pickering nanoemulsions is significantly better than the silica-stabilized Pickering nanoemulsions reported in the literature by Persson et al. ( Colloids Surf., A, 2014, 459, 48-57). This is attributed to a much greater interfacial yield stress for the former system, as recently described in the literature (see P. J. Betramo et al. Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 10373-10378).
Collapse
|
50
|
Kang DJ, Bararnia H, Anand S. Synthesizing Pickering Nanoemulsions by Vapor Condensation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21746-21754. [PMID: 29846059 DOI: 10.1021/acsami.8b06467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticle-stabilized (Pickering) emulsions are widely used in applications such as cosmetics, drug delivery, membranes, and material synthesis. However, formulating Pickering nanoemulsions remains a significant challenge. Herein, we show that Pickering nanoemulsions can be obtained in a single step even at very low nanoparticle loadings (0.2 wt %) by condensing water vapor on a nanoparticle-infused subcooled oil that spreads on water. Droplet nuclei spontaneously submerge within the oil after nucleating at the oil-air interface, resulting in the suppression of droplet growth by diffusion, and subsequently coalesce to larger sizes until their growth is curtailed by nanoparticle adsorption. The average nanoemulsion size is governed by the competition between nanoparticle adsorption kinetics and droplet growth dynamics, which are in turn a function of nanoparticle size, concentration, and condensation time. Controlling such factors can lead to the formation of highly monodisperse nanoemulsions. Emulsion formation via condensation is a fast, scalable, energy-efficient process that can be adapted for a wide variety of emulsion-based applications in biology, chemistry, and materials science.
Collapse
Affiliation(s)
- Dong Jin Kang
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Hassan Bararnia
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Sushant Anand
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| |
Collapse
|