1
|
Ling H, Fu X, Huang N, Zhong Z, Liu T, Cui H, Que Y. A Sugarcane Smut Fungus Effector Hijacks Plant Vacuolar Sorting Receptor-Mediated Trafficking to Evade Host Immune Detection. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40166905 DOI: 10.1111/pce.15500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
The smut fungus Sporisorium scitamineum is a major pathogen in sugarcane, causing significant agricultural losses worldwide. However, the molecular mechanisms by which its effectors facilitate infection and evade host immunity remain largely unclear. In this study, we identified the sugarcane vacuolar sorting receptor 1 gene (ScVSR1), whose expression negatively correlate with several putative S. scitamineum effector genes in a co-expression network. Overexpression of ScVSR1 in Arabidopsis thaliana reduced resistance to a fungal powdery mildew pathogen, indicating the negative role of ScVSR1 in plant defence. Among the co-expressed S. scitamineum effectors, SsPE15, a secreted cerato-platanin-like protein (CPP), physically interacts with ScVSR1 and is sorted into the prevacuolar compartment (PVC) by interacting with ScVSR1 in plant cells. Deletion of SsPE15 in S. scitamineum enhanced fungal virulence, suggesting that SsPE15 acts as an immune elicitor. Furthermore, the C-terminal domain of the SsPE15, containing the VSR sorting signal, was found to facilitate vesicular location. Notably, fusing this C-terminal domain to the bacterial effector AvrRpt2 significantly reduced AvrRpt2-triggered programmed cell death in Arabidopsis, a process partially dependent on AtVSR1 and AtVSR2. These findings reveal an immune evasion strategy by which S. scitamineum effector SsPE15 hijacks the host's vesicular trafficking system to avoid immune detection.
Collapse
Affiliation(s)
- Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Xueqin Fu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ning Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Zaofa Zhong
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tingting Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Intelligent Agriculture, Yulin Normal University, Yulin, Guangxi, China
| | - Haitao Cui
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| |
Collapse
|
2
|
Zhao Y, Wang Y. Protein Dynamics in Plant Immunity: Insights into Plant-Pest Interactions. Int J Mol Sci 2024; 25:12951. [PMID: 39684662 DOI: 10.3390/ijms252312951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
All living organisms regulate biological activities by proteins. When plants encounter pest invasions, the delicate balance between protein synthesis and degradation becomes even more pivotal for mounting an effective defense response. In this review, we summarize the mechanisms by which plants regulate their proteins to effectively coordinate immune responses during plant-pest interactions. Additionally, we discuss the main pathway proteins through which pest effectors manipulate host protein homeostasis in plants to facilitate their infestation. Understanding these processes at the molecular level not only deepens our knowledge of plant immunity but also holds the potential to inform strategies for developing pest-resistant crops, contributing to sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanru Wang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. INSECTS 2024; 15:935. [PMID: 39769537 PMCID: PMC11677212 DOI: 10.3390/insects15120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination. Understanding plant-aphid interactions is crucial for revealing the full range of plant defenses against aphids. When aphids infest, plants detect the damage via specific receptor proteins, initiating a signaling cascade that activates defense mechanisms. These defenses include a complex interaction of phytohormones that trigger defense pathways, secondary metabolites that deter aphid feeding and reproduction, lectins and protease inhibitors that disrupt aphid physiology, and elicitors that activate further defense responses. Meanwhile, aphids counteract plant defenses with salivary effectors and proteins that suppress plant defenses, aiding in their successful colonization. This review offers a detailed overview of the molecular mechanisms involved in plant-aphid interactions, emphasizing both established and emerging plant defense strategies. Its uniqueness lies in synthesizing the recent progress made in plant defense responses to aphids, along with aphids' countermeasures to evade such defenses. By consolidating current knowledge, this review provides key insights for developing sustainable strategies to achieve crop protection and minimize dependence on chemical pesticides.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
- Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1301 N. Western Road, Stillwater, OK 74075, USA
| |
Collapse
|
4
|
Ge P, Guo H, Li D, Zhu-Salzman K, Sun Y. A color morph-specific salivary carotenoid desaturase enhances plant photosynthesis and facilitates phloem feeding of Myzus persicae (Sulzer). PEST MANAGEMENT SCIENCE 2024; 80:5014-5025. [PMID: 38847471 DOI: 10.1002/ps.8225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Body-color polymorphisms in insects are often explained by environmental selective advantages. Differential fitness related to body coloration has been demonstrated in Myzus persicae (Sulzer): performance of the red morph is in general better than that of the green morph on tobacco plants. However, the molecular mechanism involved is largely unclear. RESULTS Here we showed that the red morph of M. persicae had higher expression of a carotenoid desaturase CarD763 in the whole body, salivary gland and saliva relative to the green morph. Also, 18% individuals displayed faded red body color 5 days post dsCarD763 treatment. Furthermore, knockdown of CarD763 in the red morph significantly prolonged the time needed to locate phloem and shortened the duration of phloem feeding. Honeydew production and survival rate decreased as well. In contrast, overexpression of CarD763 in tobacco leaves facilitated aphid feeding, enhanced honeydew production and improved the survival rate of aphids. Compared with those fed by dsGFP aphids, plants infested by dsCarD763-treated aphids had higher ROS accumulation, lower lycopene content and photosynthetic rate, and maximum photon quantum yield. The reverse was true when plants overexpressed CarD763. CONCLUSION These findings demonstrated that CarD763, a red morph-specific salivary protein, could enhance aphid feeding and early colonization by promoting plant photosynthesis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Panpan Ge
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Danyang Li
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Yucheng Sun
- State Key Laboratory of Integrated Pest Management and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
6
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
7
|
van Kleeff PJM, Mastop M, Sun P, Dangol S, van Doore E, Dekker HL, Kramer G, Lee S, Ryu CM, de Vos M, Schuurink RC. Discovery of Three Bemisia tabaci Effectors and Their Effect on Gene Expression in Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:380-395. [PMID: 38114195 DOI: 10.1094/mpmi-04-23-0044-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Eva van Doore
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
8
|
Bleau JR, Gaur N, Fu Y, Bos JIB. Unveiling the Slippery Secrets of Saliva: Effector Proteins of Phloem-Feeding Insects. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:211-219. [PMID: 38148271 DOI: 10.1094/mpmi-10-23-0167-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jade R Bleau
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Namami Gaur
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Yao Fu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
9
|
Waksman T, Astin E, Fisher SR, Hunter WN, Bos JIB. Computational Prediction of Structure, Function, and Interaction of Myzus persicae (Green Peach Aphid) Salivary Effector Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:338-346. [PMID: 38171380 DOI: 10.1094/mpmi-10-23-0154-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the Myzus persicae (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict M. persicae effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of M. persicae effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Thomas Waksman
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Edmund Astin
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - S Ronan Fisher
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - William N Hunter
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
10
|
Jing S, Xu J, Tang H, Li P, Yu B, Liu Q. The roles of small RNAs in rice-brown planthopper interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1326726. [PMID: 38078088 PMCID: PMC10701906 DOI: 10.3389/fpls.2023.1326726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 03/10/2025]
Abstract
Interactions between rice plants (Oryza sativa L.) and brown planthoppers (Nilaparvata lugens Stål, BPHs) are used as a model system to study the molecular mechanisms underlying plant-insect interactions. Small RNAs (sRNAs) regulate growth, development, immunity, and environmental responses in eukaryotic organisms, including plants and insects. Recent research suggests that sRNAs play significant roles in rice-BPH interactions by mediating post-transcriptional gene silencing. The focus of this review is to explore the roles of sRNAs in rice-BPH interactions and to highlight recent research progress in unraveling the mechanism of cross-kingdom RNA interference (ckRNAi) between host plants and insects and the application of ckRNAi in pest management of crops including rice. The research summarized here will aid in the development of safe and effective BPH control strategies.
Collapse
Affiliation(s)
| | | | | | | | - Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingsong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
11
|
Wang D, Yang Q, Hu X, Liu B, Wang Y. A Method for Identification of Biotype-Specific Salivary Effector Candidates of Aphid. INSECTS 2023; 14:760. [PMID: 37754728 PMCID: PMC10532216 DOI: 10.3390/insects14090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Polyphagous aphids often consist of host-specialized biotypes that perform poorly in non-native hosts. The underlying mechanisms remain unknown. Host-specialized biotypes may express biotype-specific salivary effectors or elicitors that determine aphid hosts. Here, we tried three strategies to identify possible effectors in Malvaceae- (MA) and Cucurbitaceae-specialized (CU) biotypes of the cotton-melon aphid Aphis gossypii Glover. The whole-aphid RNA-seq identified 765 differentially expressed genes (DEGs), and 139 of them were possible effectors; aphid-head RNA-seq identified 523 DEGs were identified, and 98 of them were possible effectors. The homologous genes of published aphid effectors were not differentially expressed between CU and MA. Next, quantitative proteomic analyses of saliva identified 177 possible proteins, and 44 of them were different proteins. However, none of the genes of the 44 proteins were differentially expressed, reflecting the discrepancy between transcriptome and proteome data. Finally, we searched for DEGs of the 177 salivary proteins in the aphid-head transcriptomes, and the salivary proteins with expression differences were regarded as effector candidates. Through this strategy, 11 effector candidates were identified, and their expression differences were all confirmed by RT-qPCR. The combinatorial analysis has great potential to identify biotype-specific effector candidates in aphids and other sap-sucking insects.
Collapse
Affiliation(s)
- Duoqi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| | - Qinglan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| | - Xiaoyue Hu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| | - Biao Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China;
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.W.); (Q.Y.); (X.H.)
| |
Collapse
|
12
|
Yuen ELH, Shepherd S, Bozkurt TO. Traffic Control: Subversion of Plant Membrane Trafficking by Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:325-350. [PMID: 37186899 DOI: 10.1146/annurev-phyto-021622-123232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Samuel Shepherd
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| |
Collapse
|
13
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
14
|
Fu Y, Liu X, Wang Q, Liu H, Cheng Y, Li H, Zhang Y, Chen J. Two salivary proteins Sm10 and SmC002 from grain aphid Sitobion miscanthi modulate wheat defense and enhance aphid performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1104275. [PMID: 37056510 PMCID: PMC10086322 DOI: 10.3389/fpls.2023.1104275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The grain aphid Sitobion miscanthi is a serious pest of wheat that causes severe economic damage by sucking phloem sap and transmitting plant viruses. Here, two putative salivary effector homologs from S. miscanthi (Sm10 and SmC002) were selected based on sequence similarity to other characterized aphid candidate effectors. These effectors were then delivered into wheat cells separately via the type III secretion system of Pseudomonas fluorescens to elucidate their functions in the regulation of plant defenses and host fitness. The results showed that the delivery of either Sm10 or SmC002 into wheat plants significantly suppressed callose deposition and affected the transcript levels of callose synthase genes. The expression levels of salicylic acid (SA)-associated defense genes were upregulated significantly in wheat leaves carrying either Sm10 or SmC002. Moreover, LC-MS/MS analysis revealed that wheat SA levels significantly increased after the delivery of the two effectors. The results of aphid bioassays conducted on the wheat plants carrying Sm10 or SmC002 showed significant increases in the survival and fecundity of S. miscanthi. This study demonstrated that the Sm10 and SmC002 salivary effectors of S. miscanthi enhanced host plant susceptibility and benefited S. miscanthi performance by regulating wheat defense signaling pathways.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Li
- Ministry of Agricultural and Rural Affairs-Centre for Agriculture and Bioscience International (MARA-CABI) Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Khakurel A, Lupashin VV. Role of GARP Vesicle Tethering Complex in Golgi Physiology. Int J Mol Sci 2023; 24:6069. [PMID: 37047041 PMCID: PMC10094427 DOI: 10.3390/ijms24076069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
The Golgi associated retrograde protein complex (GARP) is an evolutionarily conserved component of Golgi membrane trafficking machinery that belongs to the Complexes Associated with Tethering Containing Helical Rods (CATCHR) family. Like other multisubunit tethering complexes such as COG, Dsl1, and Exocyst, the GARP is believed to function by tethering and promoting fusion of the endosome-derived small trafficking intermediate. However, even twenty years after its discovery, the exact structure and the functions of GARP are still an enigma. Recent studies revealed novel roles for GARP in Golgi physiology and identified human patients with mutations in GARP subunits. In this review, we summarized our knowledge of the structure of the GARP complex, its protein partners, GARP functions related to Golgi physiology, as well as cellular defects associated with the dysfunction of GARP subunits.
Collapse
Affiliation(s)
| | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
16
|
Shih PY, Sugio A, Simon JC. Molecular Mechanisms Underlying Host Plant Specificity in Aphids. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:431-450. [PMID: 36228134 DOI: 10.1146/annurev-ento-120220-020526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran-plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant-aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant-aphid interactions. Recent technological advances have begun to reveal plant-aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant-aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant-aphid interaction mechanisms.
Collapse
Affiliation(s)
- Po-Yuan Shih
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Akiko Sugio
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Jean-Christophe Simon
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| |
Collapse
|
17
|
Chen X, Liu YQ, Wu MN, Yan L, Chen CY, Mu YP, Liu YJ, Wang MY, Chen XY, Mao YB. A highly accumulated secretory protein from cotton bollworm interacts with basic helix-loop-helix transcription factors to dampen plant defense. THE NEW PHYTOLOGIST 2023; 237:265-278. [PMID: 36131553 DOI: 10.1111/nph.18507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Caterpillar oral secretion (OS) contains active molecules that modulate plant defense signaling. We isolated an effector-like protein (Highly Accumulated Secretory Protein 1, HAS1) from cotton bollworm (Helicoverpa armigera) that is the most highly accumulated secretory protein of the nondigestive components in OS and belongs to venom R-like protein. Elimination of HAS1 by plant-mediated RNA interference reduced the suppression of OS on the defense response in plants. Plants expressing HAS1 are more susceptible to insect herbivory accompanied by the reduced expressions of multiple defense genes. HAS1 binds to the basic helix-loop-helix (bHLH) transcription factors, including GoPGF involved in pigmented gland formation and defense compounds biosynthesis in cotton and MYC3/MYC4 the main regulators in jasmonate (JA) signaling in Arabidopsis. The binding activity is required for HAS1 to inhibit the activation of bHLHs on plant defense gene expressions. Together with our previous study that another venom R-like protein HARP1 in cotton bollworm OS blocks JA signaling by interacting with JASMONATE-ZIM-domain repressors, we conclude that the venom R-like proteins in OS interfere with plant defense in a dual suppression manner. Considering the venom proteins in parasitic wasp assault the immune system of its host animal, our investigation reveals their conserved function in carnivorous and herbivorous insects.
Collapse
Affiliation(s)
- Xueying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Yao-Qian Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chun-Yu Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu-Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
18
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
19
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
20
|
Liu S, Lenoir CJG, Amaro TMMM, Rodriguez PA, Huitema E, Bos JIB. Virulence strategies of an insect herbivore and oomycete plant pathogen converge on host E3 SUMO ligase SIZ1. THE NEW PHYTOLOGIST 2022; 235:1599-1614. [PMID: 35491752 PMCID: PMC9545238 DOI: 10.1111/nph.18184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Pathogens and pests secrete proteins (effectors) to interfere with plant immunity through modification of host target functions and disruption of immune signalling networks. The extent of convergence between pathogen and herbivorous insect virulence strategies is largely unexplored. We found that effectors from the oomycete pathogen, Phytophthora capsici, and the major aphid pest, Myzus persicae target the host immune regulator SIZ1, an E3 SUMO ligase. We used transient expression assays in Nicotiana benthamiana as well as Arabidopsis mutants to further characterize biological role of effector-SIZ1 interactions in planta. We show that the oomycete and aphid effector, which both contribute to virulence, feature different activities towards SIZ1. While M. persicae effector Mp64 increases SIZ1 protein levels in transient assays, P. capsici effector CRN83_152 enhances SIZ1-E3 SUMO ligase activity in vivo. SIZ1 contributes to host susceptibility to aphids and an oomycete pathogen. Knockout of SIZ1 in Arabidopsis decreased susceptibility to aphids, independent of SNC1, PAD4 and EDS1. Similarly SIZ1 knockdown in N. benthamiana led to reduced P. capsici infection. Our results suggest convergence of distinct pathogen and pest virulence strategies on an E3 SUMO ligase to enhance host susceptibility.
Collapse
Affiliation(s)
- Shan Liu
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Camille J. G. Lenoir
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Tiago M. M. M. Amaro
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | | | - Edgar Huitema
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Jorunn I. B. Bos
- Division of Plant SciencesSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
21
|
Nicolis VF, Burger NFV, Botha AM. Whole-body transcriptome mining for candidate effectors from Diuraphis noxia. BMC Genomics 2022; 23:493. [PMID: 35799109 PMCID: PMC9264610 DOI: 10.1186/s12864-022-08712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Proteins within aphid saliva play a crucial role as the molecular interface between aphids and their host plants. These salivary effectors modulate plant responses to favour aphid feeding and facilitate infestation. The identification of effectors from economically important pest species is central in understanding the molecular events during the aphid-plant interaction. The Russian wheat aphid (Diuraphis noxia, Kurdjumov) is one such pest that causes devastating losses to wheat and barley yields worldwide. Despite the severe threat to food security posed by D. noxia, the non-model nature of this pest and its host has hindered progress towards understanding this interaction. In this study, in the absence of a salivary gland transcriptome, whole-body transcriptomics data was mined to generate a candidate effector catalogue for D. noxia. Results Mining the transcriptome identified 725 transcripts encoding putatively secreted proteins amongst which were transcripts specific to D. noxia. Six of the seven examined D. noxia putative effectors, termed DnE’s (Diuraphis noxia effectors) exhibited salivary gland-specific expression. A comparative analysis between whole-body D. noxia transcriptome data versus the head and body transcriptomes from three other aphid species allowed us to define a catalogue of transcripts putatively upregulated in D. noxia head tissue. Five of these were selected for RT-qPCR confirmation, and were found to corroborate the differential expression predictions, with a further three confirmed to be highly expressed in D. noxia salivary gland tissue. Conclusions Determining a putative effector catalogue for D. noxia from whole-transcriptome data, particularly the identification of salivary-specific sequences potentially unique to D. noxia, provide the basis for future functional characterisation studies to gain further insight into this aphid-plant interaction. Furthermore, due to a lack of publicly available aphid salivary gland transcriptome data, the capacity to use comparative transcriptomics to compile a list of putative effector candidates from whole-body transcriptomics data will further the study of effectors in various aphid species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08712-4.
Collapse
Affiliation(s)
- Vittorio F Nicolis
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - N Francois V Burger
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Anna-Maria Botha
- Genetics Department, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
22
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
23
|
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions. THE PLANT CELL 2022; 34:1514-1531. [PMID: 35277714 PMCID: PMC9048964 DOI: 10.1093/plcell/koac058] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/14/2022] [Indexed: 05/30/2023]
Abstract
Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.
Collapse
Affiliation(s)
- Swayamjit Ray
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14850, USA
| | | |
Collapse
|
24
|
Leybourne DJ, Valentine TA, Binnie K, Taylor A, Karley AJ, Bos JIB. Drought stress increases the expression of barley defence genes with negative consequences for infesting cereal aphids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2238-2250. [PMID: 35090009 DOI: 10.1093/jxb/erac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Crops are exposed to myriad abiotic and biotic stressors with negative consequences. Two stressors that are expected to increase under climate change are drought and infestation with herbivorous insects, including important aphid species. Expanding our understanding of the impact drought has on the plant-aphid relationship will become increasingly important under future climate scenarios. Here we use a previously characterized plant-aphid system comprising a susceptible variety of barley, a wild relative of barley with partial aphid resistance, and the bird cherry-oat aphid to examine the drought-plant-aphid relationship. We show that drought has a negative effect on plant physiology and aphid fitness, and provide evidence to suggest that plant resistance influences aphid responses to drought stress. Furthermore, we show that the expression of thionin genes, plant defensive compounds that contribute to aphid resistance, increase in susceptible plants exposed to drought stress but remain at constant levels in the partially resistant plant, suggesting that they play an important role in determining the success of aphid populations. This study highlights the role of plant defensive processes in mediating the interactions between the environment, plants, and herbivorous insects.
Collapse
Affiliation(s)
- Daniel J Leybourne
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tracy A Valentine
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Kirsty Binnie
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Anna Taylor
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Alison J Karley
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
25
|
Kallure GS, Shinde BA, Barvkar VT, Kumari A, Giri AP. Dietary influence on modulation of Helicoverpa armigera oral secretion composition leading to differential regulation of tomato plant defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111120. [PMID: 34895549 DOI: 10.1016/j.plantsci.2021.111120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Little is known about how different plant-based diets influence the insect herbivores' oral secretion (OS) composition and eventually the plant defense responses. We analyzed the OS composition of the generalist Lepidopteran insect, Helicoverpa armigera feeding on the host plant tomato (OSH), non-host plant capsicum (OSNH), and artificial diet (OSAD) using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Higher numbers and levels of alkaloids and terpenoids were observed in OSH and OSNH, respectively while OSAD was rich in phospholipids. Interestingly, treatment of H. armigera OSAD, OSH and OSNH on wounded tomato leaves showed differential expression of (i) genes involved in JA and SA biosynthesis and their responsive genes, and (ii) biosynthetic pathway genes of chlorogenic acid (CGA) and trehalose, which exhibited increased accumulation along with several other plant defensive metabolites. Specifically, high levels of CGA were detected after OSH and OSNH treatments in tomato leaves. There was higher expression of the genes involved in phenylpropanoid biosynthesis, which may lead to the increased accumulation of CGA and related metabolites. In the insect bioassay, CGA significantly inhibited H. armigera larval growth. Our results underline the differential accumulation of plant and insect OS metabolites and identified potential plant metabolite(s) affecting insect growth and development.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Balkrishna A Shinde
- Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
26
|
Stern DL, Han C. OUP accepted manuscript. Genome Biol Evol 2022; 14:6602283. [PMID: 35660862 PMCID: PMC9168663 DOI: 10.1093/gbe/evac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/09/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
Homology of highly divergent genes often cannot be determined from sequence similarity alone. For example, we recently identified in the aphid Hormaphis cornu a family of rapidly evolving bicycle genes, which encode novel proteins implicated as plant gall effectors, and sequence similarity search methods yielded few putative bicycle homologs in other species. Coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences, however, and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of bicycle genes identified many putative bicycle homologs in other species. Independent evidence from sequence features and intron locations supported homology assignments. To test the potential roles of bicycle genes in other aphids, we sequenced the genome of a second gall-forming aphid, Tetraneura nigriabdominalis and found that many bicycle genes are strongly expressed in the salivary glands of the gall forming foundress. In addition, bicycle genes are strongly overexpressed in the salivary glands of a non-gall forming aphid, Acyrthosiphon pisum, and in the non-gall forming generations of H. cornu. These observations suggest that Bicycle proteins may be used by multiple aphid species to manipulate plants in diverse ways. Incorporation of gene structural features into sequence search algorithms may aid identification of deeply divergent homologs, especially of rapidly evolving genes involved in host-parasite interactions.
Collapse
Affiliation(s)
| | - Clair Han
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
27
|
Ali F, Hu X, Wang D, Yang F, Guo H, Wang Y. Plant pathogen-mediated rapid acclimation of a host-specialized aphid to a non-host plant. Ecol Evol 2021; 11:15261-15272. [PMID: 34765176 PMCID: PMC8571567 DOI: 10.1002/ece3.8209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Polyphagous aphids often consist of host-specialized lineages, which have greater fitness on their native hosts than on others. The underlying causes are important for understanding of the evolution of diet breadth and host shift of aphids. The cotton-melon aphid Aphis gossypii Glover is extremely polyphagous with many strict host-specialized lineages. Whether and how the lineage specialized on the primary host hibiscus shifts to the secondary host cucumber remains elusive. We found that the hibiscus-specialized lineage suffered high mortality and gave birth to very few nymphs developing into yellow dwarfs on fresh cucumber leaves, and did not inflict any damage symptoms on cucumber plants. The poor performance did not improve with prolonged exposure to cucumber; however, it did significantly improve when the cucumber leaves were pre-infected with a biotrophic phytopathogen Pseudoperonospora cubensis. More importantly, the hibiscus-specialized lineage with two-generation feeding experience on pre-infected cucumber leaves performed as well as the cucumber-specialized lineage did on fresh cucumber leaves, and inflicted typical damage symptoms on intact cucumber plants. Electrical penetration graph (EPG) indicated that the hibiscus-specialized lineage did not ingest phloem sap from fresh cucumber leaves but succeeded in ingesting phloem sap from pre-infected cucumber leaves, which explained the performance improvement of the hibiscus-specialized lineage on pre-infected cucumber leaves. This study revealed a new pathway for the hibiscus-specialized lineage to quickly acclimate to cucumber under the assistance of the phytopathogen. We considered that the short feeding experience on pre-infected cucumber may activate expression of effector genes that are related to specific host utilization. We suggest to identify host-specific effectors by comparing proteomes or/and transcriptomes of the hibiscus-specialized lineage before and after acclimating to cucumber.
Collapse
Affiliation(s)
- Farhan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiaoyue Hu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Duoqi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Fengying Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hao Guo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key LaboratoryCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
28
|
Huang HJ, Ye ZX, Lu G, Zhang CX, Chen JP, Li JM. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC-MS/MS analyses. INSECT SCIENCE 2021; 28:1369-1381. [PMID: 32757245 DOI: 10.1111/1744-7917.12856] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 05/13/2023]
Abstract
The whitefly Bemisia tabaci is a notorious agricultural pest of many crops worldwide. Although it is thought that B. tabaci secretes saliva into the host plant to counter plant defenses, knowledge on the whitefly salivary proteome is limited. Here, we characterized the gene/protein repertoires of B. tabaci salivary glands and secreted saliva by transcriptomic and liquid chromatography tandem mass spectroscopy analyses. A total of 698 salivary gland-enriched unigenes and 171 salivary proteins were identified. Comparative analysis between the B. tabaci salivary proteins and those of different arthropod species revealed numerous similarities in proteins associated with binding, hydrolysis, and oxidation-reduction, which demonstrates a degree of conservation across herbivorous saliva. There were 74 proteins only identified in B. tabaci saliva, of which 34 were B. tabaci-specific. In addition, 13 salivary proteins, of which 11 were B. tabaci-specific, were differentially regulated when B. tabaci fed on different hosts. Our results provide a good resource for future functional studies of whitefly salivary effectors, and might be useful in pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
29
|
Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H, Liu B, Dou D, Hoffmann AA, Zhu-Salzman K, Fang J. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. THE NEW PHYTOLOGIST 2021; 232:802-817. [PMID: 34260062 DOI: 10.1111/nph.17620] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.
Collapse
Affiliation(s)
- Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Shiying Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jiafei Ju
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| |
Collapse
|
30
|
Huang HJ, Yan XT, Wei ZY, Wang YZ, Chen JP, Li JM, Sun ZT, Zhang CX. Identification of Riptortus pedestris Salivary Proteins and Their Roles in Inducing Plant Defenses. BIOLOGY 2021; 10:biology10080753. [PMID: 34439985 PMCID: PMC8389542 DOI: 10.3390/biology10080753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
Simple Summary The bean bug, Riptortus pedestris (Fabricius) is a notorious pest of soybean crops in Asia. During the feeding process, the bug secretes a mixture of salivary components, which play critical roles in the insect–plant interactions. In the present study, a total of 136 salivary proteins were identified by transcriptomic and proteomic approaches. Among them, five proteins (RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2) were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results provide a good resource for future functional studies of bug salivary effectors and might be useful in pest management. Abstract The bean bug, Riptortus pedestris (Fabricius), is one of the most important soybean pests. It damages soybean leaves and pods with its piercing-sucking mouthparts, causing staygreen-like syndromes in the infested crops. During the feeding process, R. pedestris secretes a mixture of salivary proteins, which play critical roles in the insect–plant interactions and may be responsible for staygreen-like syndromes. The present study aimed to identify the major salivary proteins in R. pedestris saliva by transcriptomic and proteomic approaches, and to screen the proteins that potentially induced plant defense responses. Altogether, 136 salivary proteins were identified, and a majority of them were involved in hydrolase and binding. Additionally, R. pedestris saliva contained abundant bug-specific proteins with unknown function. Transient expression of salivary proteins in Nicotiana benthamiana leaves identified that RpSP10.3, RpSP13.4, RpSP13.8, RpSP17.8, and RpSP10.2 were capable of inducing cell death, reactive oxygen species (ROS) burst, and hormone signal changes, indicating the potential roles of these proteins in eliciting plant defenses. Our results will shed more light on the molecular mechanisms underlying the plant–insect interactions and are useful for pest management.
Collapse
|
31
|
Wang Z, Lü Q, Zhang L, Zhang M, Chen L, Zou S, Zhang C, Dong H. Aphid salivary protein Mp1 facilitates infestation by binding phloem protein 2-A1 in Arabidopsis. Biochem Biophys Res Commun 2021; 572:105-111. [PMID: 34364288 DOI: 10.1016/j.bbrc.2021.07.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
We have previously demonstrated that Arabidopsis (Arabidopsis thaliana) phloem protein PP2-A1 is an integral component of resistance to the green peach aphid (Myzus persicae). Here, we report that M. persicae overcomes the resistance of PP2-A1 by using the salivary protein Mp1 as an energetic effector and an interactor of AtPP2-A1. Using the RNA interference technique, we demonstrated that Mp1 plays an essential role in the phloem-feeding activity of M. persicae. When the Mp1 gene was silenced, aphids incurred serious impairments not only in phloem-feeding activity, but also in survival and fertility. In essence, phloem-feeding activity was attributed to the molecular interaction between Mp1 and AtPP2-A1. The Mp1 and AtPP2-A1 interactions were localized to plant cell membranes by co-immunoprecipitation and bimolecular fluorescence complementation experiments. Furthermore, the interaction was found to be required for aphid feeding on Arabidopsis phloem. Overall, our results suggest that Mp1 is an important effector of M. persicae and interacts with AtPP2-A1 to facilitate infestation in the plant tissue by this insect.
Collapse
Affiliation(s)
- Zhen Wang
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qingyun Lü
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China.
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Mou Zhang
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| | - Chunling Zhang
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hansong Dong
- College of Plant Protection, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
32
|
Naalden D, van Kleeff PJM, Dangol S, Mastop M, Corkill R, Hogenhout SA, Kant MR, Schuurink RC. Spotlight on the Roles of Whitefly Effectors in Insect-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:661141. [PMID: 34276723 PMCID: PMC8283192 DOI: 10.3389/fpls.2021.661141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paula J. M. van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca Corkill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C. Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Zheng X, Zhu L, He G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. CURRENT OPINION IN INSECT SCIENCE 2021; 45:14-20. [PMID: 33227482 DOI: 10.1016/j.cois.2020.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The variability of brown planthopper (BPH) populations and diversity of the host rice germplasm provide an ideal model for exploring the genetic and molecular basis of insect-plant interactions. During the long-term evolutionary arms race, complicated feeding and defense strategies have developed in BPH and rice. Nine major BPH resistance genes have been cloned and the exploration of BPH resistance genes medicated mechanism against BPH shed a light on the molecular basis of the rice-BPH interaction. This short review provides an update on our current understanding of the genetic and molecular mechanism for rice resistance and BPH adaptation. Understanding the interactions between BPH and rice will provide novel insights for sustainable control of this pest.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
34
|
Tian T, Ji R, Fu J, Li J, Wang L, Zhang H, Yang S, Ye W, Fang J, Zhu-Salzman K. A salivary calcium-binding protein from Laodelphax striatellus acts as an effector that suppresses defense in rice. PEST MANAGEMENT SCIENCE 2021; 77:2272-2281. [PMID: 33421243 DOI: 10.1002/ps.6252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/06/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium (Ca2+ )-binding proteins in the saliva of herbivorous insects function as effectors to attenuate host plant defenses and thus improve insect feeding performance. Silencing these genes via transgenic plant-mediated RNAi is thus a promising pest control strategy. However, their sequences and functions in the small brown planthopper Laodelphax striatellus (SBPH) remain to be investigated. RESULTS We identified a putative EF-hand Ca2+ -binding protein (LsECP1) in SBPH watery saliva. LsECP1 was expressed extremely high in the salivary glands but at a low level during the egg stage. Transient LsECP1 expression in rice cells indicated its cytoplasm and nucleus localization. The bacterially expressed recombinant LsECP1 protein exhibited Ca2+ -binding activity. Rice plants fed by SBPH nymphs with knocked down LsECP1 exhibited higher levels of cytosolic Ca2+ , jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and hydrogen peroxide (H2 O2 ). Consistently, application of heterogeneously expressed LsECP1 protein suppressed wound-induced JA, JA-Ile and H2 O2 accumulation in rice. Thus, LsECP1 knockdown by dsRNA injection resulted in reduced feeding, fecundity and survival rates of SBPH reared on rice plants. Transgenic rice plants constitutively expressing LsECP1 dsRNA were produced, and plant-mediated LsECP1 knockdown enhanced rice resistance to SBPH. CONCLUSION SBPH LsECP1 acts as an effector to impair host rice defense responses and promotes SBPH performance. This discovery provides a potential gene target for plant-mediated RNAi-based pest management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Lu Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Hao Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Shiying Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jichao Fang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Ye J, Zhang L, Zhang X, Wu X, Fang R. Plant Defense Networks against Insect-Borne Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:272-287. [PMID: 33277186 DOI: 10.1016/j.tplants.2020.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/19/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Upon infection with insect-borne microbial pathogens, plants are exposed to two types of damage simultaneously. Over the past decade, numerous molecular studies have been conducted to understand how plants respond to pathogens or herbivores. However, investigations of host responses typically focus on a single stress and are performed under static laboratory conditions. In this review, we highlight research that sheds light on how plants deploy broad-spectrum mechanisms against both vector-borne pathogens and insect vectors. Among the host genes involved in multistress resistance, many are involved in innate immunity and phytohormone signaling (especially jasmonate and salicylic acid). The potential for genome editing or chemical modulators to fine-tune crop defensive signaling, to develop sustainable methods to control insect-borne diseases, is discussed.
Collapse
Affiliation(s)
- Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Florencio-Ortiz V, Sellés-Marchart S, Casas JL. Proteome changes in pepper (Capsicum annuum L.) leaves induced by the green peach aphid (Myzus persicae Sulzer). BMC PLANT BIOLOGY 2021; 21:12. [PMID: 33407137 PMCID: PMC7788789 DOI: 10.1186/s12870-020-02749-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/22/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Aphid attack induces defense responses in plants activating several signaling cascades that led to the production of toxic, repellent or antinutritive compounds and the consequent reorganization of the plant primary metabolism. Pepper (Capsicum annuum L.) leaf proteomic response against Myzus persicae (Sulzer) has been investigated and analyzed by LC-MS/MS coupled with bioinformatics tools. RESULTS Infestation with an initially low density (20 aphids/plant) of aphids restricted to a single leaf taking advantage of clip cages resulted in 6 differentially expressed proteins relative to control leaves (3 proteins at 2 days post-infestation and 3 proteins at 4 days post-infestation). Conversely, when plants were infested with a high density of infestation (200 aphids/plant) 140 proteins resulted differentially expressed relative to control leaves (97 proteins at 2 days post-infestation, 112 proteins at 4 days post-infestation and 105 proteins at 7 days post-infestation). The majority of proteins altered by aphid attack were involved in photosynthesis and photorespiration, oxidative stress, translation, protein folding and degradation and amino acid metabolism. Other proteins identified were involved in lipid, carbohydrate and hormone metabolism, transcription, transport, energy production and cell organization. However proteins directly involved in defense were scarce and were mostly downregulated in response to aphids. CONCLUSIONS The unexpectedly very low number of regulated proteins found in the experiment with a low aphid density suggests an active mitigation of plant defensive response by aphids or alternatively an aphid strategy to remain undetected by the plant. Under a high density of aphids, pepper leaf proteome however changed significantly revealing nearly all routes of plant primary metabolism being altered. Photosynthesis was so far the process with the highest number of proteins being regulated by the presence of aphids. In general, at short times of infestation (2 days) most of the altered proteins were upregulated. However, at longer times of infestation (7 days) the protein downregulation prevailed. Proteins involved in plant defense and in hormone signaling were scarce and mostly downregulated.
Collapse
Affiliation(s)
- Victoria Florencio-Ortiz
- Unidad Asociada CSIC-UA IPAB. Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Carretera de San Vicente del Raspeig, s/n, E-03690 San Vicente del Raspeig, Alicante, Spain.
| | - Susana Sellés-Marchart
- Genomics and Proteomics Unit, Servicios Técnicos de Investigación, University of Alicante, Carretera de San Vicente del Raspeig, s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| | - José L Casas
- Unidad Asociada CSIC-UA IPAB. Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Carretera de San Vicente del Raspeig, s/n, E-03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
37
|
Ortiz-Morea FA, He P, Shan L, Russinova E. It takes two to tango - molecular links between plant immunity and brassinosteroid signalling. J Cell Sci 2020; 133:133/22/jcs246728. [PMID: 33239345 DOI: 10.1242/jcs.246728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to the invasion of microorganisms, plants actively balance their resources for growth and defence, thus ensuring their survival. The regulatory mechanisms underlying plant immunity and growth operate through complex networks, in which the brassinosteroid phytohormone is one of the central players. In the past decades, a growing number of studies have revealed a multi-layered crosstalk between brassinosteroid-mediated growth and plant immunity. In this Review, by means of the tango metaphor, we immerse ourselves into the intimate relationship between brassinosteroid and plant immune signalling pathways that is tailored by the lifestyle of the pathogen and modulated by other phytohormones. The plasma membrane is the unique stage where brassinosteroid and immune signals are dynamically integrated and where compartmentalization into nanodomains that host distinct protein consortia is crucial for the dance. Shared downstream signalling components and transcription factors relay the tango play to the nucleus to activate the plant defence response and other phytohormonal signalling pathways for the finale. Understanding how brassinosteroid and immune signalling pathways are integrated in plants will help develop strategies to minimize the growth-defence trade-off, a key challenge for crop improvement.
Collapse
Affiliation(s)
- Fausto Andres Ortiz-Morea
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA .,Amazonian Research Center Cimaz-Macagual, University of the Amazon, Florencia 180002622, Colombia
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
38
|
Aljbory Z, Aikins MJ, Park Y, Reeck GR, Chen M. Differential localization of Hessian fly candidate effectors in resistant and susceptible wheat plants. PLANT DIRECT 2020; 4:e00246. [PMID: 32818166 PMCID: PMC7428492 DOI: 10.1002/pld3.246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 06/01/2023]
Abstract
Hessian fly Mayetiola destructor is a notorious pest of wheat. Previous studies suggest that Hessian fly uses effector-based mechanisms to attack wheat plants during parasitism, but no direct evidence has been reported to support this postulation. Here, we produced recombinant proteins for five Family-1 candidate effectors and antibodies. Indirect immunostaining and western blots were carried out to examine the localization of Hessian fly Family-1 proteins in plant and insect tissues. Confocal images revealed that Family-1 putative effectors were exclusively produced in the basal region of larval salivary glands, which are directly linked to the mandibles' ducts for effector injection. The five Family-1 proteins were detected in infested host plants on western blots. Indirect immunostaining of sectioned host tissues around the feeding site revealed strikingly different localization patterns between resistant and susceptible plants. In susceptible plants, the Family-1 proteins penetrated from the feeding cell into deep tissues, indicative of movement between cells during nutritive cell formation. In contrast, the Hessian fly proteins were primarily limited to the initially attacked cells in resistant plants. The limitation of effectors' spread in resistant plants was likely due to wall strengthening and rapid hypersensitive cell death. Cell death was found in Nicotiana benthamiana in association with hypersensitive reaction triggered by the Family-1 effector SSGP-1A2. Our finding represents a significant progress in visualizing insect effectors in host tissues and mechanisms of plant resistance and susceptibility to gall midge pests.
Collapse
Affiliation(s)
- Zainab Aljbory
- Department of EntomologyKansas State UniversityManhattanKSUSA
- College of AgricultureGreen University of Al QasimIraq
| | | | - Yoonseong Park
- Department of EntomologyKansas State UniversityManhattanKSUSA
| | - Gerald R. Reeck
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKSUSA
| | - Ming‐Shun Chen
- Department of EntomologyKansas State UniversityManhattanKSUSA
- Hard Winter Wheat Genetics Research UnitUSDA‐ARSKansas State UniversityManhattanKSUSA
| |
Collapse
|
39
|
Ram C, Annamalai M, Koramutla MK, Kansal R, Arora A, Jain PK, Bhattacharya R. Characterization of STP4 promoter in Indian mustard Brassica juncea for use as an aphid responsive promoter. Biotechnol Lett 2020; 42:2013-2033. [PMID: 32676799 DOI: 10.1007/s10529-020-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Brassica juncea, a major oilseed crop, suffers substantial yield losses due to infestation by mustard aphids (Lipaphis erysimi). Unavailability of resistance genes within the accessible gene pool underpins significance of the transgenic strategy in developing aphid resistance. In this study, we aimed for the identification of an aphid-responsive promoter from B. juncea, based on the available genomic resources. RESULTS A monosaccharide transporter gene, STP4 in B. juncea was activated by aphids and sustained increased expression as the aphids colonized the plants. We cloned the upstream intergenic region of STP4 and validated its stand-alone aphid-responsive promoter activity. Further, deletion analysis identified the putative cis-elements important for the aphid responsive promoter activity. CONCLUSION The identified STP4 promoter can potentially be used for driving high level aphid-inducible expression of transgenes in plants. Use of aphid-responsive promoter instead of constitutive promoters can potentially reduce the metabolic burden of transgene-expression on the host plant.
Collapse
Affiliation(s)
- Chet Ram
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Muthuganeshan Annamalai
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
40
|
He Q, McLellan H, Boevink PC, Birch PR. All Roads Lead to Susceptibility: The Many Modes of Action of Fungal and Oomycete Intracellular Effectors. PLANT COMMUNICATIONS 2020; 1:100050. [PMID: 33367246 PMCID: PMC7748000 DOI: 10.1016/j.xplc.2020.100050] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/06/2023]
Abstract
The ability to secrete effector proteins that can enter plant cells and manipulate host processes is a key determinant of what makes a successful plant pathogen. Here, we review intracellular effectors from filamentous (fungal and oomycete) phytopathogens and the host proteins and processes that are targeted to promote disease. We cover contrasting virulence strategies and effector modes of action. Filamentous pathogen effectors alter the fates of host proteins that they target, changing their stability, their activity, their location, and the protein partners with which they interact. Some effectors inhibit target activity, whereas others enhance or utilize it, and some target multiple host proteins. We discuss the emerging topic of effectors that target negative regulators of immunity or other plant proteins with activities that support susceptibility. We also highlight the commonly targeted host proteins that are manipulated by effectors from multiple pathogens, including those representing different kingdoms of life.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R.J. Birch
- Division of Plant Sciences, School of Life Sciences, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Corresponding author
| |
Collapse
|
41
|
Duhlian L, Koramutla MK, Subramanian S, Chamola R, Bhattacharya R. Comparative transcriptomics revealed differential regulation of defense related genes in Brassica juncea leading to successful and unsuccessful infestation by aphid species. Sci Rep 2020; 10:10583. [PMID: 32601289 PMCID: PMC7324606 DOI: 10.1038/s41598-020-66217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/18/2020] [Indexed: 11/09/2022] Open
Abstract
Productivity of Indian mustard (B. juncea), a major oil yielding crop in rapeseed-mustard group is heavily inflicted by mustard aphid, L. erysimi. Mustard aphid, a specialist aphid species on rapeseed-mustard crops, rapidly multiplies and colonizes the plants leading to successful infestation. In contrary, legume specific cowpea aphid, A. craccivora when released on B. juncea plants fails to build up population and thus remains unsuccessful in infestation. In the present study, differential host response of B. juncea to the two aphid species, one being successful insect-pest and the other being unsuccessful on it has been studied based on transcriptome analysis. Differential feeding efficiency of the two aphid species on mustard plants was evident from the amount of secreted honeydews. Leaf-transcriptomes of healthy and infested plants, treated with the two aphid species, were generated by RNA sequencing on Illumina platform and de novo assembly of the quality reads. A comparative assessment of the differentially expressed genes due to treatments revealed a large extent of overlaps as well as distinctness with respect to the set of genes and their direction of regulation. With respect to host-genes related to transcription factors, oxidative homeostasis, defense hormones and secondary metabolites, L. erysimi led to either suppression or limited activation of the transcript levels compared to A. craccivora. Further, a comprehensive view of the DEGs suggested more potential of successful insect-pests towards transcriptional reprogramming of the host. qRT-PCR based validation of randomly selected up- and down-regulated transcripts authenticated the transcriptome data.
Collapse
Affiliation(s)
- Lianthanzauva Duhlian
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohit Chamola
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
42
|
Souza MF, Davis JA. Detailed Characterization of Melanaphis sacchari (Hemiptera: Aphididae) Feeding Behavior on Different Host Plants. ENVIRONMENTAL ENTOMOLOGY 2020; 49:683-691. [PMID: 32333015 DOI: 10.1093/ee/nvaa036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 06/11/2023]
Abstract
Worldwide, Melanaphis sacchari Zehntner is reported on several plants in the family Poaceae, including important crops. In the United States, M. sacchari has been present primarily on sugarcane (Saccharum officinarum L.), but recently sorghum (Sorghum bicolor (L.) Moench) has become a main host. It is not clear how M. sacchari exploits sorghum or other plant species present in the Louisiana agro-ecoscape, but there is potential for these plants to be bridging hosts. Thus, this study determined the feeding behavior of M. sacchari on sorghum, rice, Oryza sativa (L.), sweetpotato, Ipomea batatas (L.), maize, Zea mays (L.), Johnsongrass, S. halepense (L.), and wheat Triticum aestivum (L.) using electrical penetration graphs. Melanaphis sacchari established sustained feeding on sorghum, Johnsongrass, wheat, and rice, only a negligent percentage on maize and no aphid fed on sweetpotato. Differences in Electrical Penetration Graph parameters among the plants in nonpenetrating total time and the lower number of probes, time to penetration initiation, proportion of individuals probing, number of probes shorter than 30 s, number of probes longer than 30 s but shorter than 3 min, pathway phase duration, and number of cell punctures during pathway phase, suggest epidermis and mesophyll factors affecting aphid feeding behavior. While the lack of differences in number of feeding occurrences, total time feeding, and number of sustained feeding occurrences shows that M. sacchari is able to feed on those plants, sieve element factors such as resistance or low nutritional quality prevent the growth of this population in field.
Collapse
Affiliation(s)
- M F Souza
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences, Baton Rouge, LA
| | - J A Davis
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences, Baton Rouge, LA
| |
Collapse
|
43
|
Chen Y, Singh A, Kaithakottil GG, Mathers TC, Gravino M, Mugford ST, van Oosterhout C, Swarbreck D, Hogenhout SA. An aphid RNA transcript migrates systemically within plants and is a virulence factor. Proc Natl Acad Sci U S A 2020; 117:12763-12771. [PMID: 32461369 PMCID: PMC7293609 DOI: 10.1073/pnas.1918410117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aphids are sap-feeding insects that colonize a broad range of plant species and often cause feeding damage and transmit plant pathogens, including bacteria, viruses, and viroids. These insects feed from the plant vascular tissue, predominantly the phloem. However, it remains largely unknown how aphids, and other sap-feeding insects, establish intimate long-term interactions with plants. To identify aphid virulence factors, we took advantage of the ability of the green peach aphid Myzus persicae to colonize divergent plant species. We found that a M. persicae clone of near-identical females established stable colonies on nine plant species of five representative plant eudicot and monocot families that span the angiosperm phylogeny. Members of the novel aphid gene family Ya are differentially expressed in aphids on the nine plant species and are coregulated and organized as tandem repeats in aphid genomes. Aphids translocate Ya transcripts into plants, and some transcripts migrate to distal leaves within several plant species. RNAi-mediated knockdown of Ya genes reduces M. persicae fecundity, and M. persicae produces more progeny on transgenic plants that heterologously produce one of the systemically migrating Ya transcripts as a long noncoding (lnc) RNA. Taken together, our findings show that beyond a range of pathogens, M. persicae aphids translocate their own transcripts into plants, including a Ya lncRNA that migrates to distal locations within plants, promotes aphid fecundity, and is a member of a previously undescribed host-responsive aphid gene family that operate as virulence factors.
Collapse
Affiliation(s)
- Yazhou Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Archana Singh
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | | | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Matteo Gravino
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
44
|
Yates-Stewart AD, Daron J, Wijeratne S, Shahid S, Edgington HA, Slotkin RK, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103363. [PMID: 32201218 DOI: 10.1016/j.ibmb.2020.103363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
In agricultural systems, crops equipped with host-plant resistance (HPR) have enhanced protection against pests, and are used as a safe and sustainable tool in pest management. In soybean, HPR can control the soybean aphid (Aphis glycines), but certain aphid populations have overcome this resistance (i.e., virulence). The molecular mechanisms underlying aphid virulence to HPR are unknown, but likely involve effector proteins that are secreted by aphids to modulate plant defenses. Another mechanism to facilitate adaptation is through the activity of transposable elements, which can become activated by stress. In this study, we performed RNA sequencing of virulent and avirulent soybean aphids fed susceptible or resistant (Rag1 + Rag2) soybean. Our goal was to better understand the molecular mechanisms underlying soybean aphid virulence. Our data showed that virulent aphids mostly down regulate putative effector genes relative to avirulent aphids, especially when aphids were fed susceptible soybean. Decreased expression of effectors may help evade HPR plant defenses. Virulent aphids also transcriptionally up regulate a diverse set of transposable elements and nearby genes, which is consistent with stress adaptation. Our work demonstrates two mechanisms of pest adaptation to resistance, and identifies effector gene targets for future functional testing.
Collapse
Affiliation(s)
| | - Josquin Daron
- CNRS, Centre National de la Recherche Scientifique, Montpellier, France
| | - Saranga Wijeratne
- The Ohio State University, Molecular and Cellular Imaging Center, OARDC, Wooster, OH, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St, Louis, MO, USA
| | - Hilary A Edgington
- The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St, Louis, MO, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Andy Michel
- The Ohio State University, Center for Applied Plant Sciences, Wooster, OH, USA; The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA.
| |
Collapse
|
45
|
MacWilliams JR, Dingwall S, Chesnais Q, Sugio A, Kaloshian I. AcDCXR Is a Cowpea Aphid Effector With Putative Roles in Altering Host Immunity and Physiology. FRONTIERS IN PLANT SCIENCE 2020; 11:605. [PMID: 32499809 PMCID: PMC7243947 DOI: 10.3389/fpls.2020.00605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 06/01/2023]
Abstract
Cowpea, Vigna unguiculata, is a crop that is essential to semiarid areas of the world like Sub-Sahara Africa. Cowpea is highly susceptible to cowpea aphid, Aphis craccivora, infestation that can lead to major yield losses. Aphids feed on their host plant by inserting their hypodermal needlelike flexible stylets into the plant to reach the phloem sap. During feeding, aphids secrete saliva, containing effector proteins, into the plant to disrupt plant immune responses and alter the physiology of the plant to their own advantage. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to identify the salivary proteome of the cowpea aphid. About 150 candidate proteins were identified including diacetyl/L-xylulose reductase (DCXR), a novel enzyme previously unidentified in aphid saliva. DCXR is a member of short-chain dehydrogenases/reductases with dual enzymatic functions in carbohydrate and dicarbonyl metabolism. To assess whether cowpea aphid DCXR (AcDCXR) has similar functions, recombinant AcDCXR was purified and assayed enzymatically. For carbohydrate metabolism, the oxidation of xylitol to xylulose was tested. The dicarbonyl reaction involved the reduction of methylglyoxal, an α-β-dicarbonyl ketoaldehyde, known as an abiotic and biotic stress response molecule causing cytotoxicity at high concentrations. To assess whether cowpea aphids induce methylglyoxal in plants, we measured methylglyoxal levels in both cowpea and pea (Pisum sativum) plants and found them elevated transiently after aphid infestation. Agrobacterium-mediated transient overexpression of AcDCXR in pea resulted in an increase of cowpea aphid fecundity. Taken together, our results indicate that AcDCXR is an effector with a putative ability to generate additional sources of energy to the aphid and to alter plant defense responses. In addition, this work identified methylglyoxal as a potential novel aphid defense metabolite adding to the known repertoire of plant defenses against aphid pests.
Collapse
Affiliation(s)
- Jacob R. MacWilliams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie Dingwall
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | | | - Akiko Sugio
- INRAE, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Isgouhi Kaloshian
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
- Department of Nematology, University of California Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
46
|
Dong Y, Jing M, Shen D, Wang C, Zhang M, Liang D, Nyawira KT, Xia Q, Zuo K, Wu S, Wu Y, Dou D, Xia A. The mirid bug Apolygus lucorum deploys a glutathione peroxidase as a candidate effector to enhance plant susceptibility. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2701-2712. [PMID: 31950164 PMCID: PMC7210764 DOI: 10.1093/jxb/eraa015] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/15/2020] [Indexed: 05/04/2023]
Abstract
The mirid bug Apolygus lucorum has become a major agricultural pest since the large-scale cultivation of Bt-cotton. It was assumed that A. lucorum, similarly to other phloem sap insects, could secrete saliva that contains effector proteins into plant interfaces to perturb host cellular processes during feeding. However, the secreted effectors of A. lucorum are still uncharacterized and unstudied. In this study, 1878 putative secreted proteins were identified from the transcriptome of A. lucorum, which either had homology with published aphid effectors or shared common features with plant pathogens and insect effectors. One hundred and seventy-two candidate effectors were used for cell death-inducing/suppressing assays, and a putative salivary gland effector, Apolygus lucorum cell death inhibitor 6 (Al6), was characterized. The mRNAs of Al6 were enriched at feeding stages (nymph and adult) and, in particular, in salivary glands. Moreover, we revealed that the secreted Al6 encoded an active glutathione peroxidase that reduced reactive oxygen species (ROS) accumulation induced by INF1 or Flg22. Expression of the Al6 gene in planta altered insect feeding behavior and promoted plant pathogen infections. Inhibition of cell death and enhanced plant susceptibility to insect and pathogens are dependent on glutathione peroxidase activity of Al6. Thus, this study shows that a candidate salivary gland effector, Al6, functions as a glutathione peroxidase and suppresses ROS induced by pathogen-associated molecular pattern to inhibit pattern-triggered immunity (PTI)-induced cell death. The identification and molecular mechanism analysis of the Al6 candidate effector in A. lucorum will provide new insight into the molecular mechanisms of insect-plant interactions.
Collapse
Affiliation(s)
| | | | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chenyang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meiqian Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dong Liang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Karani T Nyawira
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qingyue Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kairan Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Escudero-Martinez C, Rodriguez PA, Liu S, Santos PA, Stephens J, Bos JIB. An aphid effector promotes barley susceptibility through suppression of defence gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2796-2807. [PMID: 31989174 PMCID: PMC7210766 DOI: 10.1093/jxb/eraa043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/27/2020] [Indexed: 05/21/2023]
Abstract
Aphids secrete diverse repertoires of effectors into their hosts to promote the infestation process. While 'omics' approaches facilitated the identification and comparison of effector repertoires from a number of aphid species, the functional characterization of these proteins has been limited to dicot (model) plants. The bird cherry-oat aphid Rhopalosiphum padi is a pest of cereal crops, including barley. Here, we extend efforts to characterize aphid effectors with regard to their role in promoting susceptibility to the R. padi-barley interaction. We selected three R. padi effectors based on sequence similarity to previously characterized Myzus persicae effectors and assessed their subcellular localization, expression, and role in promoting plant susceptibility. Expression of R. padi effectors RpC002 and Rp1 in transgenic barley lines enhanced plant susceptibility to R. padi but not M. persicae, for which barley is a poor host. Characterization of Rp1 transgenic barley lines revealed reduced gene expression of plant hormone signalling genes relevant to plant-aphid interactions, indicating that this effector enhances susceptibility by suppressing plant defences in barley. Our data suggest that some aphid effectors specifically function when expressed in host species, and feature activities that benefit their corresponding aphid species.
Collapse
Affiliation(s)
- Carmen Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Patricia A Rodriguez
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Helmholtz Zentrum München, Institute of Network Biology (INET), Munich, Germany
| | - Shan Liu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Pablo A Santos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Jorunn I B Bos
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
48
|
Gene silencing of Diaphorina citri candidate effectors promotes changes in feeding behaviors. Sci Rep 2020; 10:5992. [PMID: 32265528 PMCID: PMC7138822 DOI: 10.1038/s41598-020-62856-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
Insect effectors are mainly secreted by salivary glands, modulate plant physiology and favor the establishment and transmission of pathogens. Feeding is the principal vehicle of transmission of Candidatus Liberibacter asiaticus (Ca. Las) by the Asian citrus psyllid (ACP), Diaphorina citri. This study aimed to predict putative ACP effectors that may act on the Huanglongbing (HLB) pathosystem. Bioinformatics analysis led to the identification of 131 candidate effectors. Gene expression investigations were performed to select genes that were overexpressed in the ACP head and modulated by Ca. Las. To evaluate the actions of candidate effectors on D. citri feeding, six effectors were selected for gene silencing bioassays. Double-stranded RNAs (dsRNAs) of the target genes were delivered to D. citri adults via artificial diets for five days. RNAi silencing caused a reduction in the ACP lifespan and decreased the salivary sheath size and honeydew production. Moreover, after dsRNA delivery of the target genes using artificial diet, the feeding behaviors of the insects were evaluated on young leaves from citrus seedlings. These analyses proved that knockdown of D. citri effectors also interfered with ACP feeding abilities in planta, causing a decrease in honeydew production and reducing ACP survival. Electrical penetration graph (EPG) analysis confirmed the actions of the effectors on D. citri feeding behaviors. These results indicate that gene silencing of D. citri effectors may cause changes in D. citri feeding behaviors and could potentially be used for ACP control.
Collapse
|
49
|
Sun M, Voorrips RE, Vosman B. Aphid populations showing differential levels of virulence on Capsicum accessions. INSECT SCIENCE 2020; 27:336-348. [PMID: 30353689 PMCID: PMC7379501 DOI: 10.1111/1744-7917.12648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 05/27/2023]
Abstract
The green peach aphid, Myzus persicae, is one of the most threatening pests in pepper cultivation and growers would benefit from resistant varieties. Previously, we identified two Capsicum accessions as susceptible and three as resistant to M. persicae using an aphid population originating from the Netherlands (NL). Later on we identified an aphid population originating from a different geographical region (Switserland, SW) that was virulent on all tested Capsicum accessions. The objective of the current work is to describe in detail different aspects of the interaction between two aphid populations and two selected Capsicum accessions (one that was susceptible [PB2013046] and one that was resistant [PB2013071] to population NL), including biochemical processes involved. Electrical penetration graph (EPG) recordings showed similar feeding activities for both aphid populations on PB2013046. On accession PB2013071 the aphid population SW was able to devote significantly more time to phloem ingestion than population NL. We also studied plant defense response and found that plants of accession PB2013046 could not induce an accumulation of reactive oxygen species and callose formation after infestation with either aphid population. However, plants of PB2013071 induced a stronger defense response after infestation by population NL than after infestation by population SW. Based on these results, population SW of M. persicae seems to have overcome the resistance of PB2013071 that prevented feeding of aphids from NL population. The potential mechanism by which SW population overcomes the resistance is discussed.
Collapse
Affiliation(s)
- Mengjing Sun
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | | | - Ben Vosman
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
50
|
Abstract
Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors-that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts-are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|