• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (6)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Huang W, Sun M, Zhu L, Oh SK, Pedrycz W. Deep Fuzzy Min-Max Neural Network: Analysis and Design. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;35:8229-8240. [PMID: 37015551 DOI: 10.1109/tnnls.2022.3226040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
2
Lu W, Ma C, Pedrycz W, Yang J. Design of Granular Model: A Method Driven by Hyper-Box Iteration Granulation. IEEE TRANSACTIONS ON CYBERNETICS 2023;53:2899-2913. [PMID: 34767519 DOI: 10.1109/tcyb.2021.3124235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
3
Khuat TT, Gabrys B. An online learning algorithm for a neuro-fuzzy classifier with mixed-attribute data. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
4
Leite D, Škrjanc I, Blažič S, Zdešar A, Gomide F. Interval incremental learning of interval data streams and application to vehicle tracking. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
5
Khuat TT, Gabrys B. Random Hyperboxes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023;34:1008-1022. [PMID: 34424848 DOI: 10.1109/tnnls.2021.3104896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
6
Kenger ÖN, Özceylan E. Fuzzy min–max neural networks: a bibliometric and social network analysis. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
7
A. SK, Kumar A, Bajaj V, Singh G. A compact fuzzy min max network with novel trimming strategy for pattern classification. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
8
Porto A, Gomide F. Evolving hyperbox fuzzy modeling. EVOLVING SYSTEMS 2022. [DOI: 10.1007/s12530-022-09422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
9
Chharia A, Upadhyay R, Kumar V, Cheng C, Zhang J, Wang T, Xu M. Deep-Precognitive Diagnosis: Preventing Future Pandemics by Novel Disease Detection With Biologically-Inspired Conv-Fuzzy Network. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022;10:23167-23185. [PMID: 35360503 PMCID: PMC8967064 DOI: 10.1109/access.2022.3153059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2022] [Indexed: 05/07/2023]
10
Evolved fuzzy min-max neural network for new-labeled data classification. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
11
An in-depth comparison of methods handling mixed-attribute data for general fuzzy min–max neural network. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
12
Khuat TT, Gabrys B. Accelerated learning algorithms of general fuzzy min-max neural network using a novel hyperbox selection rule. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
13
Yu H, Lu J, Zhang G. Online Topology Learning by a Gaussian Membership-Based Self-Organizing Incremental Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:3947-3961. [PMID: 31725398 DOI: 10.1109/tnnls.2019.2947658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
14
Evolving fuzzy neural hydrocarbon networks: A model based on organic compounds. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Khuat TT, Ruta D, Gabrys B. Hyperbox-based machine learning algorithms: a comprehensive survey. Soft comput 2020. [DOI: 10.1007/s00500-020-05226-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
16
A comparative study of general fuzzy min-max neural networks for pattern classification problems. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
Liu J, Ma Y, Qu F, Zang D. Semi-supervised Fuzzy Min–Max Neural Network for Data Classification. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-10142-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Can People Really Do Nothing? Handling Annotation Gaps in ADL Sensor Data. ALGORITHMS 2019. [DOI: 10.3390/a12100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
19
Distributed dual vigilance fuzzy adaptive resonance theory learns online, retrieves arbitrarily-shaped clusters, and mitigates order dependence. Neural Netw 2019;121:208-228. [PMID: 31574412 DOI: 10.1016/j.neunet.2019.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/12/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022]
20
A modified neuro-fuzzy classifier and its parallel implementation on modern GPUs for real time intrusion detection. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.105595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
21
Ganji H, Khadivi S, Ebadzadeh MM. Support vector-based fuzzy classifier with adaptive kernel. Neural Comput Appl 2019. [DOI: 10.1007/s00521-017-3170-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Fuzzy neural network with support vector-based learning for classification and regression. Soft comput 2019. [DOI: 10.1007/s00500-019-04116-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
23
Ezerski JC, Cheung MS. CATS: A Tool for Clustering the Ensemble of Intrinsically Disordered Peptides on a Flat Energy Landscape. J Phys Chem B 2018;122:11807-11816. [PMID: 30362738 DOI: 10.1021/acs.jpcb.8b08852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
24
Kumar DA, Meher SK, Kumari KP. Fusion of progressive granular neural networks for pattern classification. Soft comput 2018. [DOI: 10.1007/s00500-018-3052-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
25
Shinde S, Kulkarni U. Extended fuzzy hyperline-segment neural network with classification rule extraction. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
26
Liu J, Ma Y, Zhang H, Su H, Xiao G. A modified fuzzy min–max neural network for data clustering and its application on pipeline internal inspection data. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
27
An enhanced fuzzy min–max neural network with ant colony optimization based-rule-extractor for decision making. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
28
Improving the Fuzzy Min-Max neural network with a K-nearest hyperbox expansion rule for pattern classification. Appl Soft Comput 2017. [DOI: 10.1016/j.asoc.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
A new hyperbox selection rule and a pruning strategy for the enhanced fuzzy min–max neural network. Neural Netw 2017;86:69-79. [DOI: 10.1016/j.neunet.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022]
30
Mirzamomen Z, Kangavari MR. Fuzzy min-max neural network based decision trees. INTELL DATA ANAL 2016. [DOI: 10.3233/ida-160831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
31
Mirzamomen Z, Kangavari MR. Evolving Fuzzy Min–Max Neural Network Based Decision Trees for Data Stream Classification. Neural Process Lett 2016. [DOI: 10.1007/s11063-016-9528-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
32
Benchaou S, Nasri M, El Melhaoui O. New Approach of Features Extraction for Numeral Recognition. INT J PATTERN RECOGN 2016. [DOI: 10.1142/s0218001416500142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
33
Shinde S, Kulkarni U. Extracting classification rules from modified fuzzy min–max neural network for data with mixed attributes. Appl Soft Comput 2016. [DOI: 10.1016/j.asoc.2015.10.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
34
Jane NY, Nehemiah KH, Arputharaj K. A Temporal Mining Framework for Classifying Un-Evenly Spaced Clinical Data: An Approach for Building Effective Clinical Decision-Making System. Appl Clin Inform 2016;7:1-21. [PMID: 27081403 DOI: 10.4338/aci-2015-08-ra-0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/08/2015] [Indexed: 11/23/2022]  Open
35
Reyes-Galaviz OF, Pedrycz W. Granular fuzzy modeling with evolving hyperboxes in multi-dimensional space of numerical data. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
36
Liu C, Wang G, Li Z. Incremental learning for online tool condition monitoring using Ellipsoid ARTMAP network model. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
37
Li L, Garibaldi JM, He D, Wang M. Semi-Supervised Fuzzy Clustering with Feature Discrimination. PLoS One 2015;10:e0131160. [PMID: 26325272 PMCID: PMC4556708 DOI: 10.1371/journal.pone.0131160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/31/2015] [Indexed: 12/03/2022]  Open
38
Livi L, Rizzi A, Sadeghian A. Classifying sequences by the optimized dissimilarity space embedding approach: A case study on the solubility analysis of the E. coli proteome. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2015. [DOI: 10.3233/ifs-151550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
39
A modified fuzzy min–max neural network for data clustering and its application to power quality monitoring. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2014.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
40
Mohammed MF, Lim CP. An enhanced fuzzy min-max neural network for pattern classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:417-429. [PMID: 25720001 DOI: 10.1109/tnnls.2014.2315214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
41
Salehi S, Selamat A, Reza Mashinchi M, Fujita H. The synergistic combination of particle swarm optimization and fuzzy sets to design granular classifier. Knowl Based Syst 2015. [DOI: 10.1016/j.knosys.2014.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
42
Lam H, Ekong U, Liu H, Xiao B, Araujo H, Ling SH, Chan KY. A study of neural-network-based classifiers for material classification. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.05.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
43
Almaksour A, Anquetil E. ILClass: Error-driven antecedent learning for evolving Takagi-Sugeno classification systems. Appl Soft Comput 2014. [DOI: 10.1016/j.asoc.2013.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
44
Forghani Y, Sadoghi Yazdi H. Fuzzy Min–Max Neural Network for Learning a Classifier with Symmetric Margin. Neural Process Lett 2014. [DOI: 10.1007/s11063-014-9359-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
45
Lin YY, Liao SH, Chang JY, Lin CT. Simplified interval type-2 fuzzy neural networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014;25:959-969. [PMID: 24808041 DOI: 10.1109/tnnls.2013.2284603] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
46
Seera M, Lim CP. Online motor fault detection and diagnosis using a hybrid FMM-CART model. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014;25:806-812. [PMID: 24807956 DOI: 10.1109/tnnls.2013.2280280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
47
Davtalab R, Dezfoulian MH, Mansoorizadeh M. Multi-level fuzzy min-max neural network classifier. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2014;25:470-482. [PMID: 24807444 DOI: 10.1109/tnnls.2013.2275937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
48
Seera M, Lim CP. Transfer learning using the online Fuzzy Min–Max neural network. Neural Comput Appl 2013. [DOI: 10.1007/s00521-013-1517-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
49
Leite D, Costa P, Gomide F. Evolving granular neural networks from fuzzy data streams. Neural Netw 2012. [PMID: 23201554 DOI: 10.1016/j.neunet.2012.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
50
Mohammed MF, Lim CP, Quteishat A. A novel trust measurement method based on certified belief in strength for a multi-agent classifier system. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1245-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA