1
|
Dai W, Chen G, Peng W, Chen C, Fu X, Liu L, Liu L, Yu N. Domain alignment method based on masked variational autoencoder for predicting patient anticancer drug response. Methods 2025; 238:61-73. [PMID: 40090506 DOI: 10.1016/j.ymeth.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025] Open
Abstract
Predicting the patient's response to anticancer drugs is essential in personalized treatment plans. However, due to significant distribution differences between cell line data and patient data, models trained well on cell line data may perform poorly on patient anticancer drug response predictions. Some existing methods use transfer learning strategies to implement domain feature alignment between cell lines and patient data and leverage knowledge from cell lines to predict patient anticancer drug responses. This study proposes a domain alignment method based on masked variational autoencoders, MVAEDA, to predict patient anticancer drug responses. The model constructs multiple variational autoencoders (VAEs) and mask predictors to extract specific and domain-invariant features of cell lines and patients. Then, it masks and reconstructs the gene expression matrix, using generative adversarial training to learn domain-invariant features from the cell line and patient domains. These domain-invariant features are then used to train a classifier. Finally, the final trained model predicts the anticancer drug response in the target domain. Our model is experimentally evaluated on the clinical dataset and the preclinical dataset. The results show that our method performs better than other state-of-the-art methods.
Collapse
Affiliation(s)
- Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Gong Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Chuyue Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport, NY 14422, United States.
| |
Collapse
|
2
|
Tran TO, Nguyen TH, Nguyen TT, Le NQK. MLG2Net: Molecular Global Graph Network for Drug Response Prediction in Lung Cancer Cell Lines. J Med Syst 2025; 49:47. [PMID: 40208442 DOI: 10.1007/s10916-025-02182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Drug response prediction (DRP) is a central task in the era of precision medicine. Over the past decade, the emergence of deep learning (DL) has greatly contributed to addressing DRP challenges. Notably, the prediction of DRP for cancer cell lines benefits significantly from data availability for model development. However, an effective predictive model is still challenging due to issues with data quality, high-dimensional data, and multi-omics data integration. In this study, we introduce MLG2Net, a deep-learning model inspired by graph neural networks designed to predict DRP in lung cancer cell lines based on pharmacogenomics data. Our model comprises two key components: drug SMILES described by local and global graph networks and cell line genomics are illustrated as a map. Our results show that MLG2Net outperforms three reference graph networks. MLG2Net performance reached a Pearson coefficient correlation (C C p ) of 0.8616 and a root mean square error (RMSE) of 2.94e-6 in predicting drug responses for Lung Adenocarcinoma (LUAD) cell lines. Subsequent testing on the Lung Squamous Cell Carcinoma (LUSC) dataset reveals lower performance (C C p : 0.7999, RMSE: 4.08e-6), attributed to the dataset's smaller size influencing model capacity. Moreover, we assessed the model's architecture by isolating its components, with results indicating that the global network is particularly effective in this task. In conclusion, MLG2Net exhibited promising applications in DRP for cancer cell lines, with potential advancements by incorporating larger datasets.
Collapse
Affiliation(s)
- Thi-Oanh Tran
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Viet Nam
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan
| | - Thanh-Huy Nguyen
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan
- Saigon Precision Medicine Research Center, Ho Chi Minh city, Vietnam
| | - Tuan Tung Nguyen
- Hematology and Blood Transfusion Center, Bach Mai Hospital, Hanoi, Viet Nam
| | - Nguyen Quoc Khanh Le
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan.
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Scarborough J, Weaver D, Scott J. Gene Signatures and Oncology Treatment Implications. Hematol Oncol Clin North Am 2025; 39:295-307. [PMID: 39694780 PMCID: PMC11867875 DOI: 10.1016/j.hoc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Gene expression signatures (GES) are a powerful tool in oncology used for classification, prognostication, and therapeutic response prediction of malignancies. In this article, we review the disease site guidelines by the National Comprehensive Cancer Network that use GES for treatment planning and clinical use. We identified 4 cancer types for which treatment decisions are frequently influenced by GES. Future developments in the field of GES are likely to include expanded data sources to personalize radiation therapy dosing and predict response to immunotherapy. Ongoing challenges in GES may be addressed to ensure that all patients with cancer benefit from precision oncology.
Collapse
Affiliation(s)
- Jessica Scarborough
- Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Davis Weaver
- Department of Translational Hematology and Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Systems Biology and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Molecular Medicine, School of Medicine, Systems Biology and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Codicè F, Pancotti C, Rollo C, Moreau Y, Fariselli P, Raimondi D. The specification game: rethinking the evaluation of drug response prediction for precision oncology. J Cheminform 2025; 17:33. [PMID: 40087708 PMCID: PMC11907791 DOI: 10.1186/s13321-025-00972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/13/2025] [Indexed: 03/17/2025] Open
Abstract
Precision oncology plays a pivotal role in contemporary healthcare, aiming to optimize treatments for each patient based on their unique characteristics. This objective has spurred the emergence of various cancer cell line drug response datasets, driven by the need to facilitate pre-clinical studies by exploring the impact of multi-omics data on drug response. Despite the proliferation of machine learning models for Drug Response Prediction (DRP), their validation remains critical to reliably assess their usefulness for drug discovery, precision oncology and their actual ability to generalize over the immense space of cancer cells and chemical compounds. Scientific contribution In this paper we show that the commonly used evaluation strategies for DRP methods can be easily fooled by commonly occurring dataset biases, and they are therefore not able to truly measure the ability of DRP methods to generalize over drugs and cell lines ("specification gaming"). This problem hinders the development of reliable DRP methods and their application to experimental pipelines. Here we propose a new validation protocol composed by three Aggregation Strategies (Global, Fixed-Drug, and Fixed-Cell Line) integrating them with three of the most commonly used train-test evaluation settings, to ensure a truly realistic assessment of the prediction performance. We also scrutinize the challenges associated with using IC50 as a prediction label, showing how its close correlation with the drug concentration ranges worsens the risk of misleading performance assessment, and we indicate an additional reason to replace it with the Area Under the Dose-Response Curve instead.
Collapse
Affiliation(s)
- Francesco Codicè
- Department of Medical Sciences, University of Torino, 10123, Torino, Italy.
| | - Corrado Pancotti
- Department of Medical Sciences, University of Torino, 10123, Torino, Italy
| | - Cesare Rollo
- Department of Medical Sciences, University of Torino, 10123, Torino, Italy
| | - Yves Moreau
- ESAT-STADIUS, KU Leuven, Leuven, 3001, Belgium
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, 10123, Torino, Italy
| | - Daniele Raimondi
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, 34293, Montpellier, France
| |
Collapse
|
5
|
Meng W, Xu X, Xiao Z, Gao L, Yu L. Cancer Drug Sensitivity Prediction Based on Deep Transfer Learning. Int J Mol Sci 2025; 26:2468. [PMID: 40141112 PMCID: PMC11942577 DOI: 10.3390/ijms26062468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, many approved drugs have been discovered using phenotypic screening, which elaborates the exact mechanisms of action or molecular targets of drugs. Drug susceptibility prediction is an important type of phenotypic screening. Large-scale pharmacogenomics studies have provided us with large amounts of drug sensitivity data. By analyzing these data using computational methods, we can effectively build models to predict drug susceptibility. However, due to the differences in data distribution among databases, researchers cannot directly utilize data from multiple sources. In this study, we propose a deep transfer learning model. We integrate the genomic characterization of cancer cell lines with chemical information on compounds, combined with the Encyclopedia of Cancer Cell Lines (CCLE) and the Genomics of Cancer Drug Sensitivity (GDSC) datasets, through a domain-adapted approach and predict the half-maximal inhibitory concentrations (IC50 values). Afterward, the validity of the prediction results of our model is verified. This study effectively addresses the challenge of cross-database distribution discrepancies in drug sensitivity prediction by integrating multi-source heterogeneous data and constructing a deep transfer learning model. This model serves as a reliable computational tool for precision drug development. Its widespread application can facilitate the optimization of therapeutic strategies in personalized medicine while also providing technical support for high-throughput drug screening and the discovery of new drug targets.
Collapse
Affiliation(s)
- Weijun Meng
- School of Computer Science and Technology, Xi’an University of Posts & Telecommunications, Xi’an 710071, China;
| | - Xinyu Xu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| | - Zhichao Xiao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China; (X.X.); (Z.X.); (L.G.)
| |
Collapse
|
6
|
Sefer E. DRGAT: Predicting Drug Responses Via Diffusion-Based Graph Attention Network. J Comput Biol 2025; 32:330-350. [PMID: 39639802 DOI: 10.1089/cmb.2024.0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Accurately predicting drug response depending on a patient's genomic profile is critical for advancing personalized medicine. Deep learning approaches rise and especially the rise of graph neural networks leveraging large-scale omics datasets have been a key driver of research in this area. However, these biological datasets, which are typically high dimensional but have small sample sizes, present challenges such as overfitting and poor generalization in predictive models. As a complicating matter, gene expression (GE) data must capture complex inter-gene relationships, exacerbating these issues. In this article, we tackle these challenges by introducing a drug response prediction method, called drug response graph attention network (DRGAT), which combines a denoising diffusion implicit model for data augmentation with a recently introduced graph attention network (GAT) with high-order neighbor propagation (HO-GATs) prediction module. Our proposed approach achieved almost 5% improvement in the area under receiver operating characteristic curve compared with state-of-the-art models for the many studied drugs, indicating our method's reasonable generalization capabilities. Moreover, our experiments confirm the potential of diffusion-based generative models, a core component of our method, to mitigate the inherent limitations of omics datasets by effectively augmenting GE data.
Collapse
Affiliation(s)
- Emre Sefer
- Artificial Intelligence and Data Engineering Department, Ozyegin University, Istanbul, Turkey
| |
Collapse
|
7
|
Peng W, Chen C, Dai W, Yu N, Wang J. Predicting Clinical Anticancer Drug Response of Patients by Using Domain Alignment and Prototypical Learning. IEEE J Biomed Health Inform 2025; 29:1534-1545. [PMID: 39292588 DOI: 10.1109/jbhi.2024.3462811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Anticancer drug response prediction is crucial in developing personalized treatment plans for cancer patients. However, High-quality patient anticancer drug response data are scarce and cell line data and patient data have different distributions, models trained solely on cell line data perform poorly. Some existing methods predict anticancer drug response by transferring knowledge from the cell line domain to the patient domain using transfer learning. However, the robustness of these classifiers is affected by anomalies in the cell line data, and they do not utilize the knowledge in the unlabeled target domain data. To this end, we proposed a model called DAPL to predict patient responses to anticancer drugs. The model extracts domain-invariant features from cell lines and patients by constructing multiple VAEs and extracts drug features using GNNs. These features are then combined for prototypical learning to train a classifier, resulting in better predictions of patient anticancer drug response. We used the cell line datasets CCLE and GDSC as source domains and the patient datasets TCGA and PDTC as target domains and conducted experiments. The results indicate that DAPL shows excellent performance in predicting patient anticancer drug response compared to other state-of-the-art methods.
Collapse
|
8
|
Anjusha IT, Abdul Nazeer KA, Saleena N. Drug repurposing for non-small cell lung cancer by predicting drug response using pathway-level graph convolutional network. J Bioinform Comput Biol 2025; 23:2550001. [PMID: 40134346 DOI: 10.1142/s0219720025500015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Drug repurposing is the process of identifying new clinical indications for an existing drug. Some of the recent studies utilized drug response prediction models to identify drugs that can be repurposed. By representing cell-line features as a pathway-pathway interaction network, we can better understand the connections between cellular processes and drug response mechanisms. Existing deep learning models for drug response prediction do not integrate known biological pathway-pathway interactions into the model. This paper presents a drug response prediction model that applies a graph convolution operation on a pathway-pathway interaction network to represent features of cancer cell-lines effectively. The model is used to identify potential drug repurposing candidates for Non-Small Cell Lung Cancer (NSCLC). Experiment results show that the inclusion of graph convolutional model applied on a pathway-pathway interaction network makes the proposed model more effective in predicting drug response than the state-of-the-art methods. Specifically, the model has shown better performance in terms of Root Mean Squared Error, Coefficient of Determination, and Pearson's Correlation Coefficient when applied to the GDSC1000 dataset. Also, most of the drugs that the model predicted as top candidates for NSCLC treatment are either undergoing clinical studies or have some evidence in the PubMed literature database.
Collapse
Affiliation(s)
- I T Anjusha
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kozhikode, India
| | - K A Abdul Nazeer
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kozhikode, India
| | - N Saleena
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kozhikode, India
| |
Collapse
|
9
|
Wang C, Kumar GA, Rajapakse JC. Drug discovery and mechanism prediction with explainable graph neural networks. Sci Rep 2025; 15:179. [PMID: 39747341 PMCID: PMC11696803 DOI: 10.1038/s41598-024-83090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Apprehension of drug action mechanism is paramount for drug response prediction and precision medicine. The unprecedented development of machine learning and deep learning algorithms has expedited the drug response prediction research. However, existing methods mainly focus on forward encoding of drugs, which is to obtain an accurate prediction of the response levels, but omitted to decipher the reaction mechanism between drug molecules and genes. We propose the eXplainable Graph-based Drug response Prediction (XGDP) approach that achieves a precise drug response prediction and reveals the comprehensive mechanism of action between drugs and their targets. XGDP represents drugs with molecular graphs, which naturally preserve the structural information of molecules and a Graph Neural Network module is applied to learn the latent features of molecules. Gene expression data from cancer cell lines are incorporated and processed by a Convolutional Neural Network module. A couple of deep learning attribution algorithms are leveraged to interpret interactions between drug molecular features and genes. We demonstrate that XGDP not only enhances the prediction accuracy compared to pioneering works but is also capable of capturing the salient functional groups of drugs and interactions with significant genes of cancer cells.
Collapse
Affiliation(s)
- Conghao Wang
- College of Computing and Data Science, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gaurav Asok Kumar
- College of Computing and Data Science, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jagath C Rajapakse
- College of Computing and Data Science, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
10
|
Xiao M, Zheng Q, Popa P, Mi X, Hu J, Zou F, Zou B. Drug molecular representations for drug response predictions: a comprehensive investigation via machine learning methods. Sci Rep 2025; 15:20. [PMID: 39748003 PMCID: PMC11696021 DOI: 10.1038/s41598-024-84711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
The integration of drug molecular representations into predictive models for Drug Response Prediction (DRP) is a standard procedure in pharmaceutical research and development. However, the comparative effectiveness of combining these representations with genetic profiles for DRP remains unclear. This study conducts a comprehensive evaluation of the efficacy of various drug molecular representations employing cutting-edge machine learning models under various experimental settings. Our findings reveal that the inclusion of molecular representations from either PubChem fingerprints or SMILES can significantly enhance the performance of DRPs when used in conjunction with deep learning models. However, the optimal choice of drug molecular representation can vary depending on the predictive model and the specific DRP task. The insights derived from our study offer useful guidance on selecting the most suitable drug molecular representations for constructing efficient predictive models for DRPs, aiding for drug repurposing, personalized medicine, and new drug discovery.
Collapse
Affiliation(s)
- Meisheng Xiao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Qianhui Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Xinlei Mi
- Gilead Science, Inc, Foster City, USA
| | - Jianhua Hu
- Department of Biostatistics, Columbia University, New York, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Baiming Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA.
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
11
|
Dong Y, Zhang Y, Qian Y, Zhao Y, Yang Z, Feng X. ASGCL: Adaptive Sparse Mapping-based graph contrastive learning network for cancer drug response prediction. PLoS Comput Biol 2025; 21:e1012748. [PMID: 39883719 PMCID: PMC11781687 DOI: 10.1371/journal.pcbi.1012748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Personalized cancer drug treatment is emerging as a frontier issue in modern medical research. Considering the genomic differences among cancer patients, determining the most effective drug treatment plan is a complex and crucial task. In response to these challenges, this study introduces the Adaptive Sparse Graph Contrastive Learning Network (ASGCL), an innovative approach to unraveling latent interactions in the complex context of cancer cell lines and drugs. The core of ASGCL is the GraphMorpher module, an innovative component that enhances the input graph structure via strategic node attribute masking and topological pruning. By contrasting the augmented graph with the original input, the model delineates distinct positive and negative sample sets at both node and graph levels. This dual-level contrastive approach significantly amplifies the model's discriminatory prowess in identifying nuanced drug responses. Leveraging a synergistic combination of supervised and contrastive loss, ASGCL accomplishes end-to-end learning of feature representations, substantially outperforming existing methodologies. Comprehensive ablation studies underscore the efficacy of each component, corroborating the model's robustness. Experimental evaluations further illuminate ASGCL's proficiency in predicting drug responses, offering a potent tool for guiding clinical decision-making in cancer therapy.
Collapse
Affiliation(s)
- Yunyun Dong
- School of Software, Taiyuan University of Technology, Taiyuan, China
- Institute of Big Data Science and Industry, Shanxi University, Taiyuan, China
| | - Yuanrong Zhang
- School of Software, Taiyuan University of Technology, Taiyuan, China
| | - Yuhua Qian
- Institute of Big Data Science and Industry, Shanxi University, Taiyuan, China
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Yiming Zhao
- School of Software, Taiyuan University of Technology, Taiyuan, China
| | - Ziting Yang
- School of Software, Taiyuan University of Technology, Taiyuan, China
| | - Xiufang Feng
- School of Software, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
12
|
Jiang Z, Li P. DeepDR: a deep learning library for drug response prediction. Bioinformatics 2024; 40:btae688. [PMID: 39558584 PMCID: PMC11629690 DOI: 10.1093/bioinformatics/btae688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
SUMMARY Accurate drug response prediction is critical to advancing precision medicine and drug discovery. Recent advances in deep learning (DL) have shown promise in predicting drug response; however, the lack of convenient tools to support such modeling limits their widespread application. To address this, we introduce DeepDR, the first DL library specifically developed for drug response prediction. DeepDR simplifies the process by automating drug and cell featurization, model construction, training, and inference, all achievable with brief programming. The library incorporates three types of drug features along with nine drug encoders, four types of cell features along with nine cell encoders, and two fusion modules, enabling the implementation of up to 135 DL models for drug response prediction. We also explored benchmarking performance with DeepDR, and the optimal models are available on a user-friendly visual interface. AVAILABILITY AND IMPLEMENTATION DeepDR can be installed from PyPI (https://pypi.org/project/deepdr). The source code and experimental data are available on GitHub (https://github.com/user15632/DeepDR).
Collapse
Affiliation(s)
- Zhengxiang Jiang
- School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- School of Electronic Engineering, Xidian University, Xi’an, Shaanxi 710126, China
| | - Pengyong Li
- School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
| |
Collapse
|
13
|
Song J, Wei M, Zhao S, Zhai H, Dai Q, Duan X. Drug Sensitivity Prediction Based on Multi-stage Multi-modal Drug Representation Learning. Interdiscip Sci 2024:10.1007/s12539-024-00668-1. [PMID: 39528873 DOI: 10.1007/s12539-024-00668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Accurate prediction of anticancer drug responses is essential for developing personalized treatment plans in order to improve cancer patient survival rates and reduce healthcare costs. To this end, we propose a drug sensitivity prediction model based on multi-stage multi-modal drug representations (ModDRDSP) to reflect the properties of drugs more comprehensively, and to better model the complex interactions between cells and drugs. Specifically, we adopt the SMILES representation learning method based on the deep hierarchical bi-directional GRU network (DSBiGRU) and the molecular graph representation learning method based on the deep message-crossing network (DMCN) for the multi-modal information of drugs. Additionally, we integrate the multi-omics information of cell lines based on a convolutional neural network (CNN). Finally, we use an ensemble deep forest algorithm for the prediction of drug sensitivity. After validation, the ModDRDSP shows impressive performance which outperforms the four current industry-leading models. More importantly, ablation experiments demonstrate the validity of each module of the proposed model, and case studies show the good results of ModDRDSP for predicting drug sensitivity, further establishing the superiority of ModDRDSP in terms of performance.
Collapse
Affiliation(s)
- Jinmiao Song
- School of Software, Xinjiang University, Urumqi, 830046, China
| | - Mingjie Wei
- School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116650, China.
- State Ethnic Afairs Commission Key Laboratory of Big Data Applied Technology, Dalian Minzu University, Dalian, 116650, China.
- Dalian Key Laboratory of Digital Technology for Minzu Culture, Dalian Minzu University, Dalian, 116650, China.
| | - Shuang Zhao
- School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116650, China
- State Ethnic Afairs Commission Key Laboratory of Big Data Applied Technology, Dalian Minzu University, Dalian, 116650, China
- Dalian Key Laboratory of Digital Technology for Minzu Culture, Dalian Minzu University, Dalian, 116650, China
| | - Hui Zhai
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830011, China
| | - Qiguo Dai
- School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116650, China
- State Ethnic Afairs Commission Key Laboratory of Big Data Applied Technology, Dalian Minzu University, Dalian, 116650, China
- Dalian Key Laboratory of Digital Technology for Minzu Culture, Dalian Minzu University, Dalian, 116650, China
| | - Xiaodong Duan
- School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116650, China.
- State Ethnic Afairs Commission Key Laboratory of Big Data Applied Technology, Dalian Minzu University, Dalian, 116650, China.
- Dalian Key Laboratory of Digital Technology for Minzu Culture, Dalian Minzu University, Dalian, 116650, China.
| |
Collapse
|
14
|
Monem S, Hassanien AE, Abdel-Hamid AH. A multi-view feature representation for predicting drugs combination synergy based on ensemble and multi-task attention models. J Cheminform 2024; 16:110. [PMID: 39334437 PMCID: PMC11438216 DOI: 10.1186/s13321-024-00903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This paper proposes a novel multi-view ensemble predictor model that is designed to address the challenge of determining synergistic drug combinations by predicting both the synergy score value values and synergy class label of drug combinations with cancer cell lines. The proposed methodology involves representing drug features through four distinct views: Simplified Molecular-Input Line-Entry System (SMILES) features, molecular graph features, fingerprint features, and drug-target features. On the other hand, cell line features are captured through four views: gene expression features, copy number features, mutation features, and proteomics features. To prevent overfitting of the model, two techniques are employed. First, each view feature of a drug is paired with each corresponding cell line view and input into a multi-task attention deep learning model. This multi-task model is trained to simultaneously predict both the synergy score value and synergy class label. This process results in sixteen input view features being fed into the multi-task model, producing sixteen prediction values. Subsequently, these prediction values are utilized as inputs for an ensemble model, which outputs the final prediction value. The 'MVME' model is assessed using the O'Neil dataset, which includes 38 distinct drugs combined across 39 distinct cancer cell lines to output 22,737 drug combination pairs. For the synergy score value, the proposed model scores a mean square error (MSE) of 206.57, a root mean square error (RMSE) of 14.30, and a Pearson score of 0.76. For the synergy class label, the model scores 0.90 for accuracy, 0.96 for precision, 0.57 for kappa, 0.96 for the area under the ROC curve (ROC-AUC), and 0.88 for the area under the precision-recall curve (PR-AUC).
Collapse
Affiliation(s)
- Samar Monem
- Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt.
| | | | - Alaa H Abdel-Hamid
- Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
15
|
Kamble P, Nagar PR, Bhakhar KA, Garg P, Sobhia ME, Naidu S, Bharatam PV. Cancer pharmacoinformatics: Databases and analytical tools. Funct Integr Genomics 2024; 24:166. [PMID: 39294509 DOI: 10.1007/s10142-024-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes "Pharmacoinformatics", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.
Collapse
Affiliation(s)
- Pradnya Kamble
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prinsa R Nagar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Kaushikkumar A Bhakhar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Srivatsava Naidu
- Center of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
16
|
Connell W, Garcia K, Goodarzi H, Keiser MJ. Learning chemical sensitivity reveals mechanisms of cellular response. Commun Biol 2024; 7:1149. [PMID: 39278951 PMCID: PMC11402971 DOI: 10.1038/s42003-024-06865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we develop ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we infer the chemical sensitivity of cancer cell lines and tumor samples and analyze how the model makes predictions. We retrospectively evaluate drug response predictions for precision breast cancer treatment and prospectively validate chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identifies transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
Collapse
Affiliation(s)
- William Connell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Vishwakarma S, Hernandez-Hernandez S, Ballester PJ. Graph neural networks are promising for phenotypic virtual screening on cancer cell lines. Biol Methods Protoc 2024; 9:bpae065. [PMID: 39502795 PMCID: PMC11537795 DOI: 10.1093/biomethods/bpae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 11/08/2024] Open
Abstract
Artificial intelligence is increasingly driving early drug design, offering novel approaches to virtual screening. Phenotypic virtual screening (PVS) aims to predict how cancer cell lines respond to different compounds by focusing on observable characteristics rather than specific molecular targets. Some studies have suggested that deep learning may not be the best approach for PVS. However, these studies are limited by the small number of tested molecules as well as not employing suitable performance metrics and dissimilar-molecules splits better mimicking the challenging chemical diversity of real-world screening libraries. Here we prepared 60 datasets, each containing approximately 30 000-50 000 molecules tested for their growth inhibitory activities on one of the NCI-60 cancer cell lines. We conducted multiple performance evaluations of each of the five machine learning algorithms for PVS on these 60 problem instances. To provide even a more comprehensive evaluation, we used two model validation types: the random split and the dissimilar-molecules split. Overall, about 14 440 training runs aczross datasets were carried out per algorithm. The models were primarily evaluated using hit rate, a more suitable metric in VS contexts. The results show that all models are more challenged by test molecules that are substantially different from those in the training data. In both validation types, the D-MPNN algorithm, a graph-based deep neural network, was found to be the most suitable for building predictive models for this PVS problem.
Collapse
Affiliation(s)
- Sachin Vishwakarma
- Evotec SAS (France), Toulouse, France
- Centre de Recherche en Cancérologie de Marseille, Marseille 13009, France
| | | | - Pedro J Ballester
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Xu M, Zhu Z, Zhao Y, He K, Huang Q, Zhao Y. RedCDR: Dual Relation Distillation for Cancer Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1468-1479. [PMID: 38776197 DOI: 10.1109/tcbb.2024.3404262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Based on multi-omics data and drug information, predicting the response of cancer cell lines to drugs is a crucial area of research in modern oncology, as it can promote the development of personalized treatments. Despite the promising performance achieved by existing models, most of them overlook the variations among different omics and lack effective integration of multi-omics data. Moreover, the explicit modeling of cell line/drug attribute and cell line-drug association has not been thoroughly investigated in existing approaches. To address these issues, we propose RedCDR, a dual relation distillation model for cancer drug response (CDR) prediction. Specifically, a parallel dual-branch architecture is designed to enable both the independent learning and interactive fusion feasible for cell line/drug attribute and cell line-drug association information. To facilitate the adaptive interacting integration of multi-omics data, the proposed multi-omics encoder introduces the multiple similarity relations between cell lines and takes the importance of different omics data into account. To accomplish knowledge transfer from the two independent attribute and association branches to their fusion, a dual relation distillation mechanism consisting of representation distillation and prediction distillation is presented. Experiments conducted on the GDSC and CCLE datasets show that RedCDR outperforms previous state-of-the-art approaches in CDR prediction.
Collapse
|
19
|
Zheng Y, Ma Y, Xiong Q, Zhu K, Weng N, Zhu Q. The role of artificial intelligence in the development of anticancer therapeutics from natural polyphenols: Current advances and future prospects. Pharmacol Res 2024; 208:107381. [PMID: 39218422 DOI: 10.1016/j.phrs.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Natural polyphenols, abundant in the human diet, are derived from a wide variety of sources. Numerous preclinical studies have demonstrated their significant anticancer properties against various malignancies, making them valuable resources for drug development. However, traditional experimental methods for developing anticancer therapies from natural polyphenols are time-consuming and labor-intensive. Recently, artificial intelligence has shown promising advancements in drug discovery. Integrating AI technologies into the development process for natural polyphenols can substantially reduce development time and enhance efficiency. In this study, we review the crucial roles of natural polyphenols in anticancer treatment and explore the potential of AI technologies to aid in drug development. Specifically, we discuss the application of AI in key stages such as drug structure prediction, virtual drug screening, prediction of biological activity, and drug-target protein interaction, highlighting the potential to revolutionize the development of natural polyphenol-based anticancer therapies.
Collapse
Affiliation(s)
- Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Kai Zhu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
20
|
Lawrence PJ, Burns B, Ning X. Enhancing drug and cell line representations via contrastive learning for improved anti-cancer drug prioritization. NPJ Precis Oncol 2024; 8:106. [PMID: 38762647 PMCID: PMC11102516 DOI: 10.1038/s41698-024-00589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024] Open
Abstract
Due to cancer's complex nature and variable response to therapy, precision oncology informed by omics sequence analysis has become the current standard of care. However, the amount of data produced for each patient makes it difficult to quickly identify the best treatment regimen. Moreover, limited data availability has hindered computational methods' abilities to learn patterns associated with effective drug-cell line pairs. In this work, we propose the use of contrastive learning to improve learned drug and cell line representations by preserving relationship structures associated with drug mechanisms of action and cell line cancer types. In addition to achieving enhanced performance relative to a state-of-the-art method, we find that classifiers using our learned representations exhibit a more balanced reliance on drug- and cell line-derived features when making predictions. This facilitates more personalized drug prioritizations that are informed by signals related to drug resistance.
Collapse
Affiliation(s)
- Patrick J Lawrence
- Biomedical Informatics Department, The Ohio State University, 1800 Cannon Drive, Lincoln Tower 250, Columbus, OH, 43210, USA
| | - Benjamin Burns
- Computer Science and Engineering Department, The Ohio State University, 2015 Neil Avenue, Columbus, OH, 43210, USA
| | - Xia Ning
- Biomedical Informatics Department, The Ohio State University, 1800 Cannon Drive, Lincoln Tower 250, Columbus, OH, 43210, USA.
- Computer Science and Engineering Department, The Ohio State University, 2015 Neil Avenue, Columbus, OH, 43210, USA.
- Translational Data Analytics Institute, The Ohio State University, 1760 Neil Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Xie X, Li D, Pei Y, Zhu W, Du X, Jiang X, Zhang L, Wang HQ. Personalized anti-tumor drug efficacy prediction based on clinical data. Heliyon 2024; 10:e27300. [PMID: 38500995 PMCID: PMC10945121 DOI: 10.1016/j.heliyon.2024.e27300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Anti-tumor drug efficacy prediction poses an unprecedented challenge to realizing personalized medicine. This paper proposes to predict personalized anti-tumor drug efficacy based on clinical data. Specifically, we encode the clinical text as numeric vectors featured with hidden topics for patients using Latent Dirichlet Allocation model. Then, to classify patients into two classes, responsive or non-responsive to a drug, drug efficacy predictors are established by machine learning based on the Latent Dirichlet Allocation topic representation. To evaluate the proposed method, we collected and collated clinical records of lung and bowel cancer patients treated with platinum. Experimental results on the data sets show the efficacy and effectiveness of the proposed method, suggesting the potential value of clinical data in cancer precision medicine. We hope that it will promote the research of drug efficacy prediction based on clinical data.
Collapse
Affiliation(s)
- Xinping Xie
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, China
| | - Dandan Li
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, China
| | - Yangyang Pei
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, China
| | - Weiwei Zhu
- Institute of Intelligent Machines/Zhongqi AI Lab., Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xiaodong Du
- Experimental Teaching Center, Hefei University, Hefei, China
| | - Xiaodong Jiang
- Medical Oncology Department, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Zhang
- Pharmacy Department, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hong-Qiang Wang
- Institute of Intelligent Machines/Zhongqi AI Lab., Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
22
|
Hajim WI, Zainudin S, Mohd Daud K, Alheeti K. Optimized models and deep learning methods for drug response prediction in cancer treatments: a review. PeerJ Comput Sci 2024; 10:e1903. [PMID: 38660174 PMCID: PMC11042005 DOI: 10.7717/peerj-cs.1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.
Collapse
Affiliation(s)
- Wesam Ibrahim Hajim
- Department of Applied Geology, College of Sciences, Tirkit University, Tikrit, Salah ad Din, Iraq
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Suhaila Zainudin
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Khattab Alheeti
- Department of Computer Networking Systems, College of Computer Sciences and Information Technology, University of Anbar, Al Anbar, Ramadi, Iraq
| |
Collapse
|
23
|
Sharma R, Saghapour E, Chen JY. An NLP-based technique to extract meaningful features from drug SMILES. iScience 2024; 27:109127. [PMID: 38455979 PMCID: PMC10918220 DOI: 10.1016/j.isci.2024.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
NLP is a well-established field in ML for developing language models that capture the sequence of words in a sentence. Similarly, drug molecule structures can also be represented as sequences using the SMILES notation. However, unlike natural language texts, special characters in drug SMILES have specific meanings and cannot be ignored. We introduce a novel NLP-based method that extracts interpretable sequences and essential features from drug SMILES notation using N-grams. Our method compares these features to Morgan fingerprint bit-vectors using UMAP-based embedding, and we validate its effectiveness through two personalized drug screening (PSD) case studies. Our NLP-based features are sparse and, when combined with gene expressions and disease phenotype features, produce better ML models for PSD. This approach provides a new way to analyze drug molecule structures represented as SMILES notation, which can help accelerate drug discovery efforts. We have also made our method accessible through a Python library.
Collapse
Affiliation(s)
- Rahul Sharma
- Informatics Institute, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ehsan Saghapour
- Informatics Institute, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jake Y. Chen
- Informatics Institute, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Liu H, Peng W, Dai W, Lin J, Fu X, Liu L, Liu L, Yu N. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks. Methods 2024; 222:41-50. [PMID: 38157919 DOI: 10.1016/j.ymeth.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Predicting the therapeutic effect of anti-cancer drugs on tumors based on the characteristics of tumors and patients is one of the important contents of precision oncology. Existing computational methods regard the drug response prediction problem as a classification or regression task. However, few of them consider leveraging the relationship between the two tasks. In this work, we propose a Multi-task Interaction Graph Convolutional Network (MTIGCN) for anti-cancer drug response prediction. MTIGCN first utilizes an graph convolutional network-based model to produce embeddings for both cell lines and drugs. After that, the model employs multi-task learning to predict anti-cancer drug response, which involves training the model on three different tasks simultaneously: the main task of the drug sensitive or resistant classification task and the two auxiliary tasks of regression prediction and similarity network reconstruction. By sharing parameters and optimizing the losses of different tasks simultaneously, MTIGCN enhances the feature representation and reduces overfitting. The results of the experiments on two in vitro datasets demonstrated that MTIGCN outperformed seven state-of-the-art baseline methods. Moreover, the well-trained model on the in vitro dataset GDSC exhibited good performance when applied to predict drug responses in in vivo datasets PDX and TCGA. The case study confirmed the model's ability to discover unknown drug responses in cell lines.
Collapse
Affiliation(s)
- Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Jiangzhen Lin
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport NY 14422.
| |
Collapse
|
25
|
Rahman A, Debnath T, Kundu D, Khan MSI, Aishi AA, Sazzad S, Sayduzzaman M, Band SS. Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities. AIMS Public Health 2024; 11:58-109. [PMID: 38617415 PMCID: PMC11007421 DOI: 10.3934/publichealth.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024] Open
Abstract
In recent years, machine learning (ML) and deep learning (DL) have been the leading approaches to solving various challenges, such as disease predictions, drug discovery, medical image analysis, etc., in intelligent healthcare applications. Further, given the current progress in the fields of ML and DL, there exists the promising potential for both to provide support in the realm of healthcare. This study offered an exhaustive survey on ML and DL for the healthcare system, concentrating on vital state of the art features, integration benefits, applications, prospects and future guidelines. To conduct the research, we found the most prominent journal and conference databases using distinct keywords to discover scholarly consequences. First, we furnished the most current along with cutting-edge progress in ML-DL-based analysis in smart healthcare in a compendious manner. Next, we integrated the advancement of various services for ML and DL, including ML-healthcare, DL-healthcare, and ML-DL-healthcare. We then offered ML and DL-based applications in the healthcare industry. Eventually, we emphasized the research disputes and recommendations for further studies based on our observations.
Collapse
Affiliation(s)
- Anichur Rahman
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanoy Debnath
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
- Department of CSE, Green University of Bangladesh, 220/D, Begum Rokeya Sarani, Dhaka -1207, Bangladesh
| | - Dipanjali Kundu
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Md. Saikat Islam Khan
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Airin Afroj Aishi
- Department of Computing and Information System, Daffodil International University, Savar, Dhaka, Bangladesh
| | - Sadia Sazzad
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Mohammad Sayduzzaman
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Shahab S. Band
- Department of Information Management, International Graduate School of Artificial Intelligence, National Yunlin University of Science and Technology, Taiwan
| |
Collapse
|
26
|
Zhu W, Zhang L, Jiang X, Zhou P, Xie X, Wang H. A method combining LDA and neural networks for antitumor drug efficacy prediction. Digit Health 2024; 10:20552076241280103. [PMID: 39257869 PMCID: PMC11384538 DOI: 10.1177/20552076241280103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Background Personalized medicine has gained more attention for cancer precision treatment due to patient genetic heterogeneity in recent years. However, predicting the efficacy of antitumor drugs in advance remains a significant challenge to achieve this task. Objective This study aims to predict the efficacy of antitumor drugs in individual cancer patients based on clinical data. Methods This paper proposes to predict personalized antitumor drug efficacy based on clinical data. Specifically, we encode the clinical text of cancer patients as a probability distribution vector in hidden topics space using the Latent Dirichlet Allocation (LDA) model, named LDA representation. Then, a neural network is designed, and the LDA representation is input into the neural network to predict drug response in cancer patients treated with platinum drugs. To evaluate the effectiveness of the proposed method, we gathered and organized clinical records of lung and bowel cancer patients who underwent platinum-based treatment. The prediction performance is assessed using the following metrics: Precision, Recall, F1-score, Accuracy, and Area Under the ROC Curve (AUC). Results The study analyzed a dataset of 958 patients with non-small cell cancer treated with antitumor drugs. The proposed method achieved a stratified 5-fold cross-validation average Precision of 0.81, Recall of 0.89, F1-score of 0.85, Accuracy of 0.77, and AUC of 0.81 for cisplatin efficacy prediction on the data, which most are better than those of previous methods. Of these, the AUC value is at least 4% higher than those of the previous. At the same time, the superior result over the previous method persisted on an independent dataset of 266 bowel cancer patients, showing the generalizability of the proposed method. These results demonstrate the potential value of precise tumor treatment in clinical practice. Conclusions Combining LDA and neural networks can help predict the efficacy of antitumor drugs based on clinical text. Our approach outperforms previous methods in predicting drug clinical efficacy.
Collapse
Affiliation(s)
- Weiwei Zhu
- University of Science and Technology of China, Hefei, Anhui, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaodong Jiang
- Medical Oncology Department, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Zhou
- School of Life Science, Hefei Normal University, Hefei, Anhui, China
| | - Xinping Xie
- School of Mathematics and Physics, Anhui Jianzhu University, Hefei, Anhui, China
| | - Hongqiang Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
27
|
Monem S, Hassanien AE, Abdel-Hamid AH. A multi-task learning model for predicting drugs combination synergy by analyzing drug-drug interactions and integrated multi-view graph data. Sci Rep 2023; 13:22463. [PMID: 38105262 PMCID: PMC10725868 DOI: 10.1038/s41598-023-48991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023] Open
Abstract
This paper proposes a multi-task deep learning model for determining drug combination synergistic by simultaneously output synergy scores and synergy class labels. Initially, the two drugs are represented using a Simplified Molecular-Input Line-Entry (SMILE) system. Chemical structural features of the drugs are extracted from the SMILE using the RedKit package. Additionally, an improved Multi-view representation is proposed to extract graph-based drug features. Furthermore, the cancer cell line is represented by gene expression. Then, a three fully connected layers are learned to extract cancer cell line features. To investigate the impact of drug interactions on cell lines, the drug interaction features are extracted from a pretrained drugs interaction network and fed into an attention mechanism along with the cancer cell line features, resulting in the output of affected cancer cell line features. Subsequently, the drug and cell line features are concatenated and fed into an attention mechanism, which produces a two-feature representation for the two predicted tasks. The relationship between the two tasks is learned using the cross-stitch algorithm. Finally, each task feature is inputted into a fully connected subnetwork to predict the synergy score and synergy label. The proposed model 'MutliSyn' is evaluated using the O'Neil cancer dataset, comprising 38 unique drugs combined to form 22,737 drug combination pairs, tested on 39 cancer cell lines. For the synergy score, the model achieves a mean square error (MSE) of 219.14, a root mean square error (RMSE) of 14.75, and a Pearson score of 0.76. Regarding the synergy class label, the model achieves an area under the ROC curve (ROC-AUC) of 0.95, an area under the precision-recall curve (PR-AUC) of 0.85, precision of 0.93, kappa of 0.61, and accuracy of 0.90.
Collapse
Affiliation(s)
- Samar Monem
- Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt.
- Scientific Research Group in Egypt (SRGE), , .
| | - Aboul Ella Hassanien
- Faculty of Computer and AI, Cairo University, Cairo, Egypt
- Scientific Research Group in Egypt (SRGE),
| | - Alaa H Abdel-Hamid
- Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
28
|
Li Y, Guo Z, Gao X, Wang G. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Bioinformatics 2023; 39:btad734. [PMID: 38070154 PMCID: PMC10756335 DOI: 10.1093/bioinformatics/btad734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
MOTIVATION Cancer is a complex disease that results in a significant number of global fatalities. Treatment strategies can vary among patients, even if they have the same type of cancer. The application of precision medicine in cancer shows promise for treating different types of cancer, reducing healthcare expenses, and improving recovery rates. To achieve personalized cancer treatment, machine learning models have been developed to predict drug responses based on tumor and drug characteristics. However, current studies either focus on constructing homogeneous networks from single data source or heterogeneous networks from multiomics data. While multiomics data have shown potential in predicting drug responses in cancer cell lines, there is still a lack of research that effectively utilizes insights from different modalities. Furthermore, effectively utilizing the multimodal knowledge of cancer cell lines poses a challenge due to the heterogeneity inherent in these modalities. RESULTS To address these challenges, we introduce MMCL-CDR (Multimodal Contrastive Learning for Cancer Drug Responses), a multimodal approach for cancer drug response prediction that integrates copy number variation, gene expression, morphology images of cell lines, and chemical structure of drugs. The objective of MMCL-CDR is to align cancer cell lines across different data modalities by learning cell line representations from omic and image data, and combined with structural drug representations to enhance the prediction of cancer drug responses (CDR). We have carried out comprehensive experiments and show that our model significantly outperforms other state-of-the-art methods in CDR prediction. The experimental results also prove that the model can learn more accurate cell line representation by integrating multiomics and morphological data from cell lines, thereby improving the accuracy of CDR prediction. In addition, the ablation study and qualitative analysis also confirm the effectiveness of each part of our proposed model. Last but not least, MMCL-CDR opens up a new dimension for cancer drug response prediction through multimodal contrastive learning, pioneering a novel approach that integrates multiomics and multimodal drug and cell line modeling. AVAILABILITY AND IMPLEMENTATION MMCL-CDR is available at https://github.com/catly/MMCL-CDR.
Collapse
Affiliation(s)
- Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Zihou Guo
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| |
Collapse
|
29
|
Piochi LF, Preto AJ, Moreira IS. DELFOS-drug efficacy leveraging forked and specialized networks-benchmarking scRNA-seq data in multi-omics-based prediction of cancer sensitivity. Bioinformatics 2023; 39:btad645. [PMID: 37862234 PMCID: PMC10627353 DOI: 10.1093/bioinformatics/btad645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023] Open
Abstract
MOTIVATION Cancer is currently one of the most notorious diseases, with over 1 million deaths in the European Union alone in 2022. As each tumor can be composed of diverse cell types with distinct genotypes, cancer cells can acquire resistance to different compounds. Moreover, anticancer drugs can display severe side effects, compromising patient well-being. Therefore, novel strategies for identifying the optimal set of compounds to treat each tumor have become an important research topic in recent decades. RESULTS To address this challenge, we developed a novel drug response prediction algorithm called Drug Efficacy Leveraging Forked and Specialized networks (DELFOS). Our model learns from multi-omics data from over 65 cancer cell lines, as well as structural data from over 200 compounds, for the prediction of drug sensitivity. We also evaluated the benefits of incorporating single-cell expression data to predict drug response. DELFOS was validated using datasets with unseen cell lines or drugs and compared with other state-of-the-art algorithms, achieving a high prediction performance on several correlation and error metrics. Overall, DELFOS can effectively leverage multi-omics data for the prediction of drug responses in thousands of drug-cell line pairs. AVAILABILITY AND IMPLEMENTATION The DELFOS pipeline and associated data are available at github.com/MoreiraLAB/delfos.
Collapse
Affiliation(s)
- Luiz Felipe Piochi
- Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, Coimbra 3004-504, Portugal
| | - António J Preto
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, Coimbra 3004-504, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3030-789, Portugal
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, Coimbra 3004-504, Portugal
| |
Collapse
|
30
|
Connell W, Garcia K, Goodarzi H, Keiser MJ. Learning chemical sensitivity reveals mechanisms of cellular response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554851. [PMID: 37693536 PMCID: PMC10491110 DOI: 10.1101/2023.08.26.554851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we developed ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we inferred the chemical sensitivity of cancer cell lines and tumor samples and analyzed how the model makes predictions. We retrospectively evaluated drug response predictions for precision breast cancer treatment and prospectively validated chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identified transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
Collapse
Affiliation(s)
- William Connell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J. Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Shahzad M, Tahir MA, Alhussein M, Mobin A, Shams Malick RA, Anwar MS. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response. Diagnostics (Basel) 2023; 13:2043. [PMID: 37370938 DOI: 10.3390/diagnostics13122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
With the beginning of the high-throughput screening, in silico-based drug response analysis has opened lots of research avenues in the field of personalized medicine. For a decade, many different predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response, but still, there is a need for improvements in drug sensitivity prediction. The intent of this research study is to propose a framework, namely NeuPD, to validate the potential anti-cancer drugs against a panel of cancer cell lines in publicly available datasets. The datasets used in this work are Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). As not all drugs are effective on cancer cell lines, we have worked on 10 essential drugs from the GDSC dataset that have achieved the best modeling results in previous studies. We also extracted 1610 essential oncogene expressions from 983 cell lines from the same dataset. Whereas, from the CCLE dataset, 16,383 gene expressions from 1037 cell lines and 24 drugs have been used in our experiments. For dimensionality reduction, Pearson correlation is applied to best fit the model. We integrate the genomic features of cell lines and drugs' fingerprints to fit the neural network model. For evaluation of the proposed NeuPD framework, we have used repeated K-fold cross-validation with 5 times repeats where K = 10 to demonstrate the performance in terms of root mean square error (RMSE) and coefficient determination (R2). The results obtained on the GDSC dataset that were measured using these cost functions show that our proposed NeuPD framework has outperformed existing approaches with an RMSE of 0.490 and R2 of 0.929.
Collapse
Affiliation(s)
- Muhammad Shahzad
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Atif Tahir
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Ansharah Mobin
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Rauf Ahmed Shams Malick
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Shahid Anwar
- Department of AI and Software, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
32
|
Peng W, Chen T, Liu H, Dai W, Yu N, Lan W. Improving drug response prediction based on two-space graph convolution. Comput Biol Med 2023; 158:106859. [PMID: 37023539 DOI: 10.1016/j.compbiomed.2023.106859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Patients with the same cancer types may present different genomic features and therefore have different drug sensitivities. Accordingly, correctly predicting patients' responses to the drugs can guide treatment decisions and improve the outcome of cancer patients. Existing computational methods leverage the graph convolution network model to aggregate features of different types of nodes in the heterogeneous network. They most fail to consider the similarity between homogeneous nodes. To this end, we propose an algorithm based on two-space graph convolutional neural networks, TSGCNN, to predict the response of anticancer drugs. TSGCNN first constructs the cell line feature space and the drug feature space and separately performs the graph convolution operation on the feature spaces to diffuse similarity information among homogeneous nodes. After that, we generate a heterogeneous network based on the known cell line and drug relationship and perform graph convolution operations on the heterogeneous network to collect the features of different types of nodes. Subsequently, the algorithm produces the final feature representations for cell lines and drugs by adding their self features, the feature space representations, and the heterogeneous space representations. Finally, we leverage the linear correlation coefficient decoder to reconstruct the cell line-drug correlation matrix for drug response prediction based on the final representations. We tested our model on the Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) databases. The results indicate that TSGCNN shows excellent performance drug response prediction compared with other eight state-of-the-art methods.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050, China.
| | - Tielin Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport, NY 14422, United States of America
| | - Wei Lan
- School of Computer Electronic and Information, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
33
|
Chu T, Nguyen TT, Hai BD, Nguyen QH, Nguyen T. Graph Transformer for Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1065-1072. [PMID: 36107906 DOI: 10.1109/tcbb.2022.3206888] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Previous models have shown that learning drug features from their graph representation is more efficient than learning from their strings or numeric representations. Furthermore, integrating multi-omics data of cell lines increases the performance of drug response prediction. However, these models have shown drawbacks in extracting drug features from graph representation and incorporating redundancy information from multi-omics data. This paper proposes a deep learning model, GraTransDRP, to better drug representation and reduce information redundancy. First, the Graph transformer was utilized to extract the drug representation more efficiently. Next, Convolutional neural networks were used to learn the mutation, meth, and transcriptomics features. However, the dimension of transcriptomics features was up to 17737. Therefore, KernelPCA was applied to transcriptomics features to reduce the dimension and transform them into a dense presentation before putting them through the CNN model. Finally, drug and omics features were combined to predict a response value by a fully connected network. Experimental results show that our model outperforms some state-of-the-art methods, including GraphDRP and GraOmicDRP.
Collapse
|
34
|
Badwan BA, Liaropoulos G, Kyrodimos E, Skaltsas D, Tsirigos A, Gorgoulis VG. Machine learning approaches to predict drug efficacy and toxicity in oncology. CELL REPORTS METHODS 2023; 3:100413. [PMID: 36936080 PMCID: PMC10014302 DOI: 10.1016/j.crmeth.2023.100413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In recent years, there has been a surge of interest in using machine learning algorithms (MLAs) in oncology, particularly for biomedical applications such as drug discovery, drug repurposing, diagnostics, clinical trial design, and pharmaceutical production. MLAs have the potential to provide valuable insights and predictions in these areas by representing both the disease state and the therapeutic agents used to treat it. To fully utilize the capabilities of MLAs in oncology, it is important to understand the fundamental concepts underlying these algorithms and how they can be applied to assess the efficacy and toxicity of therapeutics. In this perspective, we lay out approaches to represent both the disease state and the therapeutic agents used by MLAs to derive novel insights and make relevant predictions.
Collapse
Affiliation(s)
| | | | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, National Kapodistrian University of Athens, Athens, GR 11527, Greece
| | | | - Aristotelis Tsirigos
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Vassilis G. Gorgoulis
- Intelligencia Inc, New York, NY 10014, USA
- Department of Histology and Embryology, Faculty of Medicine, School of Health Sciences, National Kapodistrian University of Athens, Athens 11527, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
35
|
Partin A, Brettin TS, Zhu Y, Narykov O, Clyde A, Overbeek J, Stevens RL. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends. Front Med (Lausanne) 2023; 10:1086097. [PMID: 36873878 PMCID: PMC9975164 DOI: 10.3389/fmed.2023.1086097] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer claims millions of lives yearly worldwide. While many therapies have been made available in recent years, by in large cancer remains unsolved. Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans, ultimately suppressing tumors, alleviating suffering, and prolonging lives of patients. A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods. These papers investigate diverse data representations, neural network architectures, learning methodologies, and evaluations schemes. However, deciphering promising predominant and emerging trends is difficult due to the variety of explored methods and lack of standardized framework for comparing drug response prediction models. To obtain a comprehensive landscape of deep learning methods, we conducted an extensive search and analysis of deep learning models that predict the response to single drug treatments. A total of 61 deep learning-based models have been curated, and summary plots were generated. Based on the analysis, observable patterns and prevalence of methods have been revealed. This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
Collapse
Affiliation(s)
- Alexander Partin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Thomas S. Brettin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Yitan Zhu
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Oleksandr Narykov
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Austin Clyde
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Jamie Overbeek
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Rick L. Stevens
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
- Department of Computer Science, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Wang H, Dai C, Wen Y, Wang X, Liu W, He S, Bo X, Peng S. GADRP: graph convolutional networks and autoencoders for cancer drug response prediction. Brief Bioinform 2023; 24:6865039. [PMID: 36460622 DOI: 10.1093/bib/bbac501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 12/04/2022] Open
Abstract
Drug response prediction in cancer cell lines is of great significance in personalized medicine. In this study, we propose GADRP, a cancer drug response prediction model based on graph convolutional networks (GCNs) and autoencoders (AEs). We first use a stacked deep AE to extract low-dimensional representations from cell line features, and then construct a sparse drug cell line pair (DCP) network incorporating drug, cell line, and DCP similarity information. Later, initial residual and layer attention-based GCN (ILGCN) that can alleviate over-smoothing problem is utilized to learn DCP features. And finally, fully connected network is employed to make prediction. Benchmarking results demonstrate that GADRP can significantly improve prediction performance on all metrics compared with baselines on five datasets. Particularly, experiments of predictions of unknown DCP responses, drug-cancer tissue associations, and drug-pathway associations illustrate the predictive power of GADRP. All results highlight the effectiveness of GADRP in predicting drug responses, and its potential value in guiding anti-cancer drug selection.
Collapse
Affiliation(s)
- Hong Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Yuqi Wen
- Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Wenjuan Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Song He
- Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Department of Bioinformatics, Beijing Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.,The State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
37
|
Chen S, Yang Y, Zhou H, Sun Q, Su R. DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity. Methods 2023; 209:1-9. [PMID: 36410694 DOI: 10.1016/j.ymeth.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
With the rapid development of deep learning techniques and large-scale genomics database, it is of great potential to apply deep learning to the prediction task of anticancer drug sensitivity, which can effectively improve the identification efficiency and accuracy of therapeutic biomarkers. In this study, we propose a parallel deep learning framework DNN-PNN, which integrates rich and heterogeneous information from gene expression and pharmaceutical chemical structure data. With the proposal of DNN-PNN, a new and more effective drug data representation strategy is introduced, that is, the correlation between features is represented by product, which alleviates the limitations of high-dimensional discrete data in deep learning. Furthermore, the framework is optimized to reduce the time complexity of the model. We conducted extensive experiments on the CCLE datasets to compare DNN-PNN with its variant DNN-FM representing the traditional feature correlation model, the component DNN or PNN alone, and the common machine learning models. It is found that DNN-PNN not only has high prediction accuracy, but also has significant advantages in stability and convergence speed.
Collapse
Affiliation(s)
- Siqi Chen
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China.
| | - Yang Yang
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Haoran Zhou
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Qisong Sun
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
38
|
Xi J, Wang D, Yang X, Zhang W, Huang Q. Cancer omic data based explainable AI drug recommendation inference: A traceability perspective for explainability. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Singh DP, Kaushik B. A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques. Chem Biol Drug Des 2023; 101:175-194. [PMID: 36303299 DOI: 10.1111/cbdd.14164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Computational methods have gained prominence in healthcare research. The accessibility of healthcare data has greatly incited academicians and researchers to develop executions that help in prognosis of cancer drug response. Among various computational methods, machine-learning (ML) and deep-learning (DL) methods provide the most consistent and effectual approaches to handle the serious aftermaths of the deadly disease and drug administered to the patients. Hence, this systematic literature review has reviewed researches that have investigated drug discovery and prognosis of anticancer drug response using ML and DL algorithms. Fot this purpose, PRISMA guidelines have been followed to choose research papers from Google Scholar, PubMed, and Sciencedirect websites. A total count of 105 papers that align with the context of this review were chosen. Further, the review also presents accuracy of the existing ML and DL methods in the prediction of anticancer drug response. It has been found from the review that, amidst the availability of various studies, there are certain challenges associated with each method. Thus, future researchers can consider these limitations and challenges to develop a prominent anticancer drug response prediction method, and it would be greatly beneficial to the medical professionals in administering non-invasive treatment to the patients.
Collapse
Affiliation(s)
- Davinder Paul Singh
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Baijnath Kaushik
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
40
|
Xie M, Lei X, Zhong J, Ouyang J, Li G. Drug response prediction using graph representation learning and Laplacian feature selection. BMC Bioinformatics 2022; 23:532. [PMID: 36494630 PMCID: PMC9733001 DOI: 10.1186/s12859-022-05080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Knowing the responses of a patient to drugs is essential to make personalized medicine practical. Since the current clinical drug response experiments are time-consuming and expensive, utilizing human genomic information and drug molecular characteristics to predict drug responses is of urgent importance. Although a variety of computational drug response prediction methods have been proposed, their effectiveness is still not satisfying. RESULTS In this study, we propose a method called LGRDRP (Learning Graph Representation for Drug Response Prediction) to predict cell line-drug responses. At first, LGRDRP constructs a heterogeneous network integrating multiple kinds of information: cell line miRNA expression profiles, drug chemical structure similarity, gene-gene interaction, cell line-gene interaction and known cell line-drug responses. Then, for each cell line, learning graph representation and Laplacian feature selection are combined to obtain network topology features related to the cell line. The learning graph representation method learns network topology structure features, and the Laplacian feature selection method further selects out some most important ones from them. Finally, LGRDRP trains an SVM model to predict drug responses based on the selected features of the known cell line-drug responses. Our five-fold cross-validation results show that LGRDRP is significantly superior to the art-of-the-state methods in the measures of the average area under the receiver operating characteristics curve, the average area under the precision-recall curve and the recall rate of top-k predicted sensitive cell lines. CONCLUSIONS Our results demonstrated that the usage of multiple types of information about cell lines and drugs, the learning graph representation method, and the Laplacian feature selection is useful to the improvement of performance in predicting drug responses. We believe that such an approach would be easily extended to similar problems such as miRNA-disease relationship inference.
Collapse
Affiliation(s)
- Minzhu Xie
- grid.411427.50000 0001 0089 3695College of Information Science and Engineering, Hunan Normal University, Changsha, China ,grid.411427.50000 0001 0089 3695Key Laboratory of Computing and Stochastic Mathematics (LCSM) (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, China
| | - Xiaowen Lei
- grid.411427.50000 0001 0089 3695College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jianchen Zhong
- grid.411427.50000 0001 0089 3695College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jianxing Ouyang
- grid.411427.50000 0001 0089 3695College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Guijing Li
- grid.411427.50000 0001 0089 3695College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
41
|
Raimondi D, Orlando G, Verplaetse N, Fariselli P, Moreau Y. Editorial: Towards genome interpretation: Computational methods to model the genotype-phenotype relationship. FRONTIERS IN BIOINFORMATICS 2022; 2:1098941. [PMID: 36530385 PMCID: PMC9749061 DOI: 10.3389/fbinf.2022.1098941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/12/2023] Open
Affiliation(s)
| | | | | | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | |
Collapse
|
42
|
Chen Y, Wang J, Wang C, Liu M, Zou Q. Deep learning models for disease-associated circRNA prediction: a review. Brief Bioinform 2022; 23:6696465. [PMID: 36130259 DOI: 10.1093/bib/bbac364] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that circular RNAs (circRNAs) can provide new insights and potential therapeutic targets for disease diagnosis and treatment. However, traditional biological experiments are expensive and time-consuming. Recently, deep learning with a more powerful ability for representation learning enables it to be a promising technology for predicting disease-associated circRNAs. In this review, we mainly introduce the most popular databases related to circRNA, and summarize three types of deep learning-based circRNA-disease associations prediction methods: feature-generation-based, type-discrimination and hybrid-based methods. We further evaluate seven representative models on benchmark with ground truth for both balance and imbalance classification tasks. In addition, we discuss the advantages and limitations of each type of method and highlight suggested applications for future research.
Collapse
Affiliation(s)
- Yaojia Chen
- College of Electronics and Information Engineering Guangdong Ocean University, Zhanjiang, China and the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiacheng Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Mingxin Liu
- College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Quan Zou
- University of Electronic Science and Technology of China, China
| |
Collapse
|
43
|
Peng W, Liu H, Dai W, Yu N, Wang J. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Bioinformatics 2022; 38:4546-4553. [PMID: 35997568 DOI: 10.1093/bioinformatics/btac574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Due to cancer heterogeneity, the therapeutic effect may not be the same when a cohort of patients of the same cancer type receive the same treatment. The anticancer drug response prediction may help develop personalized therapy regimens to increase survival and reduce patients' expenses. Recently, graph neural network-based methods have aroused widespread interest and achieved impressive results on the drug response prediction task. However, most of them apply graph convolution to process cell line-drug bipartite graphs while ignoring the intrinsic differences between cell lines and drug nodes. Moreover, most of these methods aggregate node-wise neighbor features but fail to consider the element-wise interaction between cell lines and drugs. RESULTS This work proposes a neighborhood interaction (NI)-based heterogeneous graph convolution network method, namely NIHGCN, for anticancer drug response prediction in an end-to-end way. Firstly, it constructs a heterogeneous network consisting of drugs, cell lines and the known drug response information. Cell line gene expression and drug molecular fingerprints are linearly transformed and input as node attributes into an interaction model. The interaction module consists of a parallel graph convolution network layer and a NI layer, which aggregates node-level features from their neighbors through graph convolution operation and considers the element-level of interactions with their neighbors in the NI layer. Finally, the drug response predictions are made by calculating the linear correlation coefficients of feature representations of cell lines and drugs. We have conducted extensive experiments to assess the effectiveness of our model on Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets. It has achieved the best performance compared with the state-of-the-art algorithms, especially in predicting drug responses for new cell lines, new drugs and targeted drugs. Furthermore, our model that was well trained on the GDSC dataset can be successfully applied to predict samples of PDX and TCGA, which verified the transferability of our model from cell line in vitro to the datasets in vivo. AVAILABILITY AND IMPLEMENTATION The source code can be obtained from https://github.com/weiba/NIHGCN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Ning Yu
- Department of Computing Sciences, The College at Brockport, State University of New York, Brockport, NY 14422, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
44
|
Li G, Wu X, Ma X. Artificial intelligence in radiotherapy. Semin Cancer Biol 2022; 86:160-171. [PMID: 35998809 DOI: 10.1016/j.semcancer.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Radiotherapy is a discipline closely integrated with computer science. Artificial intelligence (AI) has developed rapidly over the past few years. With the explosive growth of medical big data, AI promises to revolutionize the field of radiotherapy through highly automated workflow, enhanced quality assurance, improved regional balances of expert experiences, and individualized treatment guided by multi-omics. In addition to independent researchers, the increasing number of large databases, biobanks, and open challenges significantly facilitated AI studies on radiation oncology. This article reviews the latest research, clinical applications, and challenges of AI in each part of radiotherapy including image processing, contouring, planning, quality assurance, motion management, and outcome prediction. By summarizing cutting-edge findings and challenges, we aim to inspire researchers to explore more future possibilities and accelerate the arrival of AI radiotherapy.
Collapse
Affiliation(s)
- Guangqi Li
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xin Wu
- Head & Neck Oncology ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
45
|
Islam MM, Mohammed N, Wang Y, Hu P. Differential Private Deep Learning Models for Analyzing Breast Cancer Omics Data. Front Oncol 2022; 12:879607. [PMID: 35814415 PMCID: PMC9259987 DOI: 10.3389/fonc.2022.879607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Proper analysis of high-dimensional human genomic data is necessary to increase human knowledge about fundamental biological questions such as disease associations and drug sensitivity. However, such data contain sensitive private information about individuals and can be used to identify an individual (i.e., privacy violation) uniquely. Therefore, raw genomic datasets cannot be publicly published or shared with researchers. The recent success of deep learning (DL) in diverse problems proved its suitability for analyzing the high volume of high-dimensional genomic data. Still, DL-based models leak information about the training samples. To overcome this challenge, we can incorporate differential privacy mechanisms into the DL analysis framework as differential privacy can protect individuals’ privacy. We proposed a differential privacy based DL framework to solve two biological problems: breast cancer status (BCS) and cancer type (CT) classification, and drug sensitivity prediction. To predict BCS and CT using genomic data, we built a differential private (DP) deep autoencoder (dpAE) using private gene expression datasets that performs low-dimensional data representation learning. We used dpAE features to build multiple DP binary classifiers to predict BCS and CT in any individual. To predict drug sensitivity, we used the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. We extracted GDSC’s dpAE features to build our DP drug sensitivity prediction model for 265 drugs. Evaluation of our proposed DP framework shows that it achieves improved prediction performance in predicting BCS, CT, and drug sensitivity than the previously published DP work.
Collapse
Affiliation(s)
| | - Noman Mohammed
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Yang Wang
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
- Research Institute for Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
- *Correspondence: Pingzhao Hu,
| |
Collapse
|
46
|
Wang Z, Wang Z, Huang Y, Lu L, Fu Y. A multi-view multi-omics model for cancer drug response prediction. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03294-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Nguyen GTT, Vu HD, Le DH. Integrating Molecular Graph Data of Drugs and Multiple -Omic Data of Cell Lines for Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:710-717. [PMID: 34260355 DOI: 10.1109/tcbb.2021.3096960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Previous studies have either learned drug's features from their string or numeric representations, which are not natural forms of drugs, or only used genomic data of cell lines for the drug response prediction problem. Here, we proposed a deep learning model, GraOmicDRP, to learn drug's features from their graph representation and integrate multiple -omic data of cell lines. In GraOmicDRP, drugs are represented as graphs of bindings among atoms; meanwhile, cell lines are depicted by not only genomic but also transcriptomic and epigenomic data. Graph convolutional and convolutional neural networks were used to learn the representation of drugs and cell lines, respectively. A combination of the two representations was then used to be representative of each pair of drug-cell line. Finally, the response value of each pair was predicted by a fully connected network. Experimental results indicate that transcriptomic data shows the best among single -omic data; meanwhile, the combinations of transcriptomic and other -omic data achieved the best performance overall in terms of both Root Mean Square Error and Pearson correlation coefficient. In addition, we also show that GraOmicDRP outperforms some state-of-the-art methods, including ones integrating -omic data with drug information such as GraphDRP, and ones using -omic data without drug information such as DeepDR and MOLI.
Collapse
|
48
|
Nguyen T, Nguyen GTT, Nguyen T, Le DH. Graph Convolutional Networks for Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:146-154. [PMID: 33606633 DOI: 10.1109/tcbb.2021.3060430] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Drug response prediction is an important problem in computational personalized medicine. Many machine-learning-based methods, especially deep learning-based ones, have been proposed for this task. However, these methods often represent the drugs as strings, which are not a natural way to depict molecules. Also, interpretation (e.g., what are the mutation or copy number aberration contributing to the drug response) has not been considered thoroughly. METHODS In this study, we propose a novel method, GraphDRP, based on graph convolutional network for the problem. In GraphDRP, drugs were represented in molecular graphs directly capturing the bonds among atoms, meanwhile cell lines were depicted as binary vectors of genomic aberrations. Representative features of drugs and cell lines were learned by convolution layers, then combined to represent for each drug-cell line pair. Finally, the response value of each drug-cell line pair was predicted by a fully-connected neural network. Four variants of graph convolutional networks were used for learning the features of drugs. RESULTS We found that GraphDRP outperforms tCNNS in all performance measures for all experiments. Also, through saliency maps of the resulting GraphDRP models, we discovered the contribution of the genomic aberrations to the responses. CONCLUSION Representing drugs as graphs can improve the performance of drug response prediction. Availability of data and materials: Data and source code can be downloaded athttps://github.com/hauldhut/GraphDRP.
Collapse
|
49
|
AIM in Genomic Basis of Medicine: Applications. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Artificial Intelligence for Precision Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:249-268. [DOI: 10.1007/978-3-030-91836-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|