1
|
Chen Y, Wu W, Ou-Yang L, Wang R, Kwong S. GRESS: Grouping Belief-Based Deep Contrastive Subspace Clustering. IEEE TRANSACTIONS ON CYBERNETICS 2025; 55:148-160. [PMID: 39437281 DOI: 10.1109/tcyb.2024.3475034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The self-expressive coefficient plays a crucial role in the self-expressiveness-based subspace clustering method. To enhance the precision of the self-expressive coefficient, we propose a novel deep subspace clustering method, named grouping belief-based deep contrastive subspace clustering (GRESS), which integrates the clustering information and higher-order relationship into the coefficient matrix. Specifically, we develop a deep contrastive subspace clustering module to enhance the learning of both self-expressive coefficients and cluster representations simultaneously. This approach enables the derivation of relatively noiseless self-expressive similarities and cluster-based similarities. To enable interaction between these two types of similarities, we propose a unique grouping belief-based affinity refinement module. This module leverages grouping belief to uncover the higher-order relationships within the similarity matrix, and integrates the well-designed noisy similarity suppression and similarity increment regularization to eliminate redundant connections while complete absent information. Extensive experimental results on four benchmark datasets validate the superiority of our proposed method GRESS over several state-of-the-art methods.
Collapse
|
2
|
Liu K, Liu H, Wang T, Hu G, Ward TE, Chen CLP. Semi-Supervised Mixture Learning for Graph Neural Networks With Neighbor Dependence. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:12528-12539. [PMID: 37037240 DOI: 10.1109/tnnls.2023.3263463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A graph neural network (GNN) is a powerful architecture for semi-supervised learning (SSL). However, the data-driven mode of GNNs raises some challenging problems. In particular, these models suffer from the limitations of incomplete attribute learning, insufficient structure capture, and the inability to distinguish between node attribute and graph structure, especially on label-scarce or attribute-missing data. In this article, we propose a novel framework, called graph coneighbor neural network (GCoNN), for node classification. It is composed of two modules: GCoNN Γ and GCoNN Γ° . GCoNN Γ is trained to establish the fundamental prototype for attribute learning on labeled data, while GCoNN Γ° learns neighbor dependence on transductive data through pseudolabels generated by GCoNN Γ . Next, GCoNN Γ is retrained to improve integration of node attribute and neighbor structure through feedback from GCoNN Γ° . GCoNN tends to convergence iteratively using such an approach. From a theoretical perspective, we analyze this iteration process from a generalized expectation-maximization (GEM) framework perspective which optimizes an evidence lower bound (ELBO) by amortized variational inference. Empirical evidence demonstrates that the state-of-the-art performance of the proposed approach outperforms other methods. We also apply GCoNN to brain functional networks, the results of which reveal response features across the brain which are physiologically plausible with respect to known language and visual functions.
Collapse
|
3
|
Zhou J, Gao C, Wang X, Lai Z, Wan J, Yue X. Typicality-Aware Adaptive Similarity Matrix for Unsupervised Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10776-10790. [PMID: 37027557 DOI: 10.1109/tnnls.2023.3243914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Graph-based clustering approaches, especially the family of spectral clustering, have been widely used in machine learning areas. The alternatives usually engage a similarity matrix that is constructed in advance or learned from a probabilistic perspective. However, unreasonable similarity matrix construction inevitably leads to performance degradation, and the sum-to-one probability constraints may make the approaches sensitive to noisy scenarios. To address these issues, the notion of typicality-aware adaptive similarity matrix learning is presented in this study. The typicality (possibility) rather than the probability of each sample being a neighbor of other samples is measured and adaptively learned. By introducing a robust balance term, the similarity between any pairs of samples is only related to the distance between them, yet it is not affected by other samples. Therefore, the impact caused by the noisy data or outliers can be alleviated, and meanwhile, the neighborhood structures can be well captured according to the joint distance between samples and their spectral embeddings. Moreover, the generated similarity matrix has block diagonal properties that are beneficial to correct clustering. Interestingly, the results optimized by the typicality-aware adaptive similarity matrix learning share the common essence with the Gaussian kernel function, and the latter can be directly derived from the former. Extensive experiments on synthetic and well-known benchmark datasets demonstrate the superiority of the proposed idea when comparing with some state-of-the-art methods.
Collapse
|
4
|
Liu S, Yu Y, Liu K, Wang F, Wen W, Qiao H. Hierarchical Neighbors Embedding. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7816-7829. [PMID: 36409806 DOI: 10.1109/tnnls.2022.3221103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manifold learning now plays an important role in machine learning and many relevant applications. In spite of the superior performance of manifold learning techniques in dealing with nonlinear data distribution, their performance would drop when facing the problem of data sparsity. It is hard to obtain satisfactory embeddings when sparsely sampled high-dimensional data are mapped into the observation space. To address this issue, in this article, we propose hierarchical neighbors embedding (HNE), which enhances the local connections through hierarchical combination of neighbors. And three different HNE-based implementations are derived by further analyzing the topological connection and reconstruction performance. The experimental results on both the synthetic and real-world datasets illustrate that our HNE-based methods could obtain more faithful embeddings with better topological and geometrical properties. From the view of embedding quality, HNE develops the outstanding advantages in dealing with data of general distributions. Furthermore, comparing with other state-of-the-art manifold learning methods, HNE shows its superiority in dealing with sparsely sampled data and weak-connected manifolds.
Collapse
|
5
|
He X, Wang B, Hu Y, Gao J, Sun Y, Yin B. Parallelly Adaptive Graph Convolutional Clustering Model. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4451-4464. [PMID: 35617184 DOI: 10.1109/tnnls.2022.3176411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Benefiting from exploiting the data topological structure, graph convolutional network (GCN) has made considerable improvements in processing clustering tasks. The performance of GCN significantly relies on the quality of the pretrained graph, while the graph structures are often corrupted by noise or outliers. To overcome this problem, we replace the pre-trained and fixed graph in GCN by the adaptive graph learned from the data. In this article, we propose a novel end-to-end parallelly adaptive graph convolutional clustering (AGCC) model with two pathway networks. In the first pathway, an adaptive graph convolutional (AGC) module alternatively updates the graph structure and the data representation layer by layer. The updated graph can better reflect the data relationship than the fixed graph. In the second pathway, the auto-encoder (AE) module aims to extract the latent data features. To effectively connect the AGC and AE modules, we creatively propose an attention-mechanism-based fusion (AMF) module to weight and fuse the data representations of the two modules, and transfer them to the AGC module. This simultaneously avoids the over-smoothing problem of GCN. Experimental results on six public datasets show that the effectiveness of the proposed AGCC compared with multiple state-of-the-art deep clustering methods. The code is available at https://github.com/HeXiax/AGCC.
Collapse
|
6
|
Wu W, Ma X, Wang Q, Gong M, Gao Q. Learning deep representation and discriminative features for clustering of multi-layer networks. Neural Netw 2024; 170:405-416. [PMID: 38029721 DOI: 10.1016/j.neunet.2023.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The multi-layer network consists of the interactions between different layers, where each layer of the network is depicted as a graph, providing a comprehensive way to model the underlying complex systems. The layer-specific modules of multi-layer networks are critical to understanding the structure and function of the system. However, existing methods fail to characterize and balance the connectivity and specificity of layer-specific modules in networks because of the complicated inter- and intra-coupling of various layers. To address the above issues, a joint learning graph clustering algorithm (DRDF) for detecting layer-specific modules in multi-layer networks is proposed, which simultaneously learns the deep representation and discriminative features. Specifically, DRDF learns the deep representation with deep nonnegative matrix factorization, where the high-order topology of the multi-layer network is gradually and precisely characterized. Moreover, it addresses the specificity of modules with discriminative feature learning, where the intra-class compactness and inter-class separation of pseudo-labels of clusters are explored as self-supervised information, thereby providing a more accurate method to explicitly model the specificity of the multi-layer network. Finally, DRDF balances the connectivity and specificity of layer-specific modules with joint learning, where the overall objective of the graph clustering algorithm and optimization rules are derived. The experiments on ten multi-layer networks showed that DRDF not only outperforms eight baselines on graph clustering but also enhances the robustness of algorithms.
Collapse
Affiliation(s)
- Wenming Wu
- School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China.
| | - Quan Wang
- School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China
| | - Maoguo Gong
- School of Electronic Engineering, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China
| | - Quanxue Gao
- School of Telecommunication, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China
| |
Collapse
|
7
|
Kauffmann J, Esders M, Ruff L, Montavon G, Samek W, Muller KR. From Clustering to Cluster Explanations via Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:1926-1940. [PMID: 35797317 DOI: 10.1109/tnnls.2022.3185901] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A recent trend in machine learning has been to enrich learned models with the ability to explain their own predictions. The emerging field of explainable AI (XAI) has so far mainly focused on supervised learning, in particular, deep neural network classifiers. In many practical problems, however, the label information is not given and the goal is instead to discover the underlying structure of the data, for example, its clusters. While powerful methods exist for extracting the cluster structure in data, they typically do not answer the question why a certain data point has been assigned to a given cluster. We propose a new framework that can, for the first time, explain cluster assignments in terms of input features in an efficient and reliable manner. It is based on the novel insight that clustering models can be rewritten as neural networks-or "neuralized." Cluster predictions of the obtained networks can then be quickly and accurately attributed to the input features. Several showcases demonstrate the ability of our method to assess the quality of learned clusters and to extract novel insights from the analyzed data and representations.
Collapse
|
8
|
Li L, Wang S, Liu X, Zhu E, Shen L, Li K, Li K. Local Sample-Weighted Multiple Kernel Clustering With Consensus Discriminative Graph. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:1721-1734. [PMID: 35839203 DOI: 10.1109/tnnls.2022.3184970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels. Constructing precise and local kernel matrices is proven to be of vital significance in applications since the unreliable distant-distance similarity estimation would degrade clustering performance. Although existing localized MKC algorithms exhibit improved performance compared with globally designed competitors, most of them widely adopt the KNN mechanism to localize kernel matrix by accounting for τ -nearest neighbors. However, such a coarse manner follows an unreasonable strategy that the ranking importance of different neighbors is equal, which is impractical in applications. To alleviate such problems, this article proposes a novel local sample-weighted MKC (LSWMKC) model. We first construct a consensus discriminative affinity graph in kernel space, revealing the latent local structures. Furthermore, an optimal neighborhood kernel for the learned affinity graph is output with naturally sparse property and clear block diagonal structure. Moreover, LSWMKC implicitly optimizes adaptive weights on different neighbors with corresponding samples. Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algorithms. The source code of LSWMKC can be publicly accessed from https://github.com/liliangnudt/LSWMKC.
Collapse
|
9
|
Zhang H, Li P, Zhang R, Li X. Embedding Graph Auto-Encoder for Graph Clustering. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:9352-9362. [PMID: 35333721 DOI: 10.1109/tnnls.2022.3158654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graph clustering, aiming to partition nodes of a graph into various groups via an unsupervised approach, is an attractive topic in recent years. To improve the representative ability, several graph auto-encoder (GAE) models, which are based on semisupervised graph convolution networks (GCN), have been developed and they have achieved impressive results compared with traditional clustering methods. However, all existing methods either fail to utilize the orthogonal property of the representations generated by GAE or separate the clustering and the training of neural networks. We first prove that the relaxed k -means will obtain an optimal partition in the inner-product distance used space. Driven by theoretical analysis about relaxed k -means, we design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding GAE (EGAE). The learned representations are well explainable so that the representations can be also used for other tasks. To induce the neural network to produce deep features that are appropriate for the specific clustering model, the relaxed k -means and GAE are learned simultaneously. Meanwhile, the relaxed k -means can be equivalently regarded as a decoder that attempts to learn representations that can be linearly constructed by some centroid vectors. Accordingly, EGAE consists of one encoder and dual decoders. Extensive experiments are conducted to prove the superiority of EGAE and the corresponding theoretical analyses.
Collapse
|
10
|
Huang Z, Hu H, Su M. Hybrid DAER Based Cross-Modal Retrieval Exploiting Deep Representation Learning. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1216. [PMID: 37628246 PMCID: PMC10452985 DOI: 10.3390/e25081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/19/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Information retrieval across multiple modes has attracted much attention from academics and practitioners. One key challenge of cross-modal retrieval is to eliminate the heterogeneous gap between different patterns. Most of the existing methods tend to jointly construct a common subspace. However, very little attention has been given to the study of the importance of different fine-grained regions of various modalities. This lack of consideration significantly influences the utilization of the extracted information of multiple modalities. Therefore, this study proposes a novel text-image cross-modal retrieval approach that constructs a dual attention network and an enhanced relation network (DAER). More specifically, the dual attention network tends to precisely extract fine-grained weight information from text and images, while the enhanced relation network is used to expand the differences between different categories of data in order to improve the computational accuracy of similarity. The comprehensive experimental results on three widely-used major datasets (i.e., Wikipedia, Pascal Sentence, and XMediaNet) show that our proposed approach is effective and superior to existing cross-modal retrieval methods.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Xi’an 710062, China;
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China;
| | - Haowu Hu
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China;
| | - Miao Su
- School of Computer Science, Shaanxi Normal University, Xi’an 710119, China;
| |
Collapse
|
11
|
Liu J, Li D, Zhao H, Gao L. Robust Discriminant Subspace Clustering With Adaptive Local Structure Embedding. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:2466-2479. [PMID: 34487499 DOI: 10.1109/tnnls.2021.3106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Unsupervised dimension reduction and clustering are frequently used as two separate steps to conduct clustering tasks in subspace. However, the two-step clustering methods may not necessarily reflect the cluster structure in the subspace. In addition, the existing subspace clustering methods do not consider the relationship between the low-dimensional representation and local structure in the input space. To address the above issues, we propose a robust discriminant subspace (RDS) clustering model with adaptive local structure embedding. Specifically, unlike the existing methods which incorporate dimension reduction and clustering via regularizer, thereby introducing extra parameters, RDS first integrates them into a unified matrix factorization (MF) model through theoretical proof. Furthermore, a similarity graph is constructed to learn the local structure. A constraint is imposed on the graph to guarantee that it has the same connected components with low-dimensional representation. In this spirit, the similarity graph serves as a tradeoff that adaptively balances the learning process between the low-dimensional space and the original space. Finally, RDS adopts the l2,1 -norm to measure the residual error, which enhances the robustness to noise. Using the property of the l2,1 -norm, RDS can be optimized efficiently without introducing more penalty terms. Experimental results on real-world benchmark datasets show that RDS can provide more interpretable clustering results and also outperform other state-of-the-art alternatives.
Collapse
|
12
|
Tao Z, Li J, Fu H, Kong Y, Fu Y. From Ensemble Clustering to Subspace Clustering: Cluster Structure Encoding. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:2670-2681. [PMID: 34495848 DOI: 10.1109/tnnls.2021.3107354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this study, we propose a novel algorithm to encode the cluster structure by incorporating ensemble clustering (EC) into subspace clustering (SC). First, the low-rank representation (LRR) is learned from a higher order data relationship induced by ensemble K-means coding, which exploits the cluster structure in a co-association matrix of basic partitions (i.e., clustering results). Second, to provide a fast predictive coding mechanism, an encoding function parameterized by neural networks is introduced to predict the LRR derived from partitions. These two steps are jointly proceeded to seamlessly integrate partition information and original features and thus deliver better representations than the ones obtained from each single source. Moreover, an alternating optimization framework is developed to learn the LRR, train the encoding function, and fine-tune the higher order relationship. Extensive experiments on eight benchmark datasets validate the effectiveness of the proposed algorithm on several clustering tasks compared with state-of-the-art EC and SC methods.
Collapse
|
13
|
Unsupervised feature selection through combining graph learning and ℓ2,0-norm constraint. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2022.11.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
14
|
Yang B, Yu C, Yu JG, Gao C, Sang N. Pose-Guided Hierarchical Semantic Decomposition and Composition for Human Parsing. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:1641-1652. [PMID: 34506295 DOI: 10.1109/tcyb.2021.3107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human parsing is a fine-grained semantic segmentation task, which needs to understand human semantic parts. Most existing methods model human parsing as a general semantic segmentation, which ignores the inherent relationship among hierarchical human parts. In this work, we propose a pose-guided hierarchical semantic decomposition and composition framework for human parsing. Specifically, our method includes a semantic maintained decomposition and composition (SMDC) module and a pose distillation (PC) module. SMDC progressively disassembles the human body to focus on the more concise regions of interest in the decomposition stage and then gradually assembles human parts under the guidance of pose information in the composition stage. Notably, SMDC maintains the atomic semantic labels during both stages to avoid the error propagation issue of the hierarchical structure. To further take advantage of the relationship of human parts, we introduce pose information as explicit guidance for the composition. However, the discrete structure prediction in pose estimation is against the requirement of the continuous region in human parsing. To this end, we design a PC module to broadcast the maximum responses of pose estimation to form the continuous structure in the way of knowledge distillation. The experimental results on the look-into-person (LIP) and PASCAL-Person-Part datasets demonstrate the superiority of our method compared with the state-of-the-art methods, that is, 55.21% mean Intersection of Union (mIoU) on LIP and 69.88% mIoU on PASCAL-Person-Part.
Collapse
|
15
|
Khamkar R, Das P, Namasudra S. SCEOMOO: A novel Subspace Clustering approach using Evolutionary algorithm, Off-spring generation and Multi-Objective Optimization. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
16
|
Xu J, Li C, Peng L, Ren Y, Shi X, Shen HT, Zhu X. Adaptive Feature Projection With Distribution Alignment for Deep Incomplete Multi-View Clustering. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:1354-1366. [PMID: 37022865 DOI: 10.1109/tip.2023.3243521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Incomplete multi-view clustering (IMVC) analysis, where some views of multi-view data usually have missing data, has attracted increasing attention. However, existing IMVC methods still have two issues: 1) they pay much attention to imputing or recovering the missing data, without considering the fact that the imputed values might be inaccurate due to the unknown label information, 2) the common features of multiple views are always learned from the complete data, while ignoring the feature distribution discrepancy between the complete and incomplete data. To address these issues, we propose an imputation-free deep IMVC method and consider distribution alignment in feature learning. Concretely, the proposed method learns the features for each view by autoencoders and utilizes an adaptive feature projection to avoid the imputation for missing data. All available data are projected into a common feature space, where the common cluster information is explored by maximizing mutual information and the distribution alignment is achieved by minimizing mean discrepancy. Additionally, we design a new mean discrepancy loss for incomplete multi-view learning and make it applicable in mini-batch optimization. Extensive experiments demonstrate that our method achieves the comparable or superior performance compared with state-of-the-art methods.
Collapse
|
17
|
Papetti DM, Spolaor S, Nazari I, Tirelli A, Leonardi T, Caprioli C, Besozzi D, Vlachou T, Pelicci PG, Cazzaniga P, Nobile MS. Barcode demultiplexing of nanopore sequencing raw signals by unsupervised machine learning. FRONTIERS IN BIOINFORMATICS 2023; 3:1067113. [PMID: 37181486 PMCID: PMC10173771 DOI: 10.3389/fbinf.2023.1067113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Oxford Nanopore Technologies (ONT) is a third generation sequencing approach that allows the analysis of individual, full-length nucleic acids. ONT records the alterations of an ionic current flowing across a nano-scaled pore while a DNA or RNA strand is threading through the pore. Basecalling methods are then leveraged to translate the recorded signal back to the nucleic acid sequence. However, basecall generally introduces errors that hinder the process of barcode demultiplexing, a pivotal task in single-cell RNA sequencing that allows for separating the sequenced transcripts on the basis of their cell of origin. Methods: To solve this issue, we present a novel framework, called UNPLEX, designed to tackle the barcode demultiplexing problem by operating directly on the recorded signals. UNPLEX combines two unsupervised machine learning methods: autoencoders and self-organizing maps (SOM). The autoencoders extract compact, latent representations of the recorded signals that are then clustered by the SOM. Results and Discussion: Our results, obtained on two datasets composed of in silico generated ONT-like signals, show that UNPLEX represents a promising starting point for the development of effective tools to cluster the signals corresponding to the same cell.
Collapse
Affiliation(s)
- Daniele M. Papetti
- Department of Informatics, Systems, and Communication, University of Milano-Bicocca, Milan, Italy
| | - Simone Spolaor
- Microsystems, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Iman Nazari
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- European School of Molecular Medicine (SEMM), Milan, Italy
| | - Andrea Tirelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Chiara Caprioli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Daniela Besozzi
- Department of Informatics, Systems, and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging (B4) Research Center, Milan, Italy
| | - Thalia Vlachou
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paolo Cazzaniga
- Bicocca Bioinformatics, Biostatistics and Bioimaging (B4) Research Center, Milan, Italy
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
- *Correspondence: Paolo Cazzaniga, ; Marco S. Nobile,
| | - Marco S. Nobile
- Bicocca Bioinformatics, Biostatistics and Bioimaging (B4) Research Center, Milan, Italy
- Department of Environmental Sciences, Informatics, and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- Department of Industrial Engineering and Innovation Sciences, Eindhoven of University of Technology, Eindhoven, Netherlands
- *Correspondence: Paolo Cazzaniga, ; Marco S. Nobile,
| |
Collapse
|
18
|
Liu M, Wang Y, Palade V, Ji Z. Multi-View Subspace Clustering Network with Block Diagonal and Diverse Representation. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2022.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Zhou T, Fu H, Gong C, Shao L, Porikli F, Ling H, Shen J. Consistency and Diversity Induced Human Motion Segmentation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:197-210. [PMID: 35104213 DOI: 10.1109/tpami.2022.3147841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Subspace clustering is a classical technique that has been widely used for human motion segmentation and other related tasks. However, existing segmentation methods often cluster data without guidance from prior knowledge, resulting in unsatisfactory segmentation results. To this end, we propose a novel Consistency and Diversity induced human Motion Segmentation (CDMS) algorithm. Specifically, our model factorizes the source and target data into distinct multi-layer feature spaces, in which transfer subspace learning is conducted on different layers to capture multi-level information. A multi-mutual consistency learning strategy is carried out to reduce the domain gap between the source and target data. In this way, the domain-specific knowledge and domain-invariant properties can be explored simultaneously. Besides, a novel constraint based on the Hilbert Schmidt Independence Criterion (HSIC) is introduced to ensure the diversity of multi-level subspace representations, which enables the complementarity of multi-level representations to be explored to boost the transfer learning performance. Moreover, to preserve the temporal correlations, an enhanced graph regularizer is imposed on the learned representation coefficients and the multi-level representations of the source data. The proposed model can be efficiently solved using the Alternating Direction Method of Multipliers (ADMM) algorithm. Extensive experimental results on public human motion datasets demonstrate the effectiveness of our method against several state-of-the-art approaches.
Collapse
|
20
|
Yang JH, Fu LL, Chen C, Dai HN, Zheng Z. Cross-view graph matching for incomplete multi-view clustering. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Multi-view Subspace Clustering Based on Unified Measure Standard. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-11136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Hu P, Peng X, Zhu H, Zhen L, Lin J, Yan H, Peng D. Deep Semisupervised Multiview Learning With Increasing Views. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12954-12965. [PMID: 34499609 DOI: 10.1109/tcyb.2021.3093626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this article, we study two challenging problems in semisupervised cross-view learning. On the one hand, most existing methods assume that the samples in all views have a pairwise relationship, that is, it is necessary to capture or establish the correspondence of different views at the sample level. Such an assumption is easily isolated even in the semisupervised setting wherein only a few samples have labels that could be used to establish the correspondence. On the other hand, almost all existing multiview methods, including semisupervised ones, usually train a model using a fixed dataset, which cannot handle the data of increasing views. In practice, the view number will increase when new sensors are deployed. To address the above two challenges, we propose a novel method that employs multiple independent semisupervised view-specific networks (ISVNs) to learn representation for multiple views in a view-decoupling fashion. The advantages of our method are two-fold. Thanks to our specifically designed autoencoder and pseudolabel learning paradigm, our method shows an effective way to utilize both the labeled and unlabeled data while relaxing the data assumption of the pairwise relationship, that is, correspondence. Furthermore, with our view decoupling strategy, the proposed ISVNs could be separately trained, thus efficiently handling the data of increasing views without retraining the entire model. To the best of our knowledge, our ISVN could be one of the first attempts to make handling increasing views in the semisupervised setting possible, as well as an effective solution to the noncorresponding problem. To verify the effectiveness and efficiency of our method, we conduct comprehensive experiments by comparing 13 state-of-the-art approaches on four multiview datasets in terms of retrieval and classification.
Collapse
|
23
|
Lu Y, Wang W, Zeng B, Lai Z, Shen L, Li X. Canonical Correlation Analysis With Low-Rank Learning for Image Representation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:7048-7062. [PMID: 36346858 DOI: 10.1109/tip.2022.3219235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a multivariate data analysis tool, canonical correlation analysis (CCA) has been widely used in computer vision and pattern recognition. However, CCA uses Euclidean distance as a metric, which is sensitive to noise or outliers in the data. Furthermore, CCA demands that the two training sets must have the same number of training samples, which limits the performance of CCA-based methods. To overcome these limitations of CCA, two novel canonical correlation learning methods based on low-rank learning are proposed in this paper for image representation, named robust canonical correlation analysis (robust-CCA) and low-rank representation canonical correlation analysis (LRR-CCA). By introducing two regular matrices, the training sample numbers of the two training datasets can be set as any values without any limitation in the two proposed methods. Specifically, robust-CCA uses low-rank learning to remove the noise in the data and extracts the maximization correlation features from the two learned clean data matrices. The nuclear norm and L1 -norm are used as constraints for the learned clean matrices and noise matrices, respectively. LRR-CCA introduces low-rank representation into CCA to ensure that the correlative features can be obtained in low-rank representation. To verify the performance of the proposed methods, five publicly image databases are used to conduct extensive experiments. The experimental results demonstrate the proposed methods outperform state-of-the-art CCA-based and low-rank learning methods.
Collapse
|
24
|
Chen J, Yang S, Mao H, Fahy C. Multiview Subspace Clustering Using Low-Rank Representation. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12364-12378. [PMID: 34185655 DOI: 10.1109/tcyb.2021.3087114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiview subspace clustering is one of the most widely used methods for exploiting the internal structures of multiview data. Most previous studies have performed the task of learning multiview representations by individually constructing an affinity matrix for each view without simultaneously exploiting the intrinsic characteristics of multiview data. In this article, we propose a multiview low-rank representation (MLRR) method to comprehensively discover the correlation of multiview data for multiview subspace clustering. MLRR considers symmetric low-rank representations (LRRs) to be an approximately linear spatial transformation under the new base, that is, the multiview data themselves, to fully exploit the angular information of the principal directions of LRRs, which is adopted to construct an affinity matrix for multiview subspace clustering, under a symmetric condition. MLRR takes full advantage of LRR techniques and a diversity regularization term to exploit the diversity and consistency of multiple views, respectively, and this method simultaneously imposes a symmetry constraint on LRRs. Hence, the angular information of the principal directions of rows is consistent with that of columns in symmetric LRRs. The MLRR model can be efficiently calculated by solving a convex optimization problem. Moreover, we present an intuitive fusion strategy for symmetric LRRs from the perspective of spectral clustering to obtain a compact representation, which can be shared by multiple views and comprehensively represents the intrinsic features of multiview data. Finally, the experimental results based on benchmark datasets demonstrate the effectiveness and robustness of MLRR compared with several state-of-the-art multiview subspace clustering algorithms.
Collapse
|
25
|
Kutlimuratov A, Abdusalomov AB, Oteniyazov R, Mirzakhalilov S, Whangbo TK. Modeling and Applying Implicit Dormant Features for Recommendation via Clustering and Deep Factorization. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22218224. [PMID: 36365921 PMCID: PMC9654534 DOI: 10.3390/s22218224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
E-commerce systems experience poor quality of performance when the number of records in the customer database increases due to the gradual growth of customers and products. Applying implicit hidden features into the recommender system (RS) plays an important role in enhancing its performance due to the original dataset's sparseness. In particular, we can comprehend the relationship between products and customers by analyzing the hierarchically expressed hidden implicit features of them. Furthermore, the effectiveness of rating prediction and system customization increases when the customer-added tag information is combined with hierarchically structured hidden implicit features. For these reasons, we concentrate on early grouping of comparable customers using the clustering technique as a first step, and then, we further enhance the efficacy of recommendations by obtaining implicit hidden features and combining them via customer's tag information, which regularizes the deep-factorization procedure. The idea behind the proposed method was to cluster customers early via a customer rating matrix and deeply factorize a basic WNMF (weighted nonnegative matrix factorization) model to generate customers preference's hierarchically structured hidden implicit features and product characteristics in each cluster, which reveals a deep relationship between them and regularizes the prediction procedure via an auxiliary parameter (tag information). The testimonies and empirical findings supported the viability of the proposed approach. Especially, MAE of the rating prediction was 0.8011 with 60% training dataset size, while the error rate was equal to 0.7965 with 80% training dataset size. Moreover, MAE rates were 0.8781 and 0.9046 in new 50 and 100 customer cold-start scenarios, respectively. The proposed model outperformed other baseline models that independently employed the major properties of customers, products, or tags in the prediction process.
Collapse
Affiliation(s)
- Alpamis Kutlimuratov
- Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Korea
| | | | - Rashid Oteniyazov
- Department of Telecommunication Engineering, Nukus Branch of Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Nukus 230100, Uzbekistan
| | - Sanjar Mirzakhalilov
- Department of Information-Computer Technologies and Programming, Tashkent University of Information Technologies Named after Muhammad Al-Khwarizmi, Tashkent 100200, Uzbekistan
| | - Taeg Keun Whangbo
- Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 461-701, Korea
| |
Collapse
|
26
|
Deep multi-view subspace clustering via structure-preserved multi-scale features fusion. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
27
|
Fan M, Zhang X, Hu J, Gu N, Tao D. Adaptive Data Structure Regularized Multiclass Discriminative Feature Selection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5859-5872. [PMID: 33882003 DOI: 10.1109/tnnls.2021.3071603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Feature selection (FS), which aims to identify the most informative subset of input features, is an important approach to dimensionality reduction. In this article, a novel FS framework is proposed for both unsupervised and semisupervised scenarios. To make efficient use of data distribution to evaluate features, the framework combines data structure learning (as referred to as data distribution modeling) and FS in a unified formulation such that the data structure learning improves the results of FS and vice versa. Moreover, two types of data structures, namely the soft and hard data structures, are learned and used in the proposed FS framework. The soft data structure refers to the pairwise weights among data samples, and the hard data structure refers to the estimated labels obtained from clustering or semisupervised classification. Both of these data structures are naturally formulated as regularization terms in the proposed framework. In the optimization process, the soft and hard data structures are learned from data represented by the selected features, and then, the most informative features are reselected by referring to the data structures. In this way, the framework uses the interactions between data structure learning and FS to select the most discriminative and informative features. Following the proposed framework, a new semisupervised FS (SSFS) method is derived and studied in depth. Experiments on real-world data sets demonstrate the effectiveness of the proposed method.
Collapse
|
28
|
Ji Q, Sun Y, Gao J, Hu Y, Yin B. A Decoder-Free Variational Deep Embedding for Unsupervised Clustering. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5681-5693. [PMID: 33882000 DOI: 10.1109/tnnls.2021.3071275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In deep clustering frameworks, autoencoder (AE)- or variational AE-based clustering approaches are the most popular and competitive ones that encourage the model to obtain suitable representations and avoid the tendency for degenerate solutions simultaneously. However, for the clustering task, the decoder for reconstructing the original input is usually useless when the model is finished training. The encoder-decoder architecture limits the depth of the encoder so that the learning capacity is reduced severely. In this article, we propose a decoder-free variational deep embedding for unsupervised clustering (DFVC). It is well known that minimizing reconstruction error amounts to maximizing a lower bound on the mutual information (MI) between the input and its representation. That provides a theoretical guarantee for us to discard the bloated decoder. Inspired by contrastive self-supervised learning, we can directly calculate or estimate the MI of the continuous variables. Specifically, we investigate unsupervised representation learning by simultaneously considering the MI estimation of continuous representations and the MI computation of categorical representations. By introducing the data augmentation technique, we incorporate the original input, the augmented input, and their high-level representations into the MI estimation framework to learn more discriminative representations. Instead of matching to a simple standard normal distribution adversarially, we use end-to-end learning to constrain the latent space to be cluster-friendly by applying the Gaussian mixture distribution as the prior. Extensive experiments on challenging data sets show that our model achieves higher performance over a wide range of state-of-the-art clustering approaches.
Collapse
|
29
|
Xu C, Liu H, Guan Z, Wu X, Tan J, Ling B. Adversarial Incomplete Multiview Subspace Clustering Networks. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:10490-10503. [PMID: 33750730 DOI: 10.1109/tcyb.2021.3062830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiview clustering aims to leverage information from multiple views to improve the clustering performance. Most previous works assumed that each view has complete data. However, in real-world datasets, it is often the case that a view may contain some missing data, resulting in the problem of incomplete multiview clustering (IMC). Previous approaches to this problem have at least one of the following drawbacks: 1) employing shallow models, which cannot well handle the dependence and discrepancy among different views; 2) ignoring the hidden information of the missing data; and 3) being dedicated to the two-view case. To eliminate all these drawbacks, in this work, we present the adversarial IMC (AIMC) framework. In particular, AIMC seeks the common latent representation of multiview data for reconstructing raw data and inferring missing data. The elementwise reconstruction and the generative adversarial network are integrated to evaluate the reconstruction. They aim to capture the overall structure and get a deeper semantic understanding, respectively. Moreover, the clustering loss is designed to obtain a better clustering structure. We explore two variants of AIMC, namely: 1) autoencoder-based AIMC (AAIMC) and 2) generalized AIMC (GAIMC), with different strategies to obtain the multiview common representation. Experiments conducted on six real-world datasets show that AAIMC and GAIMC perform well and outperform the baseline methods.
Collapse
|
30
|
Gao C, Chen W, Nie F, Yu W, Yan F. Subspace clustering by directly solving Discriminative K-means. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Kang Z, Lin Z, Zhu X, Xu W. Structured Graph Learning for Scalable Subspace Clustering: From Single View to Multiview. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:8976-8986. [PMID: 33729977 DOI: 10.1109/tcyb.2021.3061660] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: they encounter the expensive time overhead, they fail to explore the explicit clusters, and cannot generalize to unseen data points. In this work, we propose a scalable graph learning framework, seeking to address the above three challenges simultaneously. Specifically, it is based on the ideas of anchor points and bipartite graph. Rather than building an n×n graph, where n is the number of samples, we construct a bipartite graph to depict the relationship between samples and anchor points. Meanwhile, a connectivity constraint is employed to ensure that the connected components indicate clusters directly. We further establish the connection between our method and the K -means clustering. Moreover, a model to process multiview data is also proposed, which is linearly scaled with respect to n . Extensive experiments demonstrate the efficiency and effectiveness of our approach with respect to many state-of-the-art clustering methods.
Collapse
|
32
|
Li Y, Zhou J, Tian J, Zheng X, Tang YY. Weighted Error Entropy-Based Information Theoretic Learning for Robust Subspace Representation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4228-4242. [PMID: 33606640 DOI: 10.1109/tnnls.2021.3056188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In most of the existing representation learning frameworks, the noise contaminating the data points is often assumed to be independent and identically distributed (i.i.d.), where the Gaussian distribution is often imposed. This assumption, though greatly simplifies the resulting representation problems, may not hold in many practical scenarios. For example, the noise in face representation is usually attributable to local variation, random occlusion, and unconstrained illumination, which is essentially structural, and hence, does not satisfy the i.i.d. property or the Gaussianity. In this article, we devise a generic noise model, referred to as independent and piecewise identically distributed (i.p.i.d.) model for robust presentation learning, where the statistical behavior of the underlying noise is characterized using a union of distributions. We demonstrate that our proposed i.p.i.d. model can better describe the complex noise encountered in practical scenarios and accommodate the traditional i.i.d. one as a special case. Assisted by the proposed noise model, we then develop a new information-theoretic learning framework for robust subspace representation through a novel minimum weighted error entropy criterion. Thanks to the superior modeling capability of the i.p.i.d. model, our proposed learning method achieves superior robustness against various types of noise. When applying our scheme to the subspace clustering and image recognition problems, we observe significant performance gains over the existing approaches.
Collapse
|
33
|
Xia G, Xue P, Sun H, Sun Y, Zhang D, Liu Q. Local Self-Expression Subspace Learning Network for Motion Capture Data. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:4869-4883. [PMID: 35839181 DOI: 10.1109/tip.2022.3189822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep subspace learning is an important branch of self-supervised learning and has been a hot research topic in recent years, but current methods do not fully consider the individualities of temporal data and related tasks. In this paper, by transforming the individualities of motion capture data and segmentation task as the supervision, we propose the local self-expression subspace learning network. Specifically, considering the temporality of motion data, we use the temporal convolution module to extract temporal features. To implement the local validity of self-expression in temporal tasks, we design the local self-expression layer which only maintains the representation relations with temporally adjacent motion frames. To simulate the interpolatability of motion data in the feature space, we impose a group sparseness constraint on the local self-expression layer to impel the representations only using selected keyframes. Besides, based on the subspace assumption, we propose the subspace projection loss, which is induced from distances of each frame projected to the fitted subspaces, to penalize the potential clustering errors. The superior performances of the proposed model on the segmentation task of synthetic data and three tasks of real motion capture data demonstrate the feature learning ability of our model.
Collapse
|
34
|
Consistent auto-weighted multi-view subspace clustering. Pattern Anal Appl 2022. [DOI: 10.1007/s10044-022-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Chen C, Lu H, Wei H, Geng X. Deep subspace image clustering network with self-expression and self-supervision. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Li N, Leng C, Cheng I, Basu A, Jiao L. Dual-Graph Global and Local Concept Factorization for Data Clustering. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; PP:803-816. [PMID: 35653444 DOI: 10.1109/tnnls.2022.3177433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Considering a wide range of applications of nonnegative matrix factorization (NMF), many NMF and their variants have been developed. Since previous NMF methods cannot fully describe complex inner global and local manifold structures of the data space and extract complex structural information, we propose a novel NMF method called dual-graph global and local concept factorization (DGLCF). To properly describe the inner manifold structure, DGLCF introduces the global and local structures of the data manifold and the geometric structure of the feature manifold into CF. The global manifold structure makes the model more discriminative, while the two local regularization terms simultaneously preserve the inherent geometry of data and features. Finally, we analyze convergence and the iterative update rules of DGLCF. We illustrate clustering performance by comparing it with latest algorithms on four real-world datasets.
Collapse
|
37
|
Xu Y, Chen S, Li J, Han Z, Yang J. Autoencoder-Based Latent Block-Diagonal Representation for Subspace Clustering. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:5408-5418. [PMID: 33206621 DOI: 10.1109/tcyb.2020.3031666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Block-diagonal representation (BDR) is an effective subspace clustering method. The existing BDR methods usually obtain a self-expression coefficient matrix from the original features by a shallow linear model. However, the underlying structure of real-world data is often nonlinear, thus those methods cannot faithfully reflect the intrinsic relationship among samples. To address this problem, we propose a novel latent BDR (LBDR) model to perform the subspace clustering on a nonlinear structure, which jointly learns an autoencoder and a BDR matrix. The autoencoder, which consists of a nonlinear encoder and a linear decoder, plays an important role to learn features from the nonlinear samples. Meanwhile, the learned features are used as a new dictionary for a linear model with block-diagonal regularization, which can ensure good performances for spectral clustering. Moreover, we theoretically prove that the learned features are located in the linear space, thus ensuring the effectiveness of the linear model using self-expression. Extensive experiments on various real-world datasets verify the superiority of our LBDR over the state-of-the-art subspace clustering approaches.
Collapse
|
38
|
Yang B, Yang Y, Su X. Deep structure integrative representation of multi-omics data for cancer subtyping. Bioinformatics 2022; 38:3337-3342. [PMID: 35639657 DOI: 10.1093/bioinformatics/btac345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION Cancer is a heterogeneous group of diseases. Cancer subtyping is crucial and critical step to diagnosis, prognosis and treatment. Since high-throughput sequencing technologies provide unprecedented opportunity to rapid collect multi-omics data for the same individuals, an urgent need in current is how to effectively represent and integrate these multi-omics data to achieve clinically meaningful cancer subtyping. RESULTS We propose a novel deep learning model, called Deep Structure Integrative Representation (DSIR), for cancer subtypes dentification by integrating representation and clustering multi-omics data. DSIR simultaneously captures the global structures in sparse subspace and local structures in manifold subspace from multi-omics data and constructs consensus similarity matrix by utilizing deep neural networks. Extensive tests are performed in twelve different cancers on three levels of omics data from The Cancer Genome Atlas. The results demonstrate that DSIR obtains more significant performances than the state-of-the-art integrative methods. AVAILABILITY https://github.com/Polytech-bioinf/Deep-structure-integrative-representation.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bo Yang
- School of Computer Science, Xi'an Polytechnic University, Xi'an, 710048, China.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Yan Yang
- School of Computer Science, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Xueping Su
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, 710048, China
| |
Collapse
|
39
|
Moens S, Cule B, Goethals B. RASCL: a randomised approach to subspace clusters. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022. [DOI: 10.1007/s41060-022-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractSubspace clustering aims to discover clusters in projections of highly dimensional numerical data. In this paper, we focus on discovering small collections of highly interesting subspace clusters that do not try to cluster all data points, leaving noisy data points unclustered. To this end, we propose a randomised method that first converts the highly dimensional database to a binarised one using projected samples of the original database. Subsequently, this database is mined for frequent itemsets, which we show can be translated back to subspace clusters. In this way, we are able to explore multiple subspaces of different sizes at the same time. In our extensive experimental analysis, we show on synthetic as well as real-world data that our method is capable of discovering highly interesting subspace clusters efficiently.
Collapse
|
40
|
Zhang H, Qian F, Shang F, Du W, Qian J, Yang J. Global Convergence Guarantees of (A)GIST for a Family of Nonconvex Sparse Learning Problems. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3276-3288. [PMID: 32784147 DOI: 10.1109/tcyb.2020.3010960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, most of the studies have shown that the generalized iterated shrinkage thresholdings (GISTs) have become the commonly used first-order optimization algorithms in sparse learning problems. The nonconvex relaxations of the l0 -norm usually achieve better performance than the convex case (e.g., l1 -norm) since the former can achieve a nearly unbiased solver. To increase the calculation efficiency, this work further provides an accelerated GIST version, that is, AGIST, through the extrapolation-based acceleration technique, which can contribute to reduce the number of iterations when solving a family of nonconvex sparse learning problems. Besides, we present the algorithmic analysis, including both local and global convergence guarantees, as well as other intermediate results for the GIST and AGIST, denoted as (A)GIST, by virtue of the Kurdyka-Łojasiewica (KŁ) property and some milder assumptions. Numerical experiments on both synthetic data and real-world databases can demonstrate that the convergence results of objective function accord to the theoretical properties and nonconvex sparse learning methods can achieve superior performance over some convex ones.
Collapse
|
41
|
Li Z, Lu H, Fu H, Gu G. Image-text bidirectional learning network based cross-modal retrieval. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Lv Z, Lou R, Feng H, Chen D, Lv H. Novel Machine Learning for Big Data Analytics in Intelligent Support Information Management Systems. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS 2022. [DOI: 10.1145/3469890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two-dimensional
1
arrays of bi-component structures made of cobalt and permalloy elliptical dots with thickness of 25 nm, length 1 mm and width of 225 nm, have been prepared by a self-aligned shadow deposition technique. Brillouin light scattering has been exploited to study the frequency dependence of thermally excited magnetic eigenmodes on the intensity of the external magnetic field, applied along the easy axis of the elements.
Scientific information technology has been developed rapidly. Here, the purposes are to make people's lives more convenient and ensure information management and classification. The machine learning algorithm is improved to obtain the optimized Light Gradient Boosting Machine (LightGBM) algorithm. Then, an Android-based intelligent support information management system is designed based on LightGBM for the big data analysis and classification management of information in the intelligent support information management system. The system is designed with modules of employee registration and login, company announcement notice, attendance and attendance management, self-service, and daily tools with the company as the subject. Furthermore, the performance of the constructed information management system is analyzed through simulations. Results demonstrate that the training time of the optimized LightGBM algorithm can stabilize at about 100s, and the test time can stabilize at 0.68s. Besides, its accuracy rate can reach 89.24%, which is at least 3.6% higher than other machine learning algorithms. Moreover, the acceleration efficiency analysis of each algorithm suggests that the optimized LightGBM algorithm is suitable for processing large amounts of data; its acceleration effect is more apparent, and its acceleration ratio is higher than other algorithms. Hence, the constructed intelligent support information management system can reach a high accuracy while ensuring the error, with apparent acceleration effect. Therefore, this model can provide an experimental reference for information classification and management in various fields.
Collapse
Affiliation(s)
- Zhihan Lv
- School of Data Science and Software Engineering, Qingdao University, Qingdao, China
| | - Ranran Lou
- School of Data Science and Software Engineering, Qingdao University, Qingdao, China
| | - Hailin Feng
- School of Information Engineering, Zhejiang A & F University, Hangzhou, China
| | - Dongliang Chen
- School of Data Science and Software Engineering, Qingdao University, Qingdao, China
| | - Haibin Lv
- North China Sea Offshore Engineering Survey Institute, Ministry of Natural Resources North Sea Bureau, Qingdao, China
| |
Collapse
|
43
|
Qian J, Wong WK, Zhang H, Xie J, Yang J. Joint Optimal Transport With Convex Regularization for Robust Image Classification. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:1553-1564. [PMID: 32452782 DOI: 10.1109/tcyb.2020.2991219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The critical step of learning the robust regression model from high-dimensional visual data is how to characterize the error term. The existing methods mainly employ the nuclear norm to describe the error term, which are robust against structure noises (e.g., illumination changes and occlusions). Although the nuclear norm can describe the structure property of the error term, global distribution information is ignored in most of these methods. It is known that optimal transport (OT) is a robust distribution metric scheme due to that it can handle correspondences between different elements in the two distributions. Leveraging this property, this article presents a novel robust regression scheme by integrating OT with convex regularization. The OT-based regression with L2 norm regularization (OTR) is first proposed to perform image classification. The alternating direction method of multipliers is developed to handle the model. To further address the occlusion problem in image classification, the extended OTR (EOTR) model is then presented by integrating the nuclear norm error term with an OTR model. In addition, we apply the alternating direction method of multipliers with Gaussian back substitution to solve EOTR and also provide the complexity and convergence analysis of our algorithms. Experiments were conducted on five benchmark datasets, including illumination changes and various occlusions. The experimental results demonstrate the performance of our robust regression model on biometric image classification against several state-of-the-art regression-based classification methods.
Collapse
|
44
|
Wang X, Hu P, Liu P, Peng D. Deep Semisupervised Class- and Correlation-Collapsed Cross-View Learning. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:1588-1601. [PMID: 32386174 DOI: 10.1109/tcyb.2020.2984489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In many computer vision applications, an object can be represented by multiple different views. Due to the heterogeneous gap triggered by the different views' inconsistent distributions, it is challenging to exploit these multiview data for cross-view retrieval and classification. Motivated by the fact that both labeled and unlabeled data can enhance the relations among different views, this article proposes a deep cross-view learning framework called deep semisupervised classes- and correlation-collapsed cross-view learning (DSC3L) for cross-view retrieval and classification. Different from the existing methods which focus on the two-view problems, the proposed method learns U (generally U ≥ 2 ) view-specific deep transformations to gradually project U different views into a shared space in which the projection embraces the supervised learning and the unsupervised learning. We propose collapsing the instances of the same class from all views into the same point, with the instances of different classes into distinct points simultaneously. Second, to exploit the abundant unlabeled U -wise multiview data, we propose to collapse-correlated data into the same point, with the uncorrelated data into distinct points. Specifically, these two processes are formulated to minimize the two Kullback-Leibler (KL) divergences between the conditional distribution and a desirable one, for each instance. Finally, the two KL divergences are integrated into a joint optimization to learn a discriminative shared space. The experimental results on five widely used public datasets demonstrate the effectiveness of the proposed method.
Collapse
|
45
|
Liu S, Tang K, Yao X. Generative Adversarial Construction of Parallel Portfolios. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:784-795. [PMID: 32356768 DOI: 10.1109/tcyb.2020.2984546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since automatic algorithm configuration methods have been very effective, recently there is increasing research interest in utilizing them for automatic solver construction, resulting in several notable approaches. For these approaches, a basic assumption is that the given training set could sufficiently represent the target use cases such that the constructed solvers can generalize well. However, such an assumption does not always hold in practice since in some cases, we might only have scarce and biased training data. This article studies effective construction approaches for the parallel algorithm portfolios that are less affected in these cases. Unlike previous approaches, the proposed approach simultaneously considers instance generation and portfolio construction in an adversarial process, in which the aim of the former is to generate instances that are challenging for the current portfolio, while the aim of the latter is to find a new component solver for the portfolio to better solve the newly generated instances. Applied to two widely studied problem domains, that is, the Boolean satisfiability problems (SAT) and the traveling salesman problems (TSPs), the proposed approach identified parallel portfolios with much better generalization than the ones generated by the existing approaches when the training data were scarce and biased. Moreover, it was further demonstrated that the generated portfolios could even rival the state-of-the-art manually designed parallel solvers.
Collapse
|
46
|
Liu R, Ma L, Yuan X, Zeng S, Zhang J. Task-Oriented Convex Bilevel Optimization With Latent Feasibility. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:1190-1203. [PMID: 35015638 DOI: 10.1109/tip.2022.3140607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper firstly proposes a convex bilevel optimization paradigm to formulate and optimize popular learning and vision problems in real-world scenarios. Different from conventional approaches, which directly design their iteration schemes based on given problem formulation, we introduce a task-oriented energy as our latent constraint which integrates richer task information. By explicitly re- characterizing the feasibility, we establish an efficient and flexible algorithmic framework to tackle convex models with both shrunken solution space and powerful auxiliary (based on domain knowledge and data distribution of the task). In theory, we present the convergence analysis of our latent feasibility re- characterization based numerical strategy. We also analyze the stability of the theoretical convergence under computational error perturbation. Extensive numerical experiments are conducted to verify our theoretical findings and evaluate the practical performance of our method on different applications.
Collapse
|
47
|
Zhang T, Shen F, Zhu T, Zhao J. An Evolutionary Orthogonal Component Analysis Method for Incremental Dimensionality Reduction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:392-405. [PMID: 33112751 DOI: 10.1109/tnnls.2020.3027852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to quickly discover the low-dimensional representation of high-dimensional noisy data in online environments, we transform the linear dimensionality reduction problem into the problem of learning the bases of linear feature subspaces. Based on that, we propose a fast and robust dimensionality reduction framework for incremental subspace learning named evolutionary orthogonal component analysis (EOCA). By setting adaptive thresholds to automatically determine the target dimensionality, the proposed method extracts the orthogonal subspace bases of data incrementally to realize dimensionality reduction and avoids complex computations. Besides, EOCA can merge two learned subspaces that are represented by their orthonormal bases to a new one to eliminate the outlier effects, and the new subspace is proved to be unique. Extensive experiments and analysis demonstrate that EOCA is fast and achieves competitive results, especially for noisy data.
Collapse
|
48
|
Wang S, Liu X, Zhu X, Zhang P, Zhang Y, Gao F, Zhu E. Fast Parameter-Free Multi-View Subspace Clustering With Consensus Anchor Guidance. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 31:556-568. [PMID: 34890327 DOI: 10.1109/tip.2021.3131941] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multi-view subspace clustering has attracted intensive attention to effectively fuse multi-view information by exploring appropriate graph structures. Although existing works have made impressive progress in clustering performance, most of them suffer from the cubic time complexity which could prevent them from being efficiently applied into large-scale applications. To improve the efficiency, anchor sampling mechanism has been proposed to select vital landmarks to represent the whole data. However, existing anchor selecting usually follows the heuristic sampling strategy, e.g. k -means or uniform sampling. As a result, the procedures of anchor selecting and subsequent subspace graph construction are separated from each other which may adversely affect clustering performance. Moreover, the involved hyper-parameters further limit the application of traditional algorithms. To address these issues, we propose a novel subspace clustering method termed Fast Parameter-free Multi-view Subspace Clustering with Consensus Anchor Guidance (FPMVS-CAG). Firstly, we jointly conduct anchor selection and subspace graph construction into a unified optimization formulation. By this way, the two processes can be negotiated with each other to promote clustering quality. Moreover, our proposed FPMVS-CAG is proved to have linear time complexity with respect to the sample number. In addition, FPMVS-CAG can automatically learn an optimal anchor subspace graph without any extra hyper-parameters. Extensive experimental results on various benchmark datasets demonstrate the effectiveness and efficiency of the proposed method against the existing state-of-the-art multi-view subspace clustering competitors. These merits make FPMVS-CAG more suitable for large-scale subspace clustering. The code of FPMVS-CAG is publicly available at https://github.com/wangsiwei2010/FPMVS-CAG.
Collapse
|
49
|
Wang CD, Chen MS, Huang L, Lai JH, Yu PS. Smoothness Regularized Multiview Subspace Clustering With Kernel Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:5047-5060. [PMID: 33027007 DOI: 10.1109/tnnls.2020.3026686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiview subspace clustering has attracted an increasing amount of attention in recent years. However, most of the existing multiview subspace clustering methods assume linear relations between multiview data points when learning the affinity representation by means of the self-expression or fail to preserve the locality property of the original feature space in the learned affinity representation. To address the above issues, in this article, we propose a new multiview subspace clustering method termed smoothness regularized multiview subspace clustering with kernel learning (SMSCK). To capture the nonlinear relations between multiview data points, the proposed model maps the concatenated multiview observations into a high-dimensional kernel space, in which the linear relations reflect the nonlinear relations between multiview data points in the original space. In addition, to explicitly preserve the locality property of the original feature space in the learned affinity representation, the smoothness regularization is deployed in the subspace learning in the kernel space. Theoretical analysis has been provided to ensure that the optimal solution of the proposed model meets the grouping effect. The unique optimal solution of the proposed model can be obtained by an optimization strategy and the theoretical convergence analysis is also conducted. Extensive experiments are conducted on both image and document data sets, and the comparison results with state-of-the-art methods demonstrate the effectiveness of our method.
Collapse
|
50
|
Hu P, Peng X, Zhu H, Lin J, Zhen L, Peng D. Joint Versus Independent Multiview Hashing for Cross-View Retrieval. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:4982-4993. [PMID: 33119532 DOI: 10.1109/tcyb.2020.3027614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all views to learn a common Hamming space, thus making it difficult to handle the data with increasing views or a large number of views. To overcome these difficulties, we propose a decoupled CVH network (DCHN) approach which consists of a semantic hashing autoencoder module (SHAM) and multiple multiview hashing networks (MHNs). To be specific, SHAM adopts a hashing encoder and decoder to learn a discriminative Hamming space using either a few labels or the number of classes, that is, the so-called flexible inputs. After that, MHN independently projects all samples into the discriminative Hamming space that is treated as an alternative ground truth. In brief, the Hamming space is learned from the semantic space induced from the flexible inputs, which is further used to guide view-specific hashing in an independent fashion. Thanks to such an independent/decoupled paradigm, our method could enjoy high computational efficiency and the capacity of handling the increasing number of views by only using a few labels or the number of classes. For a newly coming view, we only need to add a view-specific network into our model and avoid retraining the entire model using the new and previous views. Extensive experiments are carried out on five widely used multiview databases compared with 15 state-of-the-art approaches. The results show that the proposed independent hashing paradigm is superior to the common joint ones while enjoying high efficiency and the capacity of handling newly coming views.
Collapse
|