1
|
Zhao S, Sun Q, Yang J, Yuan Y, Huang Y, Li Z. Structure preservation constraints for unsupervised domain adaptation intracranial vessel segmentation. Med Biol Eng Comput 2025; 63:609-627. [PMID: 39432222 DOI: 10.1007/s11517-024-03195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
Unsupervised domain adaptation (UDA) has received interest as a means to alleviate the burden of data annotation. Nevertheless, existing UDA segmentation methods exhibit performance degradation in fine intracranial vessel segmentation tasks due to the problem of structure mismatch in the image synthesis procedure. To improve the image synthesis quality and the segmentation performance, a novel UDA segmentation method with structure preservation approaches, named StruP-Net, is proposed. The StruP-Net employs adversarial learning for image synthesis and utilizes two domain-specific segmentation networks to enhance the semantic consistency between real images and synthesized images. Additionally, two distinct structure preservation approaches, feature-level structure preservation (F-SP) and image-level structure preservation (I-SP), are proposed to alleviate the problem of structure mismatch in the image synthesis procedure. The F-SP, composed of two domain-specific graph convolutional networks (GCN), focuses on providing feature-level constraints to enhance the structural similarity between real images and synthesized images. Meanwhile, the I-SP imposes constraints on structure similarity based on perceptual loss. The cross-modality experimental results from magnetic resonance angiography (MRA) images to computed tomography angiography (CTA) images indicate that StruP-Net achieves better segmentation performance compared with other state-of-the-art methods. Furthermore, high inference efficiency demonstrates the clinical application potential of StruP-Net. The code is available at https://github.com/Mayoiuta/StruP-Net .
Collapse
Affiliation(s)
- Sizhe Zhao
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Qi Sun
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Jinzhu Yang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China.
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China.
| | - Yuliang Yuan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Yan Huang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Zhiqing Li
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Bhati A, Jain S, Gour N, Khanna P, Ojha A, Werghi N. Dynamic Statistical Attention-based lightweight model for Retinal Vessel Segmentation: DyStA-RetNet. Comput Biol Med 2025; 186:109592. [PMID: 39731923 DOI: 10.1016/j.compbiomed.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND AND OBJECTIVE Accurate extraction of retinal vascular components is vital in diagnosing and treating retinal diseases. Achieving precise segmentation of retinal blood vessels is challenging due to their complex structure and overlapping vessels with other anatomical features. Existing deep neural networks often suffer from false positives at vessel branches or missing fragile vessel patterns. Also, deployment of the existing models in resource-constrained environments is challenging due to their computational complexity. An attention-based and computationally efficient architecture is proposed in this work to bridge this gap while enabling improved segmentation of retinal vascular structures. METHODS The proposed dynamic statistical attention-based lightweight model for retinal vessel segmentation (DyStA-RetNet) employs a shallow CNN-based encoder-decoder architecture. One branch of the decoder utilizes a partial decoder connecting encoder layers with decoder layers to allow the transfer of high-level semantic information, whereas the other branch helps to incorporate low-level information. The multi-scale dynamic attention block empowers the network to accurately identify different-sized tree-shaped vessel patterns during the reconstruction phase in the decoder. The statistical spatial attention block improves the feature learning capability. By effectively integrating low-level and high-level semantic information, DYStA-RetNet significantly improves the performance of vessel segmentation. RESULTS Experiments performed on four benchmark datasets (DRIVE, STARE, CHASEDB, and HRF) exhibit the adaptability of DYStA-RetNet for clinical applications with a significantly smaller number of trainable parameters (37.19K) and GFLOPS (0.75), and superior segmentation performance. CONCLUSION The proposed lightweight CNN-based DYStA-RetNet efficiently extracts complex retinal vascular components from fundus images. It is computationally efficient and deployable in resource-constrained environments.
Collapse
Affiliation(s)
- Amit Bhati
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
| | - Samir Jain
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
| | - Neha Gour
- Khalifa University, Abu Dhabi, United Arab Emirates
| | - Pritee Khanna
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India.
| | - Aparajita Ojha
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
| | | |
Collapse
|
3
|
Fang L, Sheng H, Li H, Li S, Feng S, Chen M, Li Y, Chen J, Chen F. Unsupervised translation of vascular masks to NIR-II fluorescence images using Attention-Guided generative adversarial networks. Sci Rep 2025; 15:6725. [PMID: 40000690 PMCID: PMC11861915 DOI: 10.1038/s41598-025-91416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
The second near-infrared window (NIR-II) fluorescence imaging is a crucial technology for investigating the structure and functionality of blood vessels. However, challenges arise from privacy concerns and the significant effort needed for data annotation, complicating the acquisition of near-infrared vascular imaging datasets. To tackle these issues, methods based on deep learning for data synthesis have demonstrated promise in generating high-quality synthetic images. In this paper, we propose an unsupervised generative adversarial network (GAN) approach for translating vascular masks into realistic NIR-II fluorescence vascular images. Leveraging an attention mechanism integrated into the loss function, our model focuses on essential features during the generation process, resulting in high-quality NIRII images without the need for supervision. Our method significantly outperforms eight baseline techniques in both visual quality and quantitative metrics, demonstrating its potential to address the challenge of limited datasets in NIR-II medical imaging. This work not only enhances the applications of NIR-II imaging but also facilitates downstream tasks by providing abundant, high-fidelity synthetic data.
Collapse
Affiliation(s)
- Lu Fang
- Chinese Academy of Sciences, Shanghai Institute of Technical Physics, Shanghai, 200083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaixuan Sheng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Huizhu Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shunyao Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Sijia Feng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mo Chen
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Yunxia Li
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jun Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fuchun Chen
- Chinese Academy of Sciences, Shanghai Institute of Technical Physics, Shanghai, 200083, China.
| |
Collapse
|
4
|
Anaya-Sánchez H, Altamirano-Robles L, Díaz-Hernández R, Zapotecas-Martínez S. WGAN-GP for Synthetic Retinal Image Generation: Enhancing Sensor-Based Medical Imaging for Classification Models. SENSORS (BASEL, SWITZERLAND) 2024; 25:167. [PMID: 39796958 PMCID: PMC11723073 DOI: 10.3390/s25010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Accurate synthetic image generation is crucial for addressing data scarcity challenges in medical image classification tasks, particularly in sensor-derived medical imaging. In this work, we propose a novel method using a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) and nearest-neighbor interpolation to generate high-quality synthetic images for diabetic retinopathy classification. Our approach enhances training datasets by generating realistic retinal images that retain critical pathological features. We evaluated the method across multiple retinal image datasets, including Retinal-Lesions, Fine-Grained Annotated Diabetic Retinopathy (FGADR), Indian Diabetic Retinopathy Image Dataset (IDRiD), and the Kaggle Diabetic Retinopathy dataset. The proposed method outperformed traditional generative models, such as conditional GANs and PathoGAN, achieving the best performance on key metrics: a Fréchet Inception Distance (FID) of 15.21, a Mean Squared Error (MSE) of 0.002025, and a Structural Similarity Index (SSIM) of 0.89 in the Kaggle dataset. Additionally, expert evaluations revealed that only 56.66% of synthetic images could be distinguished from real ones, demonstrating the high fidelity and clinical relevance of the generated data. These results highlight the effectiveness of our approach in improving medical image classification by generating realistic and diverse synthetic datasets.
Collapse
Affiliation(s)
- Héctor Anaya-Sánchez
- Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico; (H.A.-S.); (S.Z.-M.)
| | - Leopoldo Altamirano-Robles
- Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico; (H.A.-S.); (S.Z.-M.)
| | - Raquel Díaz-Hernández
- Optics Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico;
| | - Saúl Zapotecas-Martínez
- Computer Science Department, Instituto Nacional de Astrofísica Óptica y Electrónica, Luis Enrrique Erro No. 1, Sta. María Tonantzintla, Puebla 72840, Mexico; (H.A.-S.); (S.Z.-M.)
| |
Collapse
|
5
|
Chen L, Bian Y, Zeng J, Meng Q, Zhu W, Shi F, Shao C, Chen X, Xiang D. Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:4882-4895. [PMID: 39236126 DOI: 10.1109/tip.2024.3451934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Unsupervised domain adaptation medical image segmentation is aimed to segment unlabeled target domain images with labeled source domain images. However, different medical imaging modalities lead to large domain shift between their images, in which well-trained models from one imaging modality often fail to segment images from anothor imaging modality. In this paper, to mitigate domain shift between source domain and target domain, a style consistency unsupervised domain adaptation image segmentation method is proposed. First, a local phase-enhanced style fusion method is designed to mitigate domain shift and produce locally enhanced organs of interest. Second, a phase consistency discriminator is constructed to distinguish the phase consistency of domain-invariant features between source domain and target domain, so as to enhance the disentanglement of the domain-invariant and style encoders and removal of domain-specific features from the domain-invariant encoder. Third, a style consistency estimation method is proposed to obtain inconsistency maps from intermediate synthesized target domain images with different styles to measure the difficult regions, mitigate domain shift between synthesized target domain images and real target domain images, and improve the integrity of interested organs. Fourth, style consistency entropy is defined for target domain images to further improve the integrity of the interested organ by the concentration on the inconsistent regions. Comprehensive experiments have been performed with an in-house dataset and a publicly available dataset. The experimental results have demonstrated the superiority of our framework over state-of-the-art methods.
Collapse
|
6
|
Yang M, Wu Z, Zheng H, Huang L, Ding W, Pan L, Yin L. Cross-Modality Medical Image Segmentation via Enhanced Feature Alignment and Cross Pseudo Supervision Learning. Diagnostics (Basel) 2024; 14:1751. [PMID: 39202240 PMCID: PMC11353479 DOI: 10.3390/diagnostics14161751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Given the diversity of medical images, traditional image segmentation models face the issue of domain shift. Unsupervised domain adaptation (UDA) methods have emerged as a pivotal strategy for cross modality analysis. These methods typically utilize generative adversarial networks (GANs) for both image-level and feature-level domain adaptation through the transformation and reconstruction of images, assuming the features between domains are well-aligned. However, this assumption falters with significant gaps between different medical image modalities, such as MRI and CT. These gaps hinder the effective training of segmentation networks with cross-modality images and can lead to misleading training guidance and instability. To address these challenges, this paper introduces a novel approach comprising a cross-modality feature alignment sub-network and a cross pseudo supervised dual-stream segmentation sub-network. These components work together to bridge domain discrepancies more effectively and ensure a stable training environment. The feature alignment sub-network is designed for the bidirectional alignment of features between the source and target domains, incorporating a self-attention module to aid in learning structurally consistent and relevant information. The segmentation sub-network leverages an enhanced cross-pseudo-supervised loss to harmonize the output of the two segmentation networks, assessing pseudo-distances between domains to improve the pseudo-label quality and thus enhancing the overall learning efficiency of the framework. This method's success is demonstrated by notable advancements in segmentation precision across target domains for abdomen and brain tasks.
Collapse
Affiliation(s)
- Mingjing Yang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (M.Y.); (Z.W.); (H.Z.); (L.H.)
| | - Zhicheng Wu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (M.Y.); (Z.W.); (H.Z.); (L.H.)
| | - Hanyu Zheng
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (M.Y.); (Z.W.); (H.Z.); (L.H.)
| | - Liqin Huang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (M.Y.); (Z.W.); (H.Z.); (L.H.)
| | - Wangbin Ding
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China;
| | - Lin Pan
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; (M.Y.); (Z.W.); (H.Z.); (L.H.)
| | - Lei Yin
- The Departments of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Fujian Provincial Hospital, Fuzhou 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
7
|
Bhulakshmi D, Rajput DS. A systematic review on diabetic retinopathy detection and classification based on deep learning techniques using fundus images. PeerJ Comput Sci 2024; 10:e1947. [PMID: 38699206 PMCID: PMC11065411 DOI: 10.7717/peerj-cs.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/28/2024] [Indexed: 05/05/2024]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment globally. It occurs due to long-term diabetes with fluctuating blood glucose levels. It has become a significant concern for people in the working age group as it can lead to vision loss in the future. Manual examination of fundus images is time-consuming and requires much effort and expertise to determine the severity of the retinopathy. To diagnose and evaluate the disease, deep learning-based technologies have been used, which analyze blood vessels, microaneurysms, exudates, macula, optic discs, and hemorrhages also used for initial detection and grading of DR. This study examines the fundamentals of diabetes, its prevalence, complications, and treatment strategies that use artificial intelligence methods such as machine learning (ML), deep learning (DL), and federated learning (FL). The research covers future studies, performance assessments, biomarkers, screening methods, and current datasets. Various neural network designs, including recurrent neural networks (RNNs), generative adversarial networks (GANs), and applications of ML, DL, and FL in the processing of fundus images, such as convolutional neural networks (CNNs) and their variations, are thoroughly examined. The potential research methods, such as developing DL models and incorporating heterogeneous data sources, are also outlined. Finally, the challenges and future directions of this research are discussed.
Collapse
Affiliation(s)
- Dasari Bhulakshmi
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dharmendra Singh Rajput
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Tang S, Song C, Wang D, Gao Y, Liu Y, Lv W. W-Net: A boundary-aware cascade network for robust and accurate optic disc segmentation. iScience 2024; 27:108247. [PMID: 38230262 PMCID: PMC10790032 DOI: 10.1016/j.isci.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 10/16/2023] [Indexed: 01/18/2024] Open
Abstract
Accurate optic disc (OD) segmentation has a great significance for computer-aided diagnosis of different types of eye diseases. Due to differences in image acquisition equipment and acquisition methods, the resolution, size, contrast, and clarity of images from different datasets show significant differences, resulting in poor generalization performance of deep learning networks. To solve this problem, this study proposes a multi-level segmentation network. The network includes data quality enhancement module (DQEM), coarse segmentation module (CSM), localization module (OLM), and fine segmentation stage module (FSM). In FSM, W-Net is proposed for the first time, and boundary loss is introduced in the loss function, which effectively improves the performance of OD segmentation. We generalized the model in the REFUGE test dataset, GAMMA dataset, Drishti-GS1 dataset, and IDRiD dataset, respectively. The results show that our method has the best OD segmentation performance in different datasets compared with state-of-the-art networks.
Collapse
Affiliation(s)
- Shuo Tang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Chongchong Song
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Defeng Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yang Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Yuchen Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| | - Wang Lv
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
Tiwary P, Bhattacharyya K, A P P. Cycle consistent twin energy-based models for image-to-image translation. Med Image Anal 2024; 91:103031. [PMID: 37988920 DOI: 10.1016/j.media.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Domain shift refers to change of distributional characteristics between the training (source) and the testing (target) datasets of a learning task, leading to performance drop. For tasks involving medical images, domain shift may be caused because of several factors such as change in underlying imaging modalities, measuring devices and staining mechanisms. Recent approaches address this issue via generative models based on the principles of adversarial learning albeit they suffer from issues such as difficulty in training and lack of diversity. Motivated by the aforementioned observations, we adapt an alternative class of deep generative models called the Energy-Based Models (EBMs) for the task of unpaired image-to-image translation of medical images. Specifically, we propose a novel method called the Cycle Consistent Twin EBMs (CCT-EBM) which employs a pair of EBMs in the latent space of an Auto-Encoder trained on the source data. While one of the EBMs translates the source to the target domain the other does vice-versa along with a novel consistency loss, ensuring translation symmetry and coupling between the domains. We theoretically analyze the proposed method and show that our design leads to better translation between the domains with reduced langevin mixing steps. We demonstrate the efficacy of our method through detailed quantitative and qualitative experiments on image segmentation tasks on three different datasets vis-a-vis state-of-the-art methods.
Collapse
Affiliation(s)
- Piyush Tiwary
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kinjawl Bhattacharyya
- Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prathosh A P
- Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
10
|
Zheng C, Li H, Ge Y, He Y, Yi Y, Zhu M, Sun H, Kong J. Retinal vessel segmentation based on multi-scale feature and style transfer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:49-74. [PMID: 38303413 DOI: 10.3934/mbe.2024003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Retinal vessel segmentation is very important for diagnosing and treating certain eye diseases. Recently, many deep learning-based retinal vessel segmentation methods have been proposed; however, there are still many shortcomings (e.g., they cannot obtain satisfactory results when dealing with cross-domain data or segmenting small blood vessels). To alleviate these problems and avoid overly complex models, we propose a novel network based on a multi-scale feature and style transfer (MSFST-NET) for retinal vessel segmentation. Specifically, we first construct a lightweight segmentation module named MSF-Net, which introduces the selective kernel (SK) module to increase the multi-scale feature extraction ability of the model to achieve improved small blood vessel segmentation. Then, to alleviate the problem of model performance degradation when segmenting cross-domain datasets, we propose a style transfer module and a pseudo-label learning strategy. The style transfer module is used to reduce the style difference between the source domain image and the target domain image to improve the segmentation performance for the target domain image. The pseudo-label learning strategy is designed to be combined with the style transfer module to further boost the generalization ability of the model. Moreover, we trained and tested our proposed MSFST-NET in experiments on the DRIVE and CHASE_DB1 datasets. The experimental results demonstrate that MSFST-NET can effectively improve the generalization ability of the model on cross-domain datasets and achieve improved retinal vessel segmentation results than other state-of-the-art methods.
Collapse
Affiliation(s)
- Caixia Zheng
- Jilin Animation Institute, Changchun 130013, China
- College of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Huican Li
- College of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Yingying Ge
- Jilin Animation Institute, Changchun 130013, China
| | - Yanlin He
- College of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Yugen Yi
- School of Software, Jiangxi Normal University, Nanchang 330022, China
| | - Meili Zhu
- Jilin Animation Institute, Changchun 130013, China
| | - Hui Sun
- School of Science and Technology, Changchun Humanities and Sciences College, Changchun 130117, China
| | - Jun Kong
- College of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
11
|
Xie Q, Li Y, He N, Ning M, Ma K, Wang G, Lian Y, Zheng Y. Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4-14. [PMID: 35853072 DOI: 10.1109/tmi.2022.3192303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unsupervised domain adaption (UDA), which aims to enhance the segmentation performance of deep models on unlabeled data, has recently drawn much attention. In this paper, we propose a novel UDA method (namely DLaST) for medical image segmentation via disentanglement learning and self-training. Disentanglement learning factorizes an image into domain-invariant anatomy and domain-specific modality components. To make the best of disentanglement learning, we propose a novel shape constraint to boost the adaptation performance. The self-training strategy further adaptively improves the segmentation performance of the model for the target domain through adversarial learning and pseudo label, which implicitly facilitates feature alignment in the anatomy space. Experimental results demonstrate that the proposed method outperforms the state-of-the-art UDA methods for medical image segmentation on three public datasets, i.e., a cardiac dataset, an abdominal dataset and a brain dataset. The code will be released soon.
Collapse
|
12
|
Li Z, Zhao C, Han Z, Hong C. TUNet and domain adaptation based learning for joint optic disc and cup segmentation. Comput Biol Med 2023; 163:107209. [PMID: 37442009 DOI: 10.1016/j.compbiomed.2023.107209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Glaucoma is a chronic disorder that harms the optic nerves and causes irreversible blindness. The calculation of optic cup (OC) to optic disc (OD) ratio plays an important role in the primary screening and diagnosis of glaucoma. Thus, automatic and precise segmentations of OD and OC is highly preferable. Recently, deep neural networks demonstrate remarkable progress in the OD and OC segmentation, however, they are severely hindered in generalizing across different scanners and image resolution. In this work, we propose a novel domain adaptation-based framework to mitigate the performance degradation in OD and OC segmentation. We first devise an effective transformer-based segmentation network as a backbone to accurately segment the OD and OC regions. Then, to address the issue of domain shift, we introduce domain adaptation into the learning paradigm to encourage domain-invariant features. Since the segmentation-based domain adaptation loss is insufficient for capturing segmentation details, we further propose an auxiliary classifier to enable the discrimination on segmentation details. Exhaustive experiments on three public retinal fundus image datasets, i.e., REFUGE, Drishti-GS and RIM-ONE-r3, demonstrate our superior performance on the segmentation of OD and OC. These results suggest that our proposal has great potential to be an important component for an automated glaucoma screening system.
Collapse
Affiliation(s)
- Zhuorong Li
- Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Chen Zhao
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Zhike Han
- Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Chaoyang Hong
- Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
13
|
Khan TM, Naqvi SS, Robles-Kelly A, Razzak I. Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning. Neural Netw 2023; 165:310-320. [PMID: 37327578 DOI: 10.1016/j.neunet.2023.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Timely and affordable computer-aided diagnosis of retinal diseases is pivotal in precluding blindness. Accurate retinal vessel segmentation plays an important role in disease progression and diagnosis of such vision-threatening diseases. To this end, we propose a Multi-resolution Contextual Network (MRC-Net) that addresses these issues by extracting multi-scale features to learn contextual dependencies between semantically different features and using bi-directional recurrent learning to model former-latter and latter-former dependencies. Another key idea is training in adversarial settings for foreground segmentation improvement through optimization of the region-based scores. This novel strategy boosts the performance of the segmentation network in terms of the Dice score (and correspondingly Jaccard index) while keeping the number of trainable parameters comparatively low. We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE, demonstrating its superior performance as compared with competitive approaches elsewhere in the literature.
Collapse
Affiliation(s)
- Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Antonio Robles-Kelly
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Locked Bag 20000, Geelong, Australia; Defence Science and Technology Group, 5111, Edinburgh, SA, Australia
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Wang W, Yu X, Fang B, Zhao Y, Chen Y, Wei W, Chen J. Cross-Modality LGE-CMR Segmentation Using Image-to-Image Translation Based Data Augmentation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2367-2375. [PMID: 34982688 DOI: 10.1109/tcbb.2022.3140306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate segmentation of ventricle and myocardium from the late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is an important tool for myocardial infarction (MI) analysis. However, the complex enhancement pattern of LGE-CMR and the lack of labeled samples make its automatic segmentation difficult to be implemented. In this paper, we propose an unsupervised LGE-CMR segmentation algorithm by using multiple style transfer networks for data augmentation. It adopts two different style transfer networks to perform style transfer of the easily available annotated balanced-Steady State Free Precession (bSSFP)-CMR images. Then, multiple sets of synthetic LGE-CMR images are generated by the style transfer networks and used as the training data for the improved U-Net. The entire implementation of the algorithm does not require the labeled LGE-CMR. Validation experiments demonstrate the effectiveness and advantages of the proposed algorithm.
Collapse
|
15
|
Zhao Z, Zhou F, Xu K, Zeng Z, Guan C, Zhou SK. LE-UDA: Label-Efficient Unsupervised Domain Adaptation for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:633-646. [PMID: 36227829 DOI: 10.1109/tmi.2022.3214766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation (UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called "Label-Efficient Unsupervised Domain Adaptation" (LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature.
Collapse
|
16
|
Arsalan M, Khan TM, Naqvi SS, Nawaz M, Razzak I. Prompt Deep Light-Weight Vessel Segmentation Network (PLVS-Net). IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1363-1371. [PMID: 36194721 DOI: 10.1109/tcbb.2022.3211936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Achieving accurate retinal vessel segmentation is critical in the progression and diagnosis of vision-threatening diseases such as diabetic retinopathy and age-related macular degeneration. Existing vessel segmentation methods are based on encoder-decoder architectures, which frequently fail to take into account the retinal vessel structure's context in their analysis. As a result, such methods have difficulty bridging the semantic gap between encoder and decoder characteristics. This paper proposes a Prompt Deep Light-weight Vessel Segmentation Network (PLVS-Net) to address these issues by using prompt blocks. Each prompt block use combination of asymmetric kernel convolutions, depth-wise separable convolutions, and ordinary convolutions to extract useful features. This novel strategy improves the performance of the segmentation network while simultaneously decreasing the number of trainable parameters. Our method outperformed competing approaches in the literature on three benchmark datasets, including DRIVE, STARE, and CHASE.
Collapse
|
17
|
Yang H, Chen C, Jiang M, Liu Q, Cao J, Heng PA, Dou Q. DLTTA: Dynamic Learning Rate for Test-Time Adaptation on Cross-Domain Medical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3575-3586. [PMID: 35839185 DOI: 10.1109/tmi.2022.3191535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Test-time adaptation (TTA) has increasingly been an important topic to efficiently tackle the cross-domain distribution shift at test time for medical images from different institutions. Previous TTA methods have a common limitation of using a fixed learning rate for all the test samples. Such a practice would be sub-optimal for TTA, because test data may arrive sequentially therefore the scale of distribution shift would change frequently. To address this problem, we propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA, which dynamically modulates the amount of weights update for each test image to account for the differences in their distribution shift. Specifically, our DLTTA is equipped with a memory bank based estimation scheme to effectively measure the discrepancy of a given test sample. Based on this estimated discrepancy, a dynamic learning rate adjustment strategy is then developed to achieve a suitable degree of adaptation for each test sample. The effectiveness and general applicability of our DLTTA is extensively demonstrated on three tasks including retinal optical coherence tomography (OCT) segmentation, histopathological image classification, and prostate 3D MRI segmentation. Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods. Code is available at https://github.com/med-air/DLTTA.
Collapse
|
18
|
Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ. Recent trends and advances in fundus image analysis: A review. Comput Biol Med 2022; 151:106277. [PMID: 36370579 DOI: 10.1016/j.compbiomed.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.
Collapse
Affiliation(s)
- Shahzaib Iqbal
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan; Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Junaid Nawaz
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
19
|
Rodrigues EO, Rodrigues LO, Machado JHP, Casanova D, Teixeira M, Oliva JT, Bernardes G, Liatsis P. Local-Sensitive Connectivity Filter (LS-CF): A Post-Processing Unsupervised Improvement of the Frangi, Hessian and Vesselness Filters for Multimodal Vessel Segmentation. J Imaging 2022; 8:jimaging8100291. [PMID: 36286385 PMCID: PMC9604711 DOI: 10.3390/jimaging8100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
A retinal vessel analysis is a procedure that can be used as an assessment of risks to the eye. This work proposes an unsupervised multimodal approach that improves the response of the Frangi filter, enabling automatic vessel segmentation. We propose a filter that computes pixel-level vessel continuity while introducing a local tolerance heuristic to fill in vessel discontinuities produced by the Frangi response. This proposal, called the local-sensitive connectivity filter (LS-CF), is compared against a naive connectivity filter to the baseline thresholded Frangi filter response and to the naive connectivity filter response in combination with the morphological closing and to the current approaches in the literature. The proposal was able to achieve competitive results in a variety of multimodal datasets. It was robust enough to outperform all the state-of-the-art approaches in the literature for the OSIRIX angiographic dataset in terms of accuracy and 4 out of 5 works in the case of the IOSTAR dataset while also outperforming several works in the case of the DRIVE and STARE datasets and 6 out of 10 in the CHASE-DB dataset. For the CHASE-DB, it also outperformed all the state-of-the-art unsupervised methods.
Collapse
Affiliation(s)
- Erick O. Rodrigues
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
- Correspondence:
| | - Lucas O. Rodrigues
- Graduate Program of Sciences Applied to Health Products, Universidade Federal Fluminense (UFF), Niteroi 24241-000, RJ, Brazil
| | - João H. P. Machado
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Dalcimar Casanova
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Marcelo Teixeira
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Jeferson T. Oliva
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Giovani Bernardes
- Institute of Technological Sciences (ICT), Universidade Federal de Itajuba (UNIFEI), Itabira 35903-087, MG, Brazil
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
20
|
Jafari M, Francis S, Garibaldi JM, Chen X. LMISA: A lightweight multi-modality image segmentation network via domain adaptation using gradient magnitude and shape constraint. Med Image Anal 2022; 81:102536. [PMID: 35870297 DOI: 10.1016/j.media.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
In medical image segmentation, supervised machine learning models trained using one image modality (e.g. computed tomography (CT)) are often prone to failure when applied to another image modality (e.g. magnetic resonance imaging (MRI)) even for the same organ. This is due to the significant intensity variations of different image modalities. In this paper, we propose a novel end-to-end deep neural network to achieve multi-modality image segmentation, where image labels of only one modality (source domain) are available for model training and the image labels for the other modality (target domain) are not available. In our method, a multi-resolution locally normalized gradient magnitude approach is firstly applied to images of both domains for minimizing the intensity discrepancy. Subsequently, a dual task encoder-decoder network including image segmentation and reconstruction is utilized to effectively adapt a segmentation network to the unlabeled target domain. Additionally, a shape constraint is imposed by leveraging adversarial learning. Finally, images from the target domain are segmented, as the network learns a consistent latent feature representation with shape awareness from both domains. We implement both 2D and 3D versions of our method, in which we evaluate CT and MRI images for kidney and cardiac tissue segmentation. For kidney, a public CT dataset (KiTS19, MICCAI 2019) and a local MRI dataset were utilized. The cardiac dataset was from the Multi-Modality Whole Heart Segmentation (MMWHS) challenge 2017. Experimental results reveal that our proposed method achieves significantly higher performance with a much lower model complexity in comparison with other state-of-the-art methods. More importantly, our method is also capable of producing superior segmentation results than other methods for images of an unseen target domain without model retraining. The code is available at GitHub (https://github.com/MinaJf/LMISA) to encourage method comparison and further research.
Collapse
Affiliation(s)
- Mina Jafari
- Intelligent Modeling and Analysis Group, School of Computer Science, University of Nottingham, UK.
| | - Susan Francis
- The Sir Peter Mansfield Imaging Centre, University of Nottingham, UK
| | - Jonathan M Garibaldi
- Intelligent Modeling and Analysis Group, School of Computer Science, University of Nottingham, UK
| | - Xin Chen
- Intelligent Modeling and Analysis Group, School of Computer Science, University of Nottingham, UK.
| |
Collapse
|
21
|
da Silva MV, Ouellette J, Lacoste B, Comin CH. An analysis of the influence of transfer learning when measuring the tortuosity of blood vessels. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107021. [PMID: 35914440 DOI: 10.1016/j.cmpb.2022.107021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Convolutional Neural Networks (CNNs) can provide excellent results regarding the segmentation of blood vessels. One important aspect of CNNs is that they can be trained on large amounts of data and then be made available, for instance, in image processing software. The pre-trained CNNs can then be easily applied in downstream blood vessel characterization tasks, such as the calculation of the length, tortuosity, or caliber of the blood vessels. Yet, it is still unclear if pre-trained CNNs can provide robust, unbiased, results in downstream tasks involving the morphological analysis of blood vessels. Here, we focus on measuring the tortuosity of blood vessels and investigate to which extent CNNs may provide biased tortuosity values even after fine-tuning the network to a new dataset under study. METHODS We develop a procedure for quantifying the influence of CNN pre-training in downstream analyses involving the measurement of morphological properties of blood vessels. Using the methodology, we compare the performance of CNNs that were trained on images containing blood vessels having high tortuosity with CNNs that were trained on blood vessels with low tortuosity and fine-tuned on blood vessels with high tortuosity. The opposite situation is also investigated. RESULTS We show that the tortuosity values obtained by a CNN trained from scratch on a dataset may not agree with those obtained by a fine-tuned network that was pre-trained on a dataset having different tortuosity statistics. In addition, we show that improving the segmentation accuracy does not necessarily lead to better tortuosity estimation. To mitigate the aforementioned issues, we propose the application of data augmentation techniques even in situations where they do not improve segmentation performance. For instance, we found that the application of elastic transformations was enough to prevent an underestimation of 8% of blood vessel tortuosity when applying CNNs to different datasets. CONCLUSIONS The results highlight the importance of developing new methodologies for training CNNs with the specific goal of reducing the error of morphological measurements, as opposed to the traditional approach of using segmentation accuracy as a proxy metric for performance evaluation.
Collapse
Affiliation(s)
- Matheus V da Silva
- Department of Computer Science, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Julie Ouellette
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Cesar H Comin
- Department of Computer Science, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
22
|
Dubey S, Dixit M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14471-14525. [PMID: 36185322 PMCID: PMC9510498 DOI: 10.1007/s11042-022-13841-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.
Collapse
Affiliation(s)
- Shradha Dubey
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| | - Manish Dixit
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| |
Collapse
|
23
|
Bateson M, Kervadec H, Dolz J, Lombaert H, Ben Ayed I. Source-free domain adaptation for image segmentation. Med Image Anal 2022; 82:102617. [DOI: 10.1016/j.media.2022.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
|
24
|
Guo X, Lu X, Lin Q, Zhang J, Hu X, Che S. A novel retinal image generation model with the preservation of structural similarity and high resolution. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Tan Y, Yang KF, Zhao SX, Li YJ. Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2238-2251. [PMID: 35320091 DOI: 10.1109/tmi.2022.3161681] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
Collapse
|
26
|
Shenkut D, Bhagavatula V. Fundus GAN - GAN-based Fundus Image Synthesis for Training Retinal Image Classifiers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2185-2189. [PMID: 36086632 DOI: 10.1109/embc48229.2022.9871771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two major challenges in applying deep learning to develop a computer-aided diagnosis of fundus images are the lack of enough labeled data and legal issues with patient privacy. Various efforts are being made to increase the amount of data either by augmenting training images or by synthesizing realistic-looking fundus images. However, augmentation is limited by the amount of available data and it does not address the patient privacy concern. In this paper, we propose a Generative Adversarial Network-based (GAN-based) fundus image synthesis method (Fundus GAN) that generates synthetic training images to solve the above problems. Fundus GAN is an improved way of generating retinal images by following a two-step generation process which involves first training a segmentation network to extract the vessel tree followed by vessel tree to fundus image-to-image translation using unsupervised generative attention networks. Our results show that the proposed Fundus GAN outperforms state of the art methods in different evaluation metrics. Our results also validate that generated retinal images can be used to train retinal image classifiers for eye diseases diagnosis. Clinical Relevance- Our proposed method Fundus GAN helps in solving the shortage of patient privacy-preserving training data in developing algorithms for automating image- based eye disease diagnosis. The proposed two-step GAN- based image synthesis can be used to improve the classification accuracy of retinal image classifiers without compromising the privacy of the patient.
Collapse
|
27
|
State-of-the-art retinal vessel segmentation with minimalistic models. Sci Rep 2022; 12:6174. [PMID: 35418576 PMCID: PMC9007957 DOI: 10.1038/s41598-022-09675-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
The segmentation of retinal vasculature from eye fundus images is a fundamental task in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures have been pushing performance on well-established benchmark datasets. In this paper, we take a step back and analyze the real need of such complexity. We first compile and review the performance of 20 different techniques on some popular databases, and we demonstrate that a minimalistic version of a standard U-Net with several orders of magnitude less parameters, carefully trained and rigorously evaluated, closely approximates the performance of current best techniques. We then show that a cascaded extension (W-Net) reaches outstanding performance on several popular datasets, still using orders of magnitude less learnable weights than any previously published work. Furthermore, we provide the most comprehensive cross-dataset performance analysis to date, involving up to 10 different databases. Our analysis demonstrates that the retinal vessel segmentation is far from solved when considering test images that differ substantially from the training data, and that this task represents an ideal scenario for the exploration of domain adaptation techniques. In this context, we experiment with a simple self-labeling strategy that enables moderate enhancement of cross-dataset performance, indicating that there is still much room for improvement in this area. Finally, we test our approach on Artery/Vein and vessel segmentation from OCTA imaging problems, where we again achieve results well-aligned with the state-of-the-art, at a fraction of the model complexity available in recent literature. Code to reproduce the results in this paper is released.
Collapse
|
28
|
Joint DR-DME classification using deep learning-CNN based modified grey-wolf optimizer with variable weights. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Gour N, Tanveer M, Khanna P. Challenges for ocular disease identification in the era of artificial intelligence. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
|
31
|
Li X, Jiang Y, Rodriguez-Andina JJ, Luo H, Yin S, Kaynak O. When medical images meet generative adversarial network: recent development and research opportunities. DISCOVER ARTIFICIAL INTELLIGENCE 2021; 1:5. [DOI: 10.1007/s44163-021-00006-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
AbstractDeep learning techniques have promoted the rise of artificial intelligence (AI) and performed well in computer vision. Medical image analysis is an important application of deep learning, which is expected to greatly reduce the workload of doctors, contributing to more sustainable health systems. However, most current AI methods for medical image analysis are based on supervised learning, which requires a lot of annotated data. The number of medical images available is usually small and the acquisition of medical image annotations is an expensive process. Generative adversarial network (GAN), an unsupervised method that has become very popular in recent years, can simulate the distribution of real data and reconstruct approximate real data. GAN opens some exciting new ways for medical image generation, expanding the number of medical images available for deep learning methods. Generated data can solve the problem of insufficient data or imbalanced data categories. Adversarial training is another contribution of GAN to medical imaging that has been applied to many tasks, such as classification, segmentation, or detection. This paper investigates the research status of GAN in medical images and analyzes several GAN methods commonly applied in this area. The study addresses GAN application for both medical image synthesis and adversarial learning for other medical image tasks. The open challenges and future research directions are also discussed.
Collapse
|
32
|
Du X, Liu Y. Constraint-based Unsupervised Domain Adaptation network for Multi-Modality Cardiac Image Segmentation. IEEE J Biomed Health Inform 2021; 26:67-78. [PMID: 34757915 DOI: 10.1109/jbhi.2021.3126874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cardiac CT and MRI images depict the various structures of the heart, which are very valuable for analyzing heart function. However, due to the difference in the shape of the cardiac images and imaging techniques, automatic segmentation is challenging. To solve this challenge, in this paper, we propose a new constraint-based unsupervised domain adaptation network. This network first performs mutual translation of images between different domains, it can provide training data for the segmentation model, and ensure domain invariance at the image level. Then, we input the target domain into the source domain segmentation model to obtain pseudo-labels and introduce cross-domain self-supervised learning between the two segmentation models. Here, a new loss function is designed to ensure the accuracy of the pseudo-labels. In addition, a cross-domain consistency loss is also introduced. Finally, we construct a multi-level aggregation segmentation network to obtain more refined target domain information. We validate our method on the public whole heart image segmentation challenge dataset and obtain experimental results of 82.9% and 5.5 on dice and average symmetric surface distance (ASSD), respectively. These experimental results prove that our method can provide important assistance in the clinical evaluation of unannotated cardiac datasets.
Collapse
|
33
|
Zou B, Dai Y, He Q, Zhu C, Liu G, Su Y, Tang R. Multi-Label Classification Scheme Based on Local Regression for Retinal Vessel Segmentation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2586-2597. [PMID: 32175869 DOI: 10.1109/tcbb.2020.2980233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Segmenting small retinal vessels with width less than 2 pixels in fundus images is a challenging task. In this paper, in order to effectively segment the vessels, especially the narrow parts, we propose a local regression scheme to enhance the narrow parts, along with a novel multi-label classification method based on this scheme. We consider five labels for blood vessels and background in particular: the center of big vessels, the edge of big vessels, the center as well as the edge of small vessels, the center of background, and the edge of background. We first determine the multi-label by the local de-regression model according to the vessel pattern from the ground truth images. Then, we train a convolutional neural network (CNN) for multi-label classification. Next, we perform a local regression method to transform the previous multi-label into binary label to better locate small vessels and generate an entire retinal vessel image. Our method is evaluated using two publicly available datasets and compared with several state-of-the-art studies. The experimental results have demonstrated the effectiveness of our method in segmenting retinal vessels.
Collapse
|
34
|
Detail-richest-channel based enhancement for retinal image and beyond. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Le N, Bui T, Vo-Ho VK, Yamazaki K, Luu K. Narrow Band Active Contour Attention Model for Medical Segmentation. Diagnostics (Basel) 2021; 11:1393. [PMID: 34441327 PMCID: PMC8393587 DOI: 10.3390/diagnostics11081393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Medical image segmentation is one of the most challenging tasks in medical image analysis and widely developed for many clinical applications. While deep learning-based approaches have achieved impressive performance in semantic segmentation, they are limited to pixel-wise settings with imbalanced-class data problems and weak boundary object segmentation in medical images. In this paper, we tackle those limitations by developing a new two-branch deep network architecture which takes both higher level features and lower level features into account. The first branch extracts higher level feature as region information by a common encoder-decoder network structure such as Unet and FCN, whereas the second branch focuses on lower level features as support information around the boundary and processes in parallel to the first branch. Our key contribution is the second branch named Narrow Band Active Contour (NB-AC) attention model which treats the object contour as a hyperplane and all data inside a narrow band as support information that influences the position and orientation of the hyperplane. Our proposed NB-AC attention model incorporates the contour length with the region energy involving a fixed-width band around the curve or surface. The proposed network loss contains two fitting terms: (i) a high level feature (i.e., region) fitting term from the first branch; (ii) a lower level feature (i.e., contour) fitting term from the second branch including the (ii1) length of the object contour and (ii2) regional energy functional formed by the homogeneity criterion of both the inner band and outer band neighboring the evolving curve or surface. The proposed NB-AC loss can be incorporated into both 2D and 3D deep network architectures. The proposed network has been evaluated on different challenging medical image datasets, including DRIVE, iSeg17, MRBrainS18 and Brats18. The experimental results have shown that the proposed NB-AC loss outperforms other mainstream loss functions: Cross Entropy, Dice, Focal on two common segmentation frameworks Unet and FCN. Our 3D network which is built upon the proposed NB-AC loss and 3DUnet framework achieved state-of-the-art results on multiple volumetric datasets.
Collapse
Affiliation(s)
- Ngan Le
- Department of CSCE, University of Arkansas, Fayetteville, AR 72701, USA; (V.-K.V.-H.); (K.Y.); (K.L.)
| | - Toan Bui
- Vin-AI Research, HaNoi 100000, Vietnam;
| | - Viet-Khoa Vo-Ho
- Department of CSCE, University of Arkansas, Fayetteville, AR 72701, USA; (V.-K.V.-H.); (K.Y.); (K.L.)
| | - Kashu Yamazaki
- Department of CSCE, University of Arkansas, Fayetteville, AR 72701, USA; (V.-K.V.-H.); (K.Y.); (K.L.)
| | - Khoa Luu
- Department of CSCE, University of Arkansas, Fayetteville, AR 72701, USA; (V.-K.V.-H.); (K.Y.); (K.L.)
| |
Collapse
|
36
|
Vesal S, Gu M, Kosti R, Maier A, Ravikumar N. Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy Minimization for Multi-Modal Cardiac Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1838-1851. [PMID: 33729930 DOI: 10.1109/tmi.2021.3066683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep learning models are sensitive to domain shift phenomena. A model trained on images from one domain cannot generalise well when tested on images from a different domain, despite capturing similar anatomical structures. It is mainly because the data distribution between the two domains is different. Moreover, creating annotation for every new modality is a tedious and time-consuming task, which also suffers from high inter- and intra- observer variability. Unsupervised domain adaptation (UDA) methods intend to reduce the gap between source and target domains by leveraging source domain labelled data to generate labels for the target domain. However, current state-of-the-art (SOTA) UDA methods demonstrate degraded performance when there is insufficient data in source and target domains. In this paper, we present a novel UDA method for multi-modal cardiac image segmentation. The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces. The paper introduces an end-to-end framework that integrates: a) entropy minimization, b) output feature space alignment and c) a novel point-cloud shape adaptation based on the latent features learned by the segmentation model. We validated our method on two cardiac datasets by adapting from the annotated source domain, bSSFP-MRI (balanced Steady-State Free Procession-MRI), to the unannotated target domain, LGE-MRI (Late-gadolinium enhance-MRI), for the multi-sequence dataset; and from MRI (source) to CT (target) for the cross-modality dataset. The results highlighted that by enforcing adversarial learning in different parts of the network, the proposed method delivered promising performance, compared to other SOTA methods.
Collapse
|
37
|
Bateson M, Dolz J, Kervadec H, Lombaert H, Ayed IB. Constrained Domain Adaptation for Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1875-1887. [PMID: 33750688 DOI: 10.1109/tmi.2021.3067688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Domain Adaption tasks have recently attracted substantial attention in computer vision as they improve the transferability of deep network models from a source to a target domain with different characteristics. A large body of state-of-the-art domain-adaptation methods was developed for image classification purposes, which may be inadequate for segmentation tasks. We propose to adapt segmentation networks with a constrained formulation, which embeds domain-invariant prior knowledge about the segmentation regions. Such knowledge may take the form of anatomical information, for instance, structure size or shape, which can be known a priori or learned from the source samples via an auxiliary task. Our general formulation imposes inequality constraints on the network predictions of unlabeled or weakly labeled target samples, thereby matching implicitly the prediction statistics of the target and source domains, with permitted uncertainty of prior knowledge. Furthermore, our inequality constraints easily integrate weak annotations of the target data, such as image-level tags. We address the ensuing constrained optimization problem with differentiable penalties, fully suited for conventional stochastic gradient descent approaches. Unlike common two-step adversarial training, our formulation is based on a single segmentation network, which simplifies adaptation, while improving training quality. Comparison with state-of-the-art adaptation methods reveals considerably better performance of our model on two challenging tasks. Particularly, it consistently yields a performance gain of 1-4% Dice across architectures and datasets. Our results also show robustness to imprecision in the prior knowledge. The versatility of our novel approach can be readily used in various segmentation problems, with code available publicly.
Collapse
|
38
|
Lei H, Liu W, Xie H, Zhao B, Yue G, Lei B. Unsupervised Domain Adaptation Based Image Synthesis and Feature Alignment for Joint Optic Disc and Cup Segmentation. IEEE J Biomed Health Inform 2021; 26:90-102. [PMID: 34061755 DOI: 10.1109/jbhi.2021.3085770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Due to the discrepancy of different devices for fundus image collection, a well-trained neural network is usually unsuitable for another new dataset. To solve this problem, the unsupervised domain adaptation strategy attracts a lot of attentions. In this paper, we propose an unsupervised domain adaptation method based image synthesis and feature alignment (ISFA) method to segment optic disc and cup on the fundus image. The GAN-based image synthesis (IS) mechanism along with the boundary information of optic disc and cup is utilized to generate target-like query images, which serves as the intermediate latent space between source domain and target domain images to alleviate the domain shift problem. Specifically, we use content and style feature alignment (CSFA) to ensure the feature consistency among source domain images, target-like query images and target domain images. The adversarial learning is used to extract domain invariant features for output-level feature alignment (OLFA). To enhance the representation ability of domain-invariant boundary structure information, we introduce the edge attention module (EAM) for low-level feature maps. Eventually, we train our proposed method on the training set of the REFUGE challenge dataset and test it on Drishti-GS and RIM-ONE_r3 datasets. On the Drishti-GS dataset, our method achieves about 3% improvement of Dice on optic cup segmentation over the next best method. We comprehensively discuss the robustness of our method for small dataset domain adaptation. The experimental results also demonstrate the effectiveness of our method. Our code is available at https://github.com/thinkobj/ISFA.
Collapse
|
39
|
He J, Li C, Ye J, Qiao Y, Gu L. Self-speculation of clinical features based on knowledge distillation for accurate ocular disease classification. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Brion E, Léger J, Barragán-Montero AM, Meert N, Lee JA, Macq B. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Comput Biol Med 2021; 131:104269. [PMID: 33639352 DOI: 10.1016/j.compbiomed.2021.104269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
In radiation therapy, a CT image is used to manually delineate the organs and plan the treatment. During the treatment, a cone beam CT (CBCT) is often acquired to monitor the anatomical modifications. For this purpose, automatic organ segmentation on CBCT is a crucial step. However, manual segmentations on CBCT are scarce, and models trained with CT data do not generalize well to CBCT images. We investigate adversarial networks and intensity-based data augmentation, two strategies leveraging large databases of annotated CTs to train neural networks for segmentation on CBCT. Adversarial networks consist of a 3D U-Net segmenter and a domain classifier. The proposed framework is aimed at encouraging the learning of filters producing more accurate segmentations on CBCT. Intensity-based data augmentation consists in modifying the training CT images to reduce the gap between CT and CBCT distributions. The proposed adversarial networks reach DSCs of 0.787, 0.447, and 0.660 for the bladder, rectum, and prostate respectively, which is an improvement over the DSCs of 0.749, 0.179, and 0.629 for "source only" training. Our brightness-based data augmentation reaches DSCs of 0.837, 0.701, and 0.734, which outperforms the morphons registration algorithms for the bladder (0.813) and rectum (0.653), while performing similarly on the prostate (0.731). The proposed adversarial training framework can be used for any segmentation application where training and test distributions differ. Our intensity-based data augmentation can be used for CBCT segmentation to help achieve the prescribed dose on target and lower the dose delivered to healthy organs.
Collapse
Affiliation(s)
- Eliott Brion
- ICTEAM, UCLouvain, Louvain-la-Neuve, 1348, Belgium.
| | - Jean Léger
- ICTEAM, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | | | - Nicolas Meert
- Hôpital André Vésale, Montigny-le-Tilleul, 6110, Belgium
| | - John A Lee
- ICTEAM, UCLouvain, Louvain-la-Neuve, 1348, Belgium; IREC/MIRO, UCLouvain, Brussels, 1200, Belgium
| | - Benoit Macq
- ICTEAM, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
41
|
Bilal A, Sun G, Mazhar S. Survey on recent developments in automatic detection of diabetic retinopathy. J Fr Ophtalmol 2021; 44:420-440. [PMID: 33526268 DOI: 10.1016/j.jfo.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is a disease facilitated by the rapid spread of diabetes worldwide. DR can blind diabetic individuals. Early detection of DR is essential to restoring vision and providing timely treatment. DR can be detected manually by an ophthalmologist, examining the retinal and fundus images to analyze the macula, morphological changes in blood vessels, hemorrhage, exudates, and/or microaneurysms. This is a time consuming, costly, and challenging task. An automated system can easily perform this function by using artificial intelligence, especially in screening for early DR. Recently, much state-of-the-art research relevant to the identification of DR has been reported. This article describes the current methods of detecting non-proliferative diabetic retinopathy, exudates, hemorrhage, and microaneurysms. In addition, the authors point out future directions in overcoming current challenges in the field of DR research.
Collapse
Affiliation(s)
- A Bilal
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China.
| | - G Sun
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China
| | - S Mazhar
- Faculty of Information Technology, Beijing University of Technology, Chaoyang District, Beijing 100124, China
| |
Collapse
|
42
|
Li T, Bo W, Hu C, Kang H, Liu H, Wang K, Fu H. Applications of deep learning in fundus images: A review. Med Image Anal 2021; 69:101971. [PMID: 33524824 DOI: 10.1016/j.media.2021.101971] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The use of fundus images for the early screening of eye diseases is of great clinical importance. Due to its powerful performance, deep learning is becoming more and more popular in related applications, such as lesion segmentation, biomarkers segmentation, disease diagnosis and image synthesis. Therefore, it is very necessary to summarize the recent developments in deep learning for fundus images with a review paper. In this review, we introduce 143 application papers with a carefully designed hierarchy. Moreover, 33 publicly available datasets are presented. Summaries and analyses are provided for each task. Finally, limitations common to all tasks are revealed and possible solutions are given. We will also release and regularly update the state-of-the-art results and newly-released datasets at https://github.com/nkicsl/Fundus_Review to adapt to the rapid development of this field.
Collapse
Affiliation(s)
- Tao Li
- College of Computer Science, Nankai University, Tianjin 300350, China
| | - Wang Bo
- College of Computer Science, Nankai University, Tianjin 300350, China
| | - Chunyu Hu
- College of Computer Science, Nankai University, Tianjin 300350, China
| | - Hong Kang
- College of Computer Science, Nankai University, Tianjin 300350, China
| | - Hanruo Liu
- Beijing Tongren Hospital, Capital Medical University, Address, Beijing 100730 China
| | - Kai Wang
- College of Computer Science, Nankai University, Tianjin 300350, China.
| | - Huazhu Fu
- Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE
| |
Collapse
|
43
|
Rodrigues EO, Conci A, Liatsis P. ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach. IEEE J Biomed Health Inform 2020; 24:3507-3519. [PMID: 32750920 DOI: 10.1109/jbhi.2020.2999257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vascular structures in the retina contain important information for the detection and analysis of ocular diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. Commonly used modalities in diagnosis of these diseases are fundus photography, scanning laser ophthalmoscope (SLO) and fluorescein angiography (FA). Typically, retinal vessel segmentation is carried out either manually or interactively, which makes it time consuming and prone to human errors. In this research, we propose a new multi-modal framework for vessel segmentation called ELEMENT (vEsseL sEgmentation using Machine lEarning and coNnecTivity). This framework consists of feature extraction and pixel-based classification using region growing and machine learning. The proposed features capture complementary evidence based on grey level and vessel connectivity properties. The latter information is seamlessly propagated through the pixels at the classification phase. ELEMENT reduces inconsistencies and speeds up the segmentation throughput. We analyze and compare the performance of the proposed approach against state-of-the-art vessel segmentation algorithms in three major groups of experiments, for each of the ocular modalities. Our method produced higher overall performance, with an overall accuracy of 97.40%, compared to 25 of the 26 state-of-the-art approaches, including six works based on deep learning, evaluated on the widely known DRIVE fundus image dataset. In the case of the STARE, CHASE-DB, VAMPIRE FA, IOSTAR SLO and RC-SLO datasets, the proposed framework outperformed all of the state-of-the-art methods with accuracies of 98.27%, 97.78%, 98.34%, 98.04% and 98.35%, respectively.
Collapse
|
44
|
Jiang J, Hu YC, Tyagi N, Rimner A, Lee N, Deasy JO, Berry S, Veeraraghavan H. PSIGAN: Joint Probabilistic Segmentation and Image Distribution Matching for Unpaired Cross-Modality Adaptation-Based MRI Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4071-4084. [PMID: 32746148 PMCID: PMC7757913 DOI: 10.1109/tmi.2020.3011626] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We developed a new joint probabilistic segmentation and image distribution matching generative adversarial network (PSIGAN) for unsupervised domain adaptation (UDA) and multi-organ segmentation from magnetic resonance (MRI) images. Our UDA approach models the co-dependency between images and their segmentation as a joint probability distribution using a new structure discriminator. The structure discriminator computes structure of interest focused adversarial loss by combining the generated pseudo MRI with probabilistic segmentations produced by a simultaneously trained segmentation sub-network. The segmentation sub-network is trained using the pseudo MRI produced by the generator sub-network. This leads to a cyclical optimization of both the generator and segmentation sub-networks that are jointly trained as part of an end-to-end network. Extensive experiments and comparisons against multiple state-of-the-art methods were done on four different MRI sequences totalling 257 scans for generating multi-organ and tumor segmentation. The experiments included, (a) 20 T1-weighted (T1w) in-phase mdixon and (b) 20 T2-weighted (T2w) abdominal MRI for segmenting liver, spleen, left and right kidneys, (c) 162 T2-weighted fat suppressed head and neck MRI (T2wFS) for parotid gland segmentation, and (d) 75 T2w MRI for lung tumor segmentation. Our method achieved an overall average DSC of 0.87 on T1w and 0.90 on T2w for the abdominal organs, 0.82 on T2wFS for the parotid glands, and 0.77 on T2w MRI for lung tumors.
Collapse
|
45
|
Skin lesion segmentation via generative adversarial networks with dual discriminators. Med Image Anal 2020; 64:101716. [DOI: 10.1016/j.media.2020.101716] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022]
|
46
|
Choudhary A, Tong L, Zhu Y, Wang MD. Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation. Yearb Med Inform 2020; 29:129-138. [PMID: 32823306 PMCID: PMC7442502 DOI: 10.1055/s-0040-1702009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity and varying imaging protocols. Domain adaptation (DA) has been developed to transfer the knowledge from a labeled data domain to a related but unlabeled domain in either image space or feature space. DA is a type of transfer learning (TL) that can improve the performance of models when applied to multiple different datasets. OBJECTIVE In this survey, we review the state-of-the-art DL-based DA methods for medical imaging. We aim to summarize recent advances, highlighting the motivation, challenges, and opportunities, and to discuss promising directions for future work in DA for medical imaging. METHODS We surveyed peer-reviewed publications from leading biomedical journals and conferences between 2017-2020, that reported the use of DA in medical imaging applications, grouping them by methodology, image modality, and learning scenarios. RESULTS We mainly focused on pathology and radiology as application areas. Among various DA approaches, we discussed domain transformation (DT) and latent feature-space transformation (LFST). We highlighted the role of unsupervised DA in image segmentation and described opportunities for future development. CONCLUSION DA has emerged as a promising solution to deal with the lack of annotated training data. Using adversarial techniques, unsupervised DA has achieved good performance, especially for segmentation tasks. Opportunities include domain transferability, multi-modal DA, and applications that benefit from synthetic data.
Collapse
Affiliation(s)
- Anirudh Choudhary
- Department of Computational Science and Engineering, Georgia Institute of Technology, GA, USA
| | - Li Tong
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, GA, USA
| | - Yuanda Zhu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, GA, USA
| | - May D. Wang
- Department of Computational Science and Engineering, Georgia Institute of Technology, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, GA, USA
| |
Collapse
|
47
|
Chen C, Dou Q, Chen H, Qin J, Heng PA. Unsupervised Bidirectional Cross-Modality Adaptation via Deeply Synergistic Image and Feature Alignment for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2494-2505. [PMID: 32054572 DOI: 10.1109/tmi.2020.2972701] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unsupervised domain adaptation has increasingly gained interest in medical image computing, aiming to tackle the performance degradation of deep neural networks when being deployed to unseen data with heterogeneous characteristics. In this work, we present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA), to effectively adapt a segmentation network to an unlabeled target domain. Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives. In particular, we simultaneously transform the appearance of images across domains and enhance domain-invariance of the extracted features by leveraging adversarial learning in multiple aspects and with a deeply supervised mechanism. The feature encoder is shared between both adaptive perspectives to leverage their mutual benefits via end-to-end learning. We have extensively evaluated our method with cardiac substructure segmentation and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images, and outperforms the state-of-the-art domain adaptation approaches by a large margin.
Collapse
|
48
|
Shukla AK, Pandey RK, Pachori RB. A fractional filter based efficient algorithm for retinal blood vessel segmentation. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101883] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Combining Multi-Sequence and Synthetic Images for Improved Segmentation of Late Gadolinium Enhancement Cardiac MRI. STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES 2020. [DOI: 10.1007/978-3-030-39074-7_31] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
|