1
|
Sun Y, Lei L, Guan D, Kuang G, Li Z, Liu L. Locality Preservation for Unsupervised Multimodal Change Detection in Remote Sensing Imagery. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:6955-6969. [PMID: 38809739 DOI: 10.1109/tnnls.2024.3401696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Multimodal change detection (MCD) is a topic of increasing interest in remote sensing. Due to different imaging mechanisms, the multimodal images cannot be directly compared to detect the changes. In this article, we explore the topological structure of multimodal images and construct the links between class relationships (same/different) and change labels (changed/unchanged) of pairwise superpixels, which are imaging modality-invariant. With these links, we formulate the MCD problem within a mathematical framework termed the locality-preserving energy model (LPEM), which is used to maintain the local consistency constraints embedded in the links: the structure consistency based on feature similarity and the label consistency based on spatial continuity. Because the foundation of LPEM, i.e., the links, is intuitively explainable and universal, the proposed method is very robust across different MCD situations. Noteworthy, LPEM is built directly on the label of each superpixel, so it is a paradigm that outputs the change map (CM) directly without the need to generate intermediate difference image (DI) as most previous algorithms have done. Experiments on different real datasets demonstrate the effectiveness of the proposed method. Source code of the proposed method is made available at https://github.com/yulisun/LPEM.
Collapse
|
2
|
Wei P, Li HX. Spatiotemporal Transformation-Based Neural Network With Interpretable Structure for Modeling Distributed Parameter Systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:729-737. [PMID: 39052455 DOI: 10.1109/tnnls.2023.3334764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Many industrial processes can be described by distributed parameter systems (DPSs) governed by partial differential equations (PDEs). In this research, a spatiotemporal network is proposed for DPS modeling without any process knowledge. Since traditional linear modeling methods may not work well for nonlinear DPSs, the proposed method considers the nonlinear space-time separation, which is transformed into a Lagrange dual optimization problem under the orthogonal constraint. The optimization problem can be solved by the proposed neural network with good structural interpretability. The spatial construction method is employed to derive the continuous spatial basis functions (SBFs) based on the discrete spatial features. The nonlinear temporal model is derived by the Gaussian process regression (GPR). Benefiting from spatial construction and GPR, the proposed method enables spatially continuous modeling and provides a reliable output range under the given confidence level. Experiments on a catalytic reaction process and a battery thermal process demonstrate the effectiveness and superiority of the proposed method.
Collapse
|
3
|
Liu T, Zhang M, Gong M, Zhang Q, Jiang F, Zheng H, Lu D. Commonality Feature Representation Learning for Unsupervised Multimodal Change Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2025; 34:1219-1233. [PMID: 40031527 DOI: 10.1109/tip.2025.3539461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The main challenge of multimodal change detection (MCD) is that multimodal bitemporal images (MBIs) cannot be compared directly to identify changes. To overcome this problem, this paper proposes a novel commonality feature representation learning (CFRL) and constructs a CFRL-based unsupervised MCD framework. The CFRL is composed of a Siamese-based encoder and two decoders. First, the Siamese-based encoder can map original MBIs in the same feature space for extracting the representative features of each modality. Then, the two decoders are used to reconstruct the original MBIs by regressing themselves, respectively. Meanwhile, we swap the decoders to reconstruct the pseudo-MBIs to conduct modality alignment. Subsequently, all reconstructed images are input to the Siamese-based encoder again to map them in a same feature space, by which representative features are obtained. On this basis, latent commonality features between MBIs can be extracted by minimizing the distance between these representative features. These latent commonality features are comparable and can be used to identify changes. Notably, the proposed CFRL can be performed simultaneously in two modalities corresponding to MBIs. Therefore, two change magnitude images (CMIs) can be generated simultaneously by measuring the difference between the commonality features of MBIs. Finally, a simple threshold algorithm or a clustering algorithm can be employed to divide CMIs into binary change maps. Extensive experiments on six publicly available MCD datasets show that the proposed CFRL-based framework can achieve superior performance compared with other state-of-the-art approaches.
Collapse
|
4
|
Kaushal A, Gupta AK, Sehgal VK. A semantic segmentation framework with UNet-pyramid for landslide prediction using remote sensing data. Sci Rep 2024; 14:30071. [PMID: 39627305 PMCID: PMC11614895 DOI: 10.1038/s41598-024-79266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Landslides are frequent all over the world, posing serious threats to human life, infrastructure, and economic operations, making them chronic disasters. This study proposes a novel landslide detection methodology that is automated and based on a hybrid deep learning approach. Currently, Deep Learning is constrained by the lack of applicability, lack of data, and low efficiency in landslide detection but with recent advancement in deep learning-based solutions for landslide detection has sparked considerable advantages over traditional techniques. In order to prevent and mitigate disaster, we introduced a hybrid model based on remote sensing technologies such as satellite images. Specifically, the proposed approach consists hybrid U-Net model integrated with a pyramid pooling layer for landslide detection, which uses high-resolution landslide images from the Landslide4Sense dataset. The UNet-Pyramid model has the following modifications: To improve feature acquisition and advancements to strengthen the model's attention U-Net architecture is integrated with the pyramid pooling layers and OBIA technique. The UNet-Pyramid model was trained and validated using labeled images taken from the Landslide4Sense dataset and the validated set using OBIA to improve its efficacy. The overall Precision, Recall, and F1 Score of the UNet-pyramid model for landslide detection are 91%, 84%, and 87%, respectively.
Collapse
Affiliation(s)
- Arush Kaushal
- Jaypee University of Information Technology, Computer Science, Solan, 173234, India.
| | - Ashok Kumar Gupta
- Jaypee University of Information Technology, Civil Engineering, Solan, 173234, India
| | - Vivek Kumar Sehgal
- Jaypee University of Information Technology, Computer Science, Solan, 173234, India
| |
Collapse
|
5
|
Zhang M, Gao T, Gong M, Zhu S, Wu Y, Li H. Semisupervised Change Detection Based on Bihierarchical Feature Aggregation and Extraction Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10488-10502. [PMID: 37022855 DOI: 10.1109/tnnls.2023.3242075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
With the rapid development of remote sensing (RS) technology, high-resolution RS image change detection (CD) has been widely used in many applications. Pixel-based CD techniques are maneuverable and widely used, but vulnerable to noise interference. Object-based CD techniques can effectively utilize the abundant spectrum, texture, shape, and spatial information but easy-to-ignore details of RS images. How to combine the advantages of pixel-based methods and object-based methods remains a challenging problem. Besides, although supervised methods have the capability to learn from data, the true labels representing changed information of RS images are often hard to obtain. To address these issues, this article proposes a novel semisupervised CD framework for high-resolution RS images, which employs small amounts of true labeled data and a lot of unlabeled data to train the CD network. A bihierarchical feature aggregation and extraction network (BFAEN) is designed to achieve the pixelwise together with objectwise feature concatenation feature representation for the comprehensive utilization of the two-level features. In order to alleviate the coarseness and insufficiency of labeled samples, a confident learning algorithm is used to eliminate noisy labels and a novel loss function is designed for training the model using true- and pseudo-labels in a semisupervised fashion. Experimental results on real datasets demonstrate the effectiveness and superiority of the proposed method.
Collapse
|
6
|
Xie Z, Jia Z, Zhou G, Shi B. Research on the perception method of tiny objects in low-light and wide-field video. Sci Rep 2024; 14:17249. [PMID: 39060459 PMCID: PMC11282217 DOI: 10.1038/s41598-024-68129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
At present, many trackers exhibit commendable performance in well-illuminated scenarios but overlook target tracking in low-light environments. As night falls, the tracker's accuracy drops dramatically. Challenges such as high image resolution, intricate backgrounds, uneven illumination, and the resemblance between targets and backgrounds in Hawk-Eye surveillance videos make tracking small objects in low-light and wide-field scenarios exceedingly difficult for previous trackers. To address these challenges, this paper introduces an innovative approach by integrating the difference constraint method into the CF (correlation filters) tracker, which generates a change-aware mask using inter-frame difference information. In addition, a dual regression model and inter-frame difference constraint term are introduced to restrict each other for dual filter learning. In this paper, we construct a new benchmark comprising 41 night surveillance sequences captured by Hawk-Eye cameras. Exhaustive experiments are conducted on this benchmark. The results show that the proposed method maintains superior accuracy, surpasses state-of-the-art trackers in this dataset, and achieves a real-time performance of 27 fps on a single CPU, substantially advancing tiny object tracking on Hawk-Eye surveillance videos in low light and in night scenes.
Collapse
Affiliation(s)
- Zhaodong Xie
- The Key Laboratory of Signal Detection and Processing, College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
- Maoming Polytechnic, Maoming, 525000, China
| | - Zhenhong Jia
- The Key Laboratory of Signal Detection and Processing, College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Gang Zhou
- The Key Laboratory of Signal Detection and Processing, College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Baoqiang Shi
- The Key Laboratory of Signal Detection and Processing, College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
7
|
Sun Y, Lei L, Guan D, Wu J, Kuang G, Liu L. Image Regression With Structure Cycle Consistency for Heterogeneous Change Detection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:1613-1627. [PMID: 35767492 DOI: 10.1109/tnnls.2022.3184414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Change detection (CD) between heterogeneous images is an increasingly interesting topic in remote sensing. The different imaging mechanisms lead to the failure of homogeneous CD methods on heterogeneous images. To address this challenge, we propose a structure cycle consistency-based image regression method, which consists of two components: the exploration of structure representation and the structure-based regression. We first construct a similarity relationship-based graph to capture the structure information of image; here, a k -selection strategy and an adaptive-weighted distance metric are employed to connect each node with its truly similar neighbors. Then, we conduct the structure-based regression with this adaptively learned graph. More specifically, we transform one image to the domain of the other image via the structure cycle consistency, which yields three types of constraints: forward transformation term, cycle transformation term, and sparse regularization term. Noteworthy, it is not a traditional pixel value-based image regression, but an image structure regression, i.e., it requires the transformed image to have the same structure as the original image. Finally, change extraction can be achieved accurately by directly comparing the transformed and original images. Experiments conducted on different real datasets show the excellent performance of the proposed method. The source code of the proposed method will be made available at https://github.com/yulisun/AGSCC.
Collapse
|
8
|
Ma F, Li S, Wang S, Guo Y, Wu F, Meng J, Dai C. Deep-learning segmentation method for optical coherence tomography angiography in ophthalmology. JOURNAL OF BIOPHOTONICS 2024; 17:e202300321. [PMID: 37801660 DOI: 10.1002/jbio.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
PURPOSE The optic disc and the macular are two major anatomical structures in the human eye. Optic discs are associated with the optic nerve. Macular mainly involves degeneration and impaired function of the macular region. Reliable optic disc and macular segmentation are necessary for the automated screening of retinal diseases. METHODS A swept-source OCTA system was designed to capture OCTA images of human eyes. To address these segmentation tasks, first, we constructed a new Optic Disc and Macula in fundus Image with optical coherence tomography angiography (OCTA) dataset (ODMI). Second, we proposed a Coarse and Fine Attention-Based Network (CFANet). RESULTS The five metrics of our methods on ODMI are 98.91 % , 98.47 % , 89.77 % , 98.49 % , and 89.77 % , respectively. CONCLUSIONS Experimental results show that our CFANet has achieved good performance on segmentation for the optic disc and macula in OCTA.
Collapse
Affiliation(s)
- Fei Ma
- School of Computer Science, Qufu Normal University, Shandong, China
| | - Sien Li
- School of Computer Science, Qufu Normal University, Shandong, China
| | - Shengbo Wang
- School of Computer Science, Qufu Normal University, Shandong, China
| | - Yanfei Guo
- School of Computer Science, Qufu Normal University, Shandong, China
| | - Fei Wu
- School of Automation, Nanjing University of Posts and Telecommunications, Jiangsu, China
| | - Jing Meng
- School of Computer Science, Qufu Normal University, Shandong, China
| | - Cuixia Dai
- College Science, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
9
|
Jiang Y, Si J, Zhang R, Enemali G, Zhou B, McCann H, Liu C. CSTNet: A Dual-Branch Convolutional Neural Network for Imaging of Reactive Flows Using Chemical Species Tomography. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:9248-9258. [PMID: 35324447 DOI: 10.1109/tnnls.2022.3157689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemical species tomography (CST) has been widely used for in situ imaging of critical parameters, e.g., species concentration and temperature, in reactive flows. However, even with state-of-the-art computational algorithms, the method is limited due to the inherently ill-posed and rank-deficient tomographic data inversion and by high computational cost. These issues hinder its application for real-time flow diagnosis. To address them, we present here a novel convolutional neural network, namely CSTNet, for high-fidelity, rapid, and simultaneous imaging of species concentration and temperature using CST. CSTNet introduces a shared feature extractor that incorporates the CST measurements and sensor layout into the learning network. In addition, a dual-branch decoder with internal crosstalk, which automatically learns the naturally correlated distributions of species concentration and temperature, is proposed for image reconstructions. The proposed CSTNet is validated both with simulated datasets and with measured data from real flames in experiments using an industry-oriented sensor. Superior performance is found relative to previous approaches in terms of reconstruction accuracy and robustness to measurement noise. This is the first time, to the best of our knowledge, that a deep learning-based method for CST has been experimentally validated for simultaneous imaging of multiple critical parameters in reactive flows using a low-complexity optical sensor with a severely limited number of laser beams.
Collapse
|
10
|
Yang M, Jiao L, Liu F, Hou B, Yang S, Jian M. DPFL-Nets: Deep Pyramid Feature Learning Networks for Multiscale Change Detection. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:6402-6416. [PMID: 34029198 DOI: 10.1109/tnnls.2021.3079627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the complementary properties of different types of sensors, change detection between heterogeneous images receives increasing attention from researchers. However, change detection cannot be handled by directly comparing two heterogeneous images since they demonstrate different image appearances and statistics. In this article, we propose a deep pyramid feature learning network (DPFL-Net) for change detection, especially between heterogeneous images. DPFL-Net can learn a series of hierarchical features in an unsupervised fashion, containing both spatial details and multiscale contextual information. The learned pyramid features from two input images make unchanged pixels matched exactly and changed ones dissimilar and after transformed into the same space for each scale successively. We further propose fusion blocks to aggregate multiscale difference images (DIs), generating an enhanced DI with strong separability. Based on the enhanced DI, unchanged areas are predicted and used to train DPFL-Net in the next iteration. In this article, pyramid features and unchanged areas are updated alternately, leading to an unsupervised change detection method. In the feature transformation process, local consistency is introduced to constrain the learned pyramid features, modeling the correlations between the neighboring pixels and reducing the false alarms. Experimental results demonstrate that the proposed approach achieves superior or at least comparable results to the existing state-of-the-art change detection methods in both homogeneous and heterogeneous cases.
Collapse
|
11
|
Wu Y, Li J, Yuan Y, Qin AK, Miao QG, Gong MG. Commonality Autoencoder: Learning Common Features for Change Detection From Heterogeneous Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4257-4270. [PMID: 33600325 DOI: 10.1109/tnnls.2021.3056238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Change detection based on heterogeneous images, such as optical images and synthetic aperture radar images, is a challenging problem because of their huge appearance differences. To combat this problem, we propose an unsupervised change detection method that contains only a convolutional autoencoder (CAE) for feature extraction and the commonality autoencoder for commonalities exploration. The CAE can eliminate a large part of redundancies in two heterogeneous images and obtain more consistent feature representations. The proposed commonality autoencoder has the ability to discover common features of ground objects between two heterogeneous images by transforming one heterogeneous image representation into another. The unchanged regions with the same ground objects share much more common features than the changed regions. Therefore, the number of common features can indicate changed regions and unchanged regions, and then a difference map can be calculated. At last, the change detection result is generated by applying a segmentation algorithm to the difference map. In our method, the network parameters of the commonality autoencoder are learned by the relevance of unchanged regions instead of the labels. Our experimental results on five real data sets demonstrate the promising performance of the proposed framework compared with several existing approaches.
Collapse
|
12
|
Wang Z, Zhang Y, Luo L, Wang N. CSA-CDGAN: channel self-attention-based generative adversarial network for change detection of remote sensing images. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07637-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Multimodal Satellite Image Time Series Analysis Using GAN-Based Domain Translation and Matrix Profile. REMOTE SENSING 2022. [DOI: 10.3390/rs14153734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The technological development of the remote sensing domain led to the acquisition of satellite image time series (SITS) for Earth Observation (EO) by a variety of sensors. The variability in terms of the characteristics of the satellite sensors requires the existence of algorithms that allow the integration of multiple modalities and the identification of anomalous spatio-temporal evolutions caused by natural hazards. The unsupervised analysis of multimodal SITS proposed in this paper follows a two-step methodology: (i) inter-modality translation and (ii) the identification of anomalies in a change-detection framework. Inter-modality translation is achieved by means of a Generative Adversarial Network (GAN) architecture, whereas, for the identification of anomalies caused by natural hazards, we adapt the task to a similarity search in SITS. In this regard, we provide an extension of the matrix profile concept, which represents an answer to identifying differences and to discovering novelties in time series. Furthermore, the proposed inter-modality translation allows the usage of standard unsupervised clustering approaches (e.g., K-means using the Dynamic Time Warping measure) for mono-modal SITS analysis. The effectiveness of the proposed methodology is shown in two use-case scenarios, namely flooding and landslide events, for which a joint acquisition of Sentinel-1 and Sentinel-2 images is performed.
Collapse
|
14
|
A Spatial–Spectral Joint Attention Network for Change Detection in Multispectral Imagery. REMOTE SENSING 2022. [DOI: 10.3390/rs14143394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Change detection determines and evaluates changes by comparing bi-temporal images, which is a challenging task in the remote-sensing field. To better exploit the high-level features, deep-learning-based change-detection methods have attracted researchers’ attention. Most deep-learning-based methods only explore the spatial–spectral features simultaneously. However, we assume the key spatial-change areas should be more important, and attention should be paid to the specific bands which can best reflect the changes. To achieve this goal, we propose the spatial–spectral joint attention network (SJAN). Compared with traditional methods, SJAN introduces the spatial–spectral attention mechanism to better explore the key changed areas and the key separable bands. To be more specific, a novel spatial-attention module is designed to extract the spatially key regions first. Secondly, the spectral-attention module is developed to adaptively focus on the separable bands of land-cover materials. Finally, a novel objective function is proposed to help the model to measure the similarity of learned spatial–spectral features from both spectrum amplitude and angle perspectives. The proposed SJAN is validated on three benchmark datasets. Comprehensive experiments have been conducted to demonstrate the effectiveness of the proposed SJAN.
Collapse
|
15
|
Lu D, Cheng S, Wang L, Song S. Multi-scale feature progressive fusion network for remote sensing image change detection. Sci Rep 2022; 12:11968. [PMID: 35831628 PMCID: PMC9279334 DOI: 10.1038/s41598-022-16329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Presently, research on deep learning-based change detection (CD) methods has become a hot topic. In particular, feature pyramid networks (FPNs) are widely used in CD tasks to gradually fuse semantic features. However, existing FPN-based CD methods do not correctly detect the complete change region and cannot accurately locate the boundaries of the change region. To solve these problems, a new Multi-Scale Feature Progressive Fusion Network (MFPF-Net) is proposed, which consists of three innovative modules: Layer Feature Fusion Module (LFFM), Multi-Scale Feature Aggregation Module (MSFA), and Multi-Scale Feature Distribution Module (MSFD). Specifically, we first concatenate the features of each layer extracted from the bi-temporal images with their difference maps, and the resulting change maps fuse richer semantic information while effectively representing change regions. Then, the obtained change maps of each layer are directly aggregated, which improves the effective communication and full fusion of feature maps in CD while avoiding the interference of indirect information. Finally, the aggregated feature maps are layered again by pooling and convolution operations, and then a feature fusion strategy with a pyramid structure is used, with layers fused from low to high, to obtain richer contextual information, so that each layer of the layered feature maps has original semantic information and semantic features of other layers. We conducted comprehensive experiments on three publicly available benchmark datasets, CDD, LEVIR-CD, and WHU-CD to verify the effectiveness of the method, and the experimental results show that the method in this paper outperforms other comparative methods.
Collapse
Affiliation(s)
- Di Lu
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Shuli Cheng
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Liejun Wang
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Shiji Song
- Department of Automation, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11070385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GeoAI, or geospatial artificial intelligence, has become a trending topic and the frontier for spatial analytics in Geography. Although much progress has been made in exploring the integration of AI and Geography, there is yet no clear definition of GeoAI, its scope of research, or a broad discussion of how it enables new ways of problem solving across social and environmental sciences. This paper provides a comprehensive overview of GeoAI research used in large-scale image analysis, and its methodological foundation, most recent progress in geospatial applications, and comparative advantages over traditional methods. We organize this review of GeoAI research according to different kinds of image or structured data, including satellite and drone images, street views, and geo-scientific data, as well as their applications in a variety of image analysis and machine vision tasks. While different applications tend to use diverse types of data and models, we summarized six major strengths of GeoAI research, including (1) enablement of large-scale analytics; (2) automation; (3) high accuracy; (4) sensitivity in detecting subtle changes; (5) tolerance of noise in data; and (6) rapid technological advancement. As GeoAI remains a rapidly evolving field, we also describe current knowledge gaps and discuss future research directions.
Collapse
|
17
|
Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14143323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of “changed” areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire’s effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data.
Collapse
|
18
|
A Temporal-Reliable Method for Change Detection in High-Resolution Bi-Temporal Remote Sensing Images. REMOTE SENSING 2022. [DOI: 10.3390/rs14133100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Very-high-resolution (VHR) bi-temporal images change detection (CD) is a basic remote sensing images (RSIs) processing task. Recently, deep convolutional neural networks (DCNNs) have shown great feature representation abilities in computer vision tasks and have achieved remarkable breakthroughs in automatic CD. However, a great majority of the existing fusion-based CD methods pay no attention to the definition of CD, so they can only detect one-way changes. Therefore, we propose a new temporal reliable change detection (TRCD) algorithm to solve this drawback of fusion-based methods. Specifically, a potential and effective algorithm is proposed for learning temporal-reliable features for CD, which is achieved by designing a novel objective function. Unlike the traditional CD objective function, we impose a regular term in the objective function, which aims to enforce the extracted features before and after exchanging sequences of bi-temporal images that are similar to each other. In addition, our backbone architecture is designed based on a high-resolution network. The captured features are semantically richer and more spatially precise, which can improve the performance for small region changes. Comprehensive experimental results on two public datasets demonstrate that the proposed method is more advanced than other state-of-the-art (SOTA) methods, and our proposed objective function shows great potential.
Collapse
|
19
|
Biophysical Model: A Promising Method in the Study of the Mechanism of Propofol: A Narrative Review. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8202869. [PMID: 35619772 PMCID: PMC9129930 DOI: 10.1155/2022/8202869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The physiological and neuroregulatory mechanism of propofol is largely based on very limited knowledge. It is one of the important puzzling issues in anesthesiology and is of great value in both scientific and clinical fields. It is acknowledged that neural networks which are comprised of a number of neural circuits might be involved in the anesthetic mechanism. However, the mechanism of this hypothesis needs to be further elucidated. With the progress of artificial intelligence, it is more likely to solve this problem through using artificial neural networks to perform temporal waveform data analysis and to construct biophysical computational models. This review focuses on current knowledge regarding the anesthetic mechanism of propofol, an intravenous general anesthetic, by constructing biophysical computational models.
Collapse
|
20
|
Luppino LT, Hansen MA, Kampffmeyer M, Bianchi FM, Moser G, Jenssen R, Anfinsen SN. Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; PP:60-72. [PMID: 35552141 DOI: 10.1109/tnnls.2022.3172183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection (CD) in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function. Many existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. We propose to extract relational pixel information captured by domain-specific affinity matrices at the input and use this to enforce alignment of the code spaces and reduce the impact of change pixels on the learning objective. A change prior is derived in an unsupervised fashion from pixel pair affinities that are comparable across domains. To achieve code space alignment, we enforce pixels with similar affinity relations in the input domains to be correlated also in code space. We demonstrate the utility of this procedure in combination with cycle consistency. The proposed approach is compared with the state-of-the-art machine learning and deep learning algorithms. Experiments conducted on four real and representative datasets show the effectiveness of our methodology.
Collapse
|
21
|
A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. REMOTE SENSING 2022. [DOI: 10.3390/rs14071552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Change detection based on remote sensing images plays an important role in the field of remote sensing analysis, and it has been widely used in many areas, such as resources monitoring, urban planning, disaster assessment, etc. In recent years, it has aroused widespread interest due to the explosive development of artificial intelligence (AI) technology, and change detection algorithms based on deep learning frameworks have made it possible to detect more delicate changes (such as the alteration of small buildings) with the help of huge amounts of remote sensing data, especially high-resolution (HR) data. Although there are many methods, we still lack a deep review of the recent progress concerning the latest deep learning methods in change detection. To this end, the main purpose of this paper is to provide a review of the available deep learning-based change detection algorithms using HR remote sensing images. The paper first describes the change detection framework and classifies the methods from the perspective of the deep network architectures adopted. Then, we review the latest progress in the application of deep learning in various granularity structures for change detection. Further, the paper provides a summary of HR datasets derived from different sensors, along with information related to change detection, for the potential use of researchers. Simultaneously, representative evaluation metrics for this task are investigated. Finally, a conclusion of the challenges for change detection using HR remote sensing images, which must be dealt with in order to improve the model’s performance, is presented. In addition, we put forward promising directions for future research in this area.
Collapse
|
22
|
Zhang W, Jiao L, Liu F, Yang S, Liu J. Adaptive Contourlet Fusion Clustering for SAR Image Change Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:2295-2308. [PMID: 35245194 DOI: 10.1109/tip.2022.3154922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this paper, a novel unsupervised change detection method called adaptive Contourlet fusion clustering based on adaptive Contourlet fusion and fast non-local clustering is proposed for multi-temporal synthetic aperture radar (SAR) images. A binary image indicating changed regions is generated by a novel fuzzy clustering algorithm from a Contourlet fused difference image. Contourlet fusion uses complementary information from different types of difference images. For unchanged regions, the details should be restrained while highlighted for changed regions. Different fusion rules are designed for low frequency band and high frequency directional bands of Contourlet coefficients. Then a fast non-local clustering algorithm (FNLC) is proposed to classify the fused image to generate changed and unchanged regions. In order to reduce the impact of noise while preserve details of changed regions, not only local but also non-local information are incorporated into the FNLC in a fuzzy way. Experiments on both small and large scale datasets demonstrate the state-of-the-art performance of the proposed method in real applications.
Collapse
|
23
|
Bio-inspired Multi-Sensory Pathway Network for Change Detection. Cognit Comput 2022. [DOI: 10.1007/s12559-021-09968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
A Mutual Teaching Framework with Momentum Correction for Unsupervised Hyperspectral Image Change Detection. REMOTE SENSING 2022. [DOI: 10.3390/rs14041000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deep-learning methods rely on massive labeled data, which has become one of the main impediments in hyperspectral image change detection (HSI-CD). To resolve this problem, pseudo-labels generated by traditional methods are widely used to drive model learning. In this paper, we propose a mutual teaching approach with momentum correction for unsupervised HSI-CD to cope with noise in pseudo-labels, which is harmful for model training. First, we adopt two structurally identical models simultaneously, allowing them to select high-confidence samples for each other to suppress self-confidence bias, and continuously update pseudo-labels during iterations to fine-tune the models. Furthermore, a new group confidence-based sample filtering method is designed to obtain reliable training samples for HSI. This method considers both the quality and diversity of the selected samples by determining the confidence of each group instead of single instances. Finally, to better extract the spatial–temporal spectral features of bitemporal HSIs, a 3D convolutional neural network (3DCNN) is designed as an HSI-CD classifier and the basic network of our framework. Due to mutual teaching and dynamic label learning, pseudo-labels can be continuously updated and refined in iterations, and thus, the proposed method can achieve a better performance compared with those with fixed pseudo-labels. Experimental results on several HSI datasets demonstrate the effectiveness of our method.
Collapse
|
25
|
Deep Learning-Based Change Detection in Remote Sensing Images: A Review. REMOTE SENSING 2022. [DOI: 10.3390/rs14040871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods.
Collapse
|
26
|
Learning Pairwise Potential CRFs in Deep Siamese Network for Change Detection. REMOTE SENSING 2022. [DOI: 10.3390/rs14040841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Very high resolution (VHR) images change detection plays an important role in many remote sensing applications, such as military reconnaissance, urban planning and natural resource monitoring. Recently, fully connected conditional random field (FCCRF)-facilitated deep convolutional neural networks have shown promising results in change detection. However, the FCCRF in change detection currently is still postprocessing based on the output of the front-end network, which is not a convenient end-to-end network model and cannot combine front-end network knowledge with the knowledge of pairwise potential. Therefore, we propose a new end-to-end deep Siamese pairwise potential CRFs network (PPNet) for VHR images change detection. Specifically, this method adds a conditional random field recurrent neural network (CRF-RNN) unit into the convolutional neural network and integrates the knowledge of unary potential and pairwise potential in the end-to-end training process, aiming to refine the edges of changed areas and to remove the distant noise. In order to correct the front-end network identification errors, the method uses effective channel attention (ECA) to further effectively distinguish the change areas. Our experimental results on two data sets verify that the proposed method has more advanced capability with almost no increase in the number of parameters and effectively avoids the overfitting phenomenon in the training process.
Collapse
|
27
|
TCD-Net: A Novel Deep Learning Framework for Fully Polarimetric Change Detection Using Transfer Learning. REMOTE SENSING 2022. [DOI: 10.3390/rs14030438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Due to anthropogenic and natural activities, the land surface continuously changes over time. The accurate and timely detection of changes is greatly important for environmental monitoring, resource management and planning activities. In this study, a novel deep learning-based change detection algorithm is proposed for bi-temporal polarimetric synthetic aperture radar (PolSAR) imagery using a transfer learning (TL) method. In particular, this method has been designed to automatically extract changes by applying three main steps as follows: (1) pre-processing, (2) parallel pseudo-label training sample generation based on a pre-trained model and fuzzy c-means (FCM) clustering algorithm, and (3) classification. Moreover, a new end-to-end three-channel deep neural network, called TCD-Net, has been introduced in this study. TCD-Net can learn more strong and abstract representations for the spatial information of a certain pixel. In addition, by adding an adaptive multi-scale shallow block and an adaptive multi-scale residual block to the TCD-Net architecture, this model with much lower parameters is sensitive to objects of various sizes. Experimental results on two Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) bi-temporal datasets demonstrated the effectiveness of the proposed algorithm compared to other well-known methods with an overall accuracy of 96.71% and a kappa coefficient of 0.82.
Collapse
|
28
|
A Change Detection Method for Remote Sensing Images Based on Coupled Dictionary and Deep Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3404858. [PMID: 35082842 PMCID: PMC8786482 DOI: 10.1155/2022/3404858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/29/2023]
Abstract
With the rapid development of remote sensing technology, change detection (CD) methods based on remote sensing images have been widely used in land resource planning, disaster monitoring, and urban expansion, among other fields. The purpose of CD is to accurately identify changes on the Earth’s surface. However, most CD methods focus on changes between the pixels of multitemporal remote sensing image pairs while ignoring the coupled relationships between them. This often leads to uncertainty about edge pixels with regard to changing objects and misclassification of small objects. To solve these problems, we propose a CD method for remote sensing images that uses a coupled dictionary and deep learning. The proposed method realizes the spatial-temporal modeling and correlation of multitemporal remote sensing images through a coupled dictionary learning module and ensures the transferability of reconstruction coefficients between multisource image blocks. In addition, we constructed a differential feature discriminant network to calculate the dissimilarity probability for the change area. A new loss function that considers true/false discrimination loss, classification loss, and cross-entropy loss is proposed. The most discriminating features can be extracted and used for CD. The performance of the proposed method was verified on two well-known CD datasets. Extensive experimental results show that the proposed method is superior to other methods in terms of precision, recall, F1-score,
, and
.
Collapse
|
29
|
Change Detection of Flood Hazard Areas in Multi-Source Heterogeneous Earth Observation Image Time Series Based on Spatiotemporal Enhancement Strategy. ARTIF INTELL 2022. [DOI: 10.1007/978-3-031-20497-5_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Zhao G, Peng Y. Semisupervised SAR image change detection based on a siamese variational autoencoder. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2021.102726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Change Detection for Heterogeneous Remote Sensing Images with Improved Training of Hierarchical Extreme Learning Machine (HELM). REMOTE SENSING 2021. [DOI: 10.3390/rs13234918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To solve the problems of susceptibility to image noise, subjectivity of training sample selection, and inefficiency of state-of-the-art change detection methods with heterogeneous images, this study proposes a post-classification change detection method for heterogeneous images with improved training of hierarchical extreme learning machine (HELM). After smoothing the images to suppress noise, a sample selection method is defined to train the HELM for each image, in which the feature extraction is respectively implemented for heterogeneous images and the parameters need not be fine-tuned. Then, the multi-temporal feature maps extracted from the trained HELM are segmented to obtain classification maps and then compared to generate a change map with changed types. The proposed method is validated experimentally by using one set of synthetic aperture radar (SAR) images obtained from Sentinel-1, one set of optical images acquired from Google Earth, and two sets of heterogeneous SAR and optical images. The results show that compared to state-of-the-art change detection methods, the proposed method can improve the accuracy of change detection by more than 8% in terms of the kappa coefficient and greatly reduce run time regardless of the type of images used. Such enhancement reflects the robustness and superiority of the proposed method.
Collapse
|
32
|
Attention-Guided Siamese Fusion Network for Change Detection of Remote Sensing Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13224597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Change detection for remote sensing images is an indispensable procedure for many remote sensing applications, such as geological disaster assessment, environmental monitoring, and urban development monitoring. Through this technique, the difference in certain areas after some emergencies can be determined to estimate their influence. Additionally, by analyzing the sequential difference maps, the change tendency can be found to help to predict future changes, such as urban development and environmental pollution. The complex variety of changes and interferential changes caused by imaging processing, such as season, weather and sensors, are critical factors that affect the effectiveness of change detection methods. Recently, there have been many research achievements surrounding this topic, but a perfect solution to all the problems in change detection has not yet been achieved. In this paper, we mainly focus on reducing the influence of imaging processing through the deep neural network technique with limited labeled samples. The attention-guided Siamese fusion network is constructed based on one basic Siamese network for change detection. In contrast to common processing, besides high-level feature fusion, feature fusion is operated during the whole feature extraction process by using an attention information fusion module. This module can not only realize the information fusion of two feature extraction network branches, but also guide the feature learning network to focus on feature channels with high importance. Finally, extensive experiments were performed on three public datasets, which could verify the significance of information fusion and the guidance of the attention mechanism during feature learning in comparison with related methods.
Collapse
|
33
|
SUNet: Change Detection for Heterogeneous Remote Sensing Images from Satellite and UAV Using a Dual-Channel Fully Convolution Network. REMOTE SENSING 2021. [DOI: 10.3390/rs13183750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Change Detection in heterogeneous remote sensing images plays an increasingly essential role in many real-world applications, e.g., urban growth tracking, land use monitoring, disaster evaluation and damage assessment. The objective of change detection is to identify changes of geo-graphical entities or phenomena through two or more bitemporal images. Researchers have invested a lot in the homologous change detection and yielded fruitful results. However, change detection between heterogenous remote sensing images is still a great challenge, especially for change detection of heterogenous remote sensing images obtained from satellites and Unmanned Aerial Vehicles (UAV). The main challenges in satellite-UAV change detection tasks lie in the intensive difference of color for the same ground objects, various resolutions, the parallax effect and image distortion caused by different shooting angles and platform altitudes. To address these issues, we propose a novel method based on dual-channel fully convolution network. First, in order to alleviate the influence of differences between heterogeneous images, we employ two different channels to map heterogeneous remote sensing images from satellite and UAV, respectively, to a mutual high dimension latent space for the downstream change detection task. Second, we adopt Hough method to extract the edge of ground objects as auxiliary information to help the change detection model to pay more attention to shapes and contours, instead of colors. Then, IoU-WCE loss is designed to deal with the problem of imbalanced samples in change detection task. Finally, we conduct extensive experiments to verify the proposed method using a new Satellite-UAV heterogeneous image data set, named HTCD, which is annotated by us and has been open to public. The experimental results show that our method significantly outperforms the state-of-the-art change detection methods.
Collapse
|
34
|
MCCRNet: A Multi-Level Change Contextual Refinement Network for Remote Sensing Image Change Detection. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10090591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Change detection based on bi-temporal remote sensing images has made significant progress in recent years, aiming to identify the changed and unchanged pixels between a registered pair of images. However, most learning-based change detection methods only utilize fused high-level features from the feature encoder and thus miss the detailed representations that low-level feature pairs contain. Here we propose a multi-level change contextual refinement network (MCCRNet) to strengthen the multi-level change representations of feature pairs. To effectively capture the dependencies of feature pairs while avoiding fusing them, our atrous spatial pyramid cross attention (ASPCA) module introduces a crossed spatial attention module and a crossed channel attention module to emphasize the position importance and channel importance of each feature while simultaneously keeping the scale of input and output the same. This module can be plugged into any feature extraction layer of a Siamese change detection network. Furthermore, we propose a change contextual representations (CCR) module from the perspective of the relationship between the change pixels and the contextual representation, named change region contextual representations. The CCR module aims to correct changed pixels mistakenly predicted as unchanged by a class attention mechanism. Finally, we introduce an effective sample number adaptively weighted loss to solve the class-imbalanced problem of change detection datasets. On the whole, compared with other attention modules that only use fused features from the highest feature pairs, our method can capture the multi-level spatial, channel, and class context of change discrimination information. The experiments are performed with four public change detection datasets of various image resolutions. Compared to state-of-the-art methods, our MCCRNet achieved superior performance on all datasets (i.e., LEVIR, Season-Varying Change Detection Dataset, Google Data GZ, and DSIFN) with improvements of 0.47%, 0.11%, 2.62%, and 3.99%, respectively.
Collapse
|
35
|
Fang F, Li J, Yuan Y, Zeng T, Zhang G. Multilevel Edge Features Guided Network for Image Denoising. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3956-3970. [PMID: 32845847 DOI: 10.1109/tnnls.2020.3016321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Image denoising is a challenging inverse problem due to complex scenes and information loss. Recently, various methods have been considered to solve this problem by building a well-designed convolutional neural network (CNN) or introducing some hand-designed image priors. Different from previous works, we investigate a new framework for image denoising, which integrates edge detection, edge guidance, and image denoising into an end-to-end CNN model. To achieve this goal, we propose a multilevel edge features guided network (MLEFGN). First, we build an edge reconstruction network (Edge-Net) to directly predict clear edges from the noisy image. Then, the Edge-Net is embedded as part of the model to provide edge priors, and a dual-path network is applied to extract the image and edge features, respectively. Finally, we introduce a multilevel edge features guidance mechanism for image denoising. To the best of our knowledge, the Edge-Net is the first CNN model specially designed to reconstruct image edges from the noisy image, which shows good accuracy and robustness on natural images. Extensive experiments clearly illustrate that our MLEFGN achieves favorable performance against other methods and plenty of ablation studies demonstrate the effectiveness of our proposed Edge-Net and MLEFGN. The code is available at https://github.com/MIVRC/MLEFGN-PyTorch.
Collapse
|
36
|
Deep Siamese Networks Based Change Detection with Remote Sensing Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13173394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although considerable success has been achieved in change detection on optical remote sensing images, accurate detection of specific changes is still challenging. Due to the diversity and complexity of the ground surface changes and the increasing demand for detecting changes that require high-level semantics, we have to resort to deep learning techniques to extract the intrinsic representations of changed areas. However, one key problem for developing deep learning metho for detecting specific change areas is the limitation of annotated data. In this paper, we collect a change detection dataset with 862 labeled image pairs, where the urban construction-related changes are labeled. Further, we propose a supervised change detection method based on a deep siamese semantic segmentation network to handle the proposed data effectively. The novelty of the method is that the proposed siamese network treats the change detection problem as a binary semantic segmentation task and learns to extract features from the image pairs directly. The siamese architecture as well as the elaborately designed semantic segmentation networks significantly improve the performance on change detection tasks. Experimental results demonstrate the promising performance of the proposed network compared to existing approaches.
Collapse
|
37
|
Dual-Task Semantic Change Detection for Remote Sensing Images Using the Generative Change Field Module. REMOTE SENSING 2021. [DOI: 10.3390/rs13163336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the advent of very-high-resolution remote sensing images, semantic change detection (SCD) based on deep learning has become a research hotspot in recent years. SCD aims to observe the change in the Earth’s land surface and plays a vital role in monitoring the ecological environment, land use and land cover. Existing research mainly focus on single-task semantic change detection; the problem they face is that existing methods are incapable of identifying which change type has occurred in each multi-temporal image. In addition, few methods use the binary change region to help train a deep SCD-based network. Hence, we propose a dual-task semantic change detection network (GCF-SCD-Net) by using the generative change field (GCF) module to locate and segment the change region; what is more, the proposed network is end-to-end trainable. In the meantime, because of the influence of the imbalance label, we propose a separable loss function to alleviate the over-fitting problem. Extensive experiments are conducted in this work to validate the performance of our method. Finally, our work achieves a 69.9% mIoU and 17.9 Sek on the SECOND dataset. Compared with traditional networks, GCF-SCD-Net achieves the best results and promising performances.
Collapse
|
38
|
Li J, Hu M. Continuous Model Adaptation Using Online Meta-Learning for Smart Grid Application. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3633-3642. [PMID: 32833650 DOI: 10.1109/tnnls.2020.3015858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of deep learning algorithms provides us an opportunity to better understand the complexity in engineering systems, such as the smart grid. Most of the existing data-driven predictive models are trained using historical data and fixed during the execution stage, which cannot adapt well to real-time data. In this research, we propose a novel online meta-learning (OML) algorithm to continuously adapt pretrained base-learner through efficiently digesting real-time data to adaptively control the base-learner parameters using meta-optimizer. The simulation results show that: 1) both ML and OML can perform significantly better than online base learning. 2) OML can perform better than ML and online base learning when the training data are limited, or the training and real-time data have very different time-variant patterns.
Collapse
|
39
|
Sun Y, Lei L, Guan D, Kuang G. Iterative Robust Graph for Unsupervised Change Detection of Heterogeneous Remote Sensing Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:6277-6291. [PMID: 34232875 DOI: 10.1109/tip.2021.3093766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work presents a robust graph mapping approach for the unsupervised heterogeneous change detection problem in remote sensing imagery. To address the challenge that heterogeneous images cannot be directly compared due to different imaging mechanisms, we take advantage of the fact that the heterogeneous images share the same structure information for the same ground object, which is imaging modality-invariant. The proposed method first constructs a robust K -nearest neighbor graph to represent the structure of each image, and then compares the graphs within the same image domain by means of graph mapping to calculate the forward and backward difference images, which can avoid the confusion of heterogeneous data. Finally, it detects the changes through a Markovian co-segmentation model that can fuse the forward and backward difference images in the segmentation process, which can be solved by the co-graph cut. Once the changed areas are detected by the Markovian co-segmentation, they will be propagated back into the graph construction process to reduce the influence of changed neighbors. This iterative framework makes the graph more robust and thus improves the final detection performance. Experimental results on different data sets confirm the effectiveness of the proposed method. Source code of the proposed method is made available at https://github.com/yulisun/IRG-McS.
Collapse
|
40
|
Afaq Y, Manocha A. Analysis on change detection techniques for remote sensing applications: A review. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Patch-Based Change Detection Method for SAR Images with Label Updating Strategy. REMOTE SENSING 2021. [DOI: 10.3390/rs13071236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Convolutional neural networks (CNNs) have been widely used in change detection of synthetic aperture radar (SAR) images and have been proven to have better precision than traditional methods. A two-stage patch-based deep learning method with a label updating strategy is proposed in this paper. The initial label and mask are generated at the pre-classification stage. Then a two-stage updating strategy is applied to gradually recover changed areas. At the first stage, diversity of training data is gradually restored. The output of the designed CNN network is further processed to generate a new label and a new mask for the following learning iteration. As the diversity of data is ensured after the first stage, pixels within uncertain areas can be easily classified at the second stage. Experiment results on several representative datasets show the effectiveness of our proposed method compared with several existing competitive methods.
Collapse
|
42
|
Abstract
Land cover and its change are crucial for many environmental applications. This study focuses on the land cover classification and change detection with multitemporal and multispectral Sentinel-2 satellite data. To address the challenging land cover change detection task, we rely on two different deep learning architectures and selected pre-processing steps. For example, we define an excluded class and deal with temporal water shoreline changes in the pre-processing. We employ a fully convolutional neural network (FCN), and we combine the FCN with long short-term memory (LSTM) networks. The FCN can only handle monotemporal input data, while the FCN combined with LSTM can use sequential information (multitemporal). Besides, we provided fixed and variable sequences as training sequences for the combined FCN and LSTM approach. The former refers to using six defined satellite images, while the latter consists of image sequences from an extended training pool of ten images. Further, we propose measures for the robustness concerning the selection of Sentinel-2 image data as evaluation metrics. We can distinguish between actual land cover changes and misclassifications of the deep learning approaches with these metrics. According to the provided metrics, both multitemporal LSTM approaches outperform the monotemporal FCN approach, about 3 to 5 percentage points (p.p.). The LSTM approach trained on the variable sequences detects 3 p.p. more land cover changes than the LSTM approach trained on the fixed sequences. Besides, applying our selected pre-processing improves the water classification and avoids reducing the dataset effectively by 17.6%. The presented LSTM approaches can be modified to provide applicability for a variable number of image sequences since we published the code of the deep learning models. The Sentinel-2 data and the ground truth are also freely available.
Collapse
|
43
|
Optimizing Near Real-Time Detection of Deforestation on Tropical Rainforests Using Sentinel-1 Data. REMOTE SENSING 2020. [DOI: 10.3390/rs12233922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early Warning Systems (EWS) for near real-time detection of deforestation are a fundamental component of public policies focusing on the reduction in forest biomass loss and associated CO2 emissions. Most of the operational EWS are based on optical data, which are severely limited by the cloud cover in tropical environments. Synthetic Aperture Radar (SAR) data can help to overcome this observational gap. SAR measurements, however, can be altered by atmospheric effects on and variations in surface moisture. Different techniques of time series (TS) stabilization have been used to mitigate the instability of C-band SAR measurements. Here, we evaluate the performance of two different approaches to SAR TS stabilization, harmonic deseasonalization and spatial stabilization, as well as two deforestation detection techniques, Adaptive Linear Thresholding (ALT) and maximum likelihood classification (MLC). We set up a rigorous, Amazon-wide validation experiment using the Google Earth Engine platform to sample and process Sentinel-1A data of nearly 6000 locations in the whole Brazilian Amazonian basin, generating more than 8M processed samples. Half of those locations correspond to non-degraded forest areas, while the other half pertained to 2019 deforested areas. The detection results showed that the spatial stabilization algorithm improved the results of the MLC approach, reaching 94.36% global accuracy. The ALT detection algorithm performed better, reaching 95.91% global accuracy, regardless of the use of any stabilization method. The results of this experiment are being used to develop an operational EWS in the Brazilian Amazon.
Collapse
|
44
|
Progressive Domain Adaptation for Change Detection Using Season-Varying Remote Sensing Images. REMOTE SENSING 2020. [DOI: 10.3390/rs12223815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of artificial intelligence technology has prompted an immense amount of researches on improving the performance of change detection approaches. Existing deep learning-driven methods generally regard changes as a specific type of land cover, and try to identify them relying on the powerful expression capabilities of neural networks. However, in practice, different types of land cover changes are generally influenced by environmental factors at different degrees. Furthermore, seasonal variation-induced spectral differences seriously interfere with those of real changes in different land cover types. All these problems pose great challenges for season-varying change detection because the real and seasonal variation-induced changes are technically difficult to separate by a single end-to-end model. In this paper, by embedding a convolutional long short-term memory (ConvLSTM) network into a conditional generative adversarial network (cGAN), we develop a novel method, named progressive domain adaptation (PDA), for change detection using season-varying remote sensing images. In our idea, two cascaded modules, progressive translation and group discrimination, are introduced to progressively translate pre-event images from their own domain to the post-event one, where their seasonal features are consistent and their intrinsic land cover distribution features are retained. By training this hybrid multi-model framework with certain reference change maps, the seasonal variation-induced changes between paired images are effectively suppressed, and meanwhile the natural and human activity-caused changes are greatly emphasized. Extensive experiments on two types of season-varying change detection datasets and a comparison with other state-of-the-art methods verify the effectiveness and competitiveness of our proposed PDA.
Collapse
|
45
|
Kalaiselvi S, Gomathi V. α-cut induced Fuzzy Deep Neural Network for change detection of SAR images. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Kwon OY, Lee MH, Guan C, Lee SW. Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3839-3852. [PMID: 31725394 DOI: 10.1109/tnnls.2019.2946869] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-free, or subject-independent, BCI. In this article, we construct a large motor imagery (MI)-based electroencephalography (EEG) database and propose a subject-independent framework based on deep convolutional neural networks (CNNs). The database is composed of 54 subjects performing the left- and right-hand MI on two different days, resulting in 21 600 trials for the MI task. In our framework, we formulated the discriminative feature representation as a combination of the spectral-spatial input embedding the diversity of the EEG signals, as well as a feature representation learned from the CNN through a fusion technique that integrates a variety of discriminative brain signal patterns. To generate spectral-spatial inputs, we first consider the discriminative frequency bands in an information-theoretic observation model that measures the power of the features in two classes. From discriminative frequency bands, spectral-spatial inputs that include the unique characteristics of brain signal patterns are generated and then transformed into a covariance matrix as the input to the CNN. In the process of feature representations, spectral-spatial inputs are individually trained through the CNN and then combined by a concatenation fusion technique. In this article, we demonstrate that the classification accuracy of our subject-independent (or calibration-free) model outperforms that of subject-dependent models using various methods [common spatial pattern (CSP), common spatiospectral pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatio-spectral filter optimization (BSSFO)].
Collapse
|
47
|
A Feature Space Constraint-Based Method for Change Detection in Heterogeneous Images. REMOTE SENSING 2020. [DOI: 10.3390/rs12183057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the development of remote sensing technologies, change detection in heterogeneous images becomes much more necessary and significant. The main difficulty lies in how to make input heterogeneous images comparable so that the changes can be detected. In this paper, we propose an end-to-end heterogeneous change detection method based on the feature space constraint. First, considering that the input heterogeneous images are in two distinct feature spaces, two encoders with the same structure are used to extract features, respectively. A decoder is used to obtain the change map from the extracted features. Then, the Gram matrices, which include the correlations between features, are calculated to represent different feature spaces, respectively. The squared Euclidean distance between Gram matrices, termed as feature space loss, is used to constrain the extracted features. After that, a combined loss function consisting of the binary cross entropy loss and feature space loss is designed for training the model. Finally, the change detection results between heterogeneous images can be obtained when the model is trained well. The proposed method can constrain the features of two heterogeneous images to the same feature space while keeping their unique features so that the comparability between features can be enhanced and better detection results can be achieved. Experiments on two heterogeneous image datasets consisting of optical and SAR images demonstrate the effectiveness and superiority of the proposed method.
Collapse
|
48
|
Li D, Yan S, Zhao M, Chow TWS. Spatiotemporal Tree Filtering for Enhancing Image Change Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; PP:8805-8820. [PMID: 32833635 DOI: 10.1109/tip.2020.3017339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Change detection has received extensive attention because of its realistic significance and broad application fields. However, none of the existing change detection algorithms can handle all scenarios and tasks so far. Different from the most of contributions from the research community in recent years, this paper does not work on designing new change detection algorithms. We, instead, solve the problem from another perspective by enhancing the raw detection results after change detection. As a result, the proposed method is applicable to various kinds of change detection methods, and regardless of how the results are detected. In this paper, we propose Fast Spatiotemporal Tree Filter (FSTF), a purely unsupervised detection method, to enhance coarse binary detection masks obtained by different kinds of change detection methods. In detail, the proposed FSTF has adopted a volumetric structure to effectively synthesize spatiotemporal information of the same target from the current time and history frames to enhance detection. The computational complexity analyzed in the view of graph theory also show that the fast realization of FSTF is a linear time algorithm, which is capable of handling efficient on-line detection tasks. Finally, comprehensive experiments based on qualitative and quantitative analysis verify that FSTF-based change detection enhancement is superior to several other state-of-the-art methods including fully connected Conditional Random Field (CRF), joint bilateral filter, and guided filter. It is illustrated that FSTF is versatile enough to also improve saliency detection as well as semantic image segmentation.
Collapse
|
49
|
Abstract
Change detection is a very important technique for remote sensing data analysis. Its mainstream solutions are either supervised or unsupervised. In supervised methods, most of the existing change detection methods using deep learning are related to semantic segmentation. However, these methods only use deep learning models to process the global information of an image but do not carry out specific trainings on changed and unchanged areas. As a result, many details of local changes could not be detected. In this work, a trilateral change detection network is proposed. The proposed network has three branches (a main module and two auxiliary modules, all of them are composed of convolutional neural networks (CNNs)), which focus on the overall information of bitemporal Google Earth image pairs, the changed areas and the unchanged areas, respectively. The proposed method is end-to-end trainable, and each component in the network does not need to be trained separately.
Collapse
|
50
|
A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios. REMOTE SENSING 2020. [DOI: 10.3390/rs12152460] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantities of multi-temporal remote sensing (RS) images create favorable conditions for exploring the urban change in the long term. However, diverse multi-source features and change patterns bring challenges to the change detection in urban cases. In order to sort out the development venation of urban change detection, we make an observation of the literatures on change detection in the last five years, which focuses on the disparate multi-source RS images and multi-objective scenarios determined according to scene category. Based on the survey, a general change detection framework, including change information extraction, data fusion, and analysis of multi-objective scenarios modules, is summarized. Owing to the attributes of input RS images affect the technical selection of each module, data characteristics and application domains across different categories of RS images are discussed firstly. On this basis, not only the evolution process and relationship of the representative solutions are elaborated in the module description, through emphasizing the feasibility of fusing diverse data and the manifold application scenarios, we also advocate a complete change detection pipeline. At the end of the paper, we conclude the current development situation and put forward possible research direction of urban change detection, in the hope of providing insights to the following research.
Collapse
|