1
|
Springer F, Freisleben M, Muschik S, Worek F, Seeger T, Meinel L, Niessen KV. Characterization of cell membrane fragments containing muscle type nAChR from Tetronarce californica after preparation using high pressure homogenization. Toxicol Lett 2025; 404:58-66. [PMID: 39805477 DOI: 10.1016/j.toxlet.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a pentameric ligand-gated ion channel (pLGIC) commonly used as a model for receptors belonging to the Cys-loop superfamily. Members of pLGICs are standardly used in numerous toxicological investigations e.g., GABA and nAChR in the context of nerve agent poisoning. Organophosphorus compounds inhibit AChE, leading to accumulation of acetylcholine in the synaptic cleft and subsequently to a cholinergic crisis, in part through desensitization of nAChR. Due to the limitations of standard therapy, studies concerning functional ligand-receptor interactions of therapeutically active substances are of high importance. Therefore, we developed a novel method to obtain muscle type nAChR-containing membrane fragments from native tissue using high-pressure homogenization. The obtained microsomal fragments were characterized using Dynamic Light Scattering, laser Doppler electrophoresis and protein concentration. The microsomal membrane fragments were further purified, and the plasma membrane fraction was enriched using different density gradients. KD and BMax values were determined using a scintillation proximity assay (SPA) with [3H]epibatidine as reporter ligand. Measurement data showed that the ideal conditions to obtain microsomal membrane fragments with high pressure homogenization were four runs at 400 bar. For density gradient centrifugation the under layering of the microsomal membrane fragments (bottom-up method) is to be preferred for further purification. Sucrose seems to be more efficient compared to xylitol or iodixanol density gradients. The nAChR-containing plasma membrane fractions resulting from the developed purification protocol achieve a high degree of quality and reproducibility, making them suitable to model physiological conditions. This system has the potential to be used in both bead- and filtration-based assays probing affinity parameters for ligand binding or functional experiments. The protocol can be easily modified for other LGICs or transmembrane proteins, allowing for further expansion of its use.
Collapse
Affiliation(s)
- Fabian Springer
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany; Chair for Drug Formulation and Delivery, Julius-Maximilians University Wuerzburg, Am Hubland, Wuerzburg 97074, Germany
| | - Marian Freisleben
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany; Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen 78054, Germany
| | - Sebastian Muschik
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Franz Worek
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Thomas Seeger
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Lorenz Meinel
- Chair for Drug Formulation and Delivery, Julius-Maximilians University Wuerzburg, Am Hubland, Wuerzburg 97074, Germany
| | - Karin Veronika Niessen
- Bundeswehr Institute for Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany.
| |
Collapse
|
2
|
Pursuing High-Resolution Structures of Nicotinic Acetylcholine Receptors: Lessons Learned from Five Decades. Molecules 2021; 26:molecules26195753. [PMID: 34641297 PMCID: PMC8510392 DOI: 10.3390/molecules26195753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Since their discovery, nicotinic acetylcholine receptors (nAChRs) have been extensively studied to understand their function, as well as the consequence of alterations leading to disease states. Importantly, these receptors represent pharmacological targets to treat a number of neurological and neurodegenerative disorders. Nevertheless, their therapeutic value has been limited by the absence of high-resolution structures that allow for the design of more specific and effective drugs. This article offers a comprehensive review of five decades of research pursuing high-resolution structures of nAChRs. We provide a historical perspective, from initial structural studies to the most recent X-ray and cryogenic electron microscopy (Cryo-EM) nAChR structures. We also discuss the most relevant structural features that emerged from these studies, as well as perspectives in the field.
Collapse
|
3
|
Maldonado-Hernández R, Quesada O, Colón-Sáez JO, Lasalde-Dominicci JA. Sequential purification and characterization of Torpedo californica nAChR-DC supplemented with CHS for high-resolution crystallization studies. Anal Biochem 2020; 610:113887. [PMID: 32763308 DOI: 10.1016/j.ab.2020.113887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Over the past 10 years we have been developing a multi-attribute analytical platform that allows for the preparation of milligram amounts of functional, high-pure, and stable Torpedo (muscle-type) nAChR detergent complexes for crystallization purpose. In the present work, we have been able to significantly improve and optimize the purity and yield of nicotinic acetylcholine receptors in detergent complexes (nAChR-DC) without compromising stability and functionality. We implemented new methods in the process, such as analysis and rapid production of samples for future crystallization preparations. Native nAChR was extracted from the electric organ of Torpedo californica using the lipid-like detergent LysoFos Choline 16 (LFC-16), followed by three consecutive steps of chromatography purification. We evaluated the effect of cholesteryl hemisuccinate (CHS) supplementation during the affinity purification steps of nAChR-LFC-16 in terms of receptor secondary structure, stability and functionality. CHS produced significant changes in the degree of β-secondary structure, these changes compromise the diffusion of the nAChR-LFC-16 in lipid cubic phase. The behavior was reversed by Methyl-β-Cyclodextrin treatment. Also, CHS decreased acetylcholine evoked currents of Xenopus leavis oocyte injected with nAChR-LFC-16 in a concentration-dependent manner. Methyl-β-Cyclodextrin treatment do not reverse functionality, however column delipidation produced a functional protein similar to nAChR-LFC-16 without CHS treatment.
Collapse
Affiliation(s)
- Rafael Maldonado-Hernández
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - José O Colón-Sáez
- Pharmaceutical Sciences, University of Puerto Rico Medical Science Campus, Puerto Rico
| | - José A Lasalde-Dominicci
- Department of the Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico; Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico; Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Puerto Rico.
| |
Collapse
|
4
|
Castro R, Taetzsch T, Vaughan SK, Godbe K, Chappell J, Settlage RE, Valdez G. Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. eLife 2020; 9:e56935. [PMID: 32584256 PMCID: PMC7316509 DOI: 10.7554/elife.56935] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Perisynaptic Schwann cells (PSCs) are specialized, non-myelinating, synaptic glia of the neuromuscular junction (NMJ), that participate in synapse development, function, maintenance, and repair. The study of PSCs has relied on an anatomy-based approach, as the identities of cell-specific PSC molecular markers have remained elusive. This limited approach has precluded our ability to isolate and genetically manipulate PSCs in a cell specific manner. We have identified neuron-glia antigen 2 (NG2) as a unique molecular marker of S100β+ PSCs in skeletal muscle. NG2 is expressed in Schwann cells already associated with the NMJ, indicating that it is a marker of differentiated PSCs. Using a newly generated transgenic mouse in which PSCs are specifically labeled, we show that PSCs have a unique molecular signature that includes genes known to play critical roles in PSCs and synapses. These findings will serve as a springboard for revealing drivers of PSC differentiation and function.
Collapse
Affiliation(s)
- Ryan Castro
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
- Neuroscience Graduate Program, Brown UniversityProvidenceUnited States
| | - Thomas Taetzsch
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Sydney K Vaughan
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Kerilyn Godbe
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
| | - John Chappell
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
| | - Robert E Settlage
- Department of Advanced Research Computing, Virginia TechBlacksburgUnited States
| | - Gregorio Valdez
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
- Department of Neurology, Warren Alpert Medical School of Brown UniversityProvidenceUnited States
| |
Collapse
|
5
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
6
|
Maruta T, Oshima M, Mosier DR, Atassi MZ. Injection of inactiveBordetella pertussisand complete Freund’s adjuvant withTorpedo californicaAChR increases the occurrence of experimental autoimmune myasthenia gravis in C57BL/6 mice. Autoimmunity 2017; 50:293-305. [DOI: 10.1080/08916934.2017.1329831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Takahiro Maruta
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Minako Oshima
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Dennis R. Mosier
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - M. Zouhair Atassi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Shi L, Xu H, Wu Y, Li X, Zou L, Gao J, Chen H. Alpha7-nicotinic acetylcholine receptors involve the imidacloprid-induced inhibition of IgE-mediated rat and human mast cell activation. RSC Adv 2017. [DOI: 10.1039/c7ra07862e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although our recent study indicated that imidacloprid, a widely used neonicotinoid insecticide, inhibited IgE-mediated mast cell activation, the inhibition mechanism still remains unclear.
Collapse
Affiliation(s)
- Linbo Shi
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Huaping Xu
- Department of Rehabilitation
- The First Affiliated Hospital of Nanchang University
- Nanchang
- China
| | - Yujie Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Xin Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- School of Food Science and Technology
| | - Li Zou
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Jinyan Gao
- School of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| |
Collapse
|
8
|
Jayakar SS, Ang G, Chiara DC, Hamouda AK. Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites. Methods Mol Biol 2017; 1598:157-197. [PMID: 28508361 DOI: 10.1007/978-1-4939-6952-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Gordon Ang
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Kingsville, TX, USA.
| |
Collapse
|
9
|
Pitchers WR, Constantinou SJ, Losilla M, Gallant JR. Electric fish genomics: Progress, prospects, and new tools for neuroethology. ACTA ACUST UNITED AC 2016; 110:259-272. [PMID: 27769923 DOI: 10.1016/j.jphysparis.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/06/2016] [Accepted: 10/16/2016] [Indexed: 01/01/2023]
Abstract
Electric fish have served as a model system in biology since the 18th century, providing deep insight into the nature of bioelectrogenesis, the molecular structure of the synapse, and brain circuitry underlying complex behavior. Neuroethologists have collected extensive phenotypic data that span biological levels of analysis from molecules to ecosystems. This phenotypic data, together with genomic resources obtained over the past decades, have motivated new and exciting hypotheses that position the weakly electric fish model to address fundamental 21st century biological questions. This review article considers the molecular data collected for weakly electric fish over the past three decades, and the insights that data of this nature has motivated. For readers relatively new to molecular genetics techniques, we also provide a table of terminology aimed at clarifying the numerous acronyms and techniques that accompany this field. Next, we pose a research agenda for expanding genomic resources for electric fish research over the next 10years. We conclude by considering some of the exciting research prospects for neuroethology that electric fish genomics may offer over the coming decades, if the electric fish community is successful in these endeavors.
Collapse
Affiliation(s)
- William R Pitchers
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA.
| | - Savvas J Constantinou
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA
| | - Mauricio Losilla
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA
| | - Jason R Gallant
- Dept. of Integrative Biology, Michigan State University, 288 Farm Lane RM 203, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Broomfield CA, Filbert MG. Spin-Label Studies on Synaptic Membrane Lipids: Effect of Cholinergic Agonists, Antagonists, and Cholinesterase Inhibitors. Int J Toxicol 2016. [DOI: 10.1080/109158197227215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects on membrane fluidity of inhibitors of acetylcholinesterase (A ChE) as well as those of certain nicotinic agonists have been examined in synaptosomes prepared from the electroplax of Torpedo californica. Electron paramagnetic resonance (EPR) spectrometry was used to monitor changes in the order parameters of three spin-labeled fatty acid probes, doxyl stearic acid derivatives, intercalated in the lipid bilayer of synaptosomal membranes. Neither inhibition of A ChE nor the application of nicotinic ligands significantly influenced the viscosity of the membrane bilayer as judged by changes in the order parameters of the probes. A small, narrow line component of the EPR spectra disappeared when high concentrations of acetylcholine (ACh) were added to the synaptosomes. This effect was not seen with other cholinergic agonists, e.g., car-bachol. The results of this investigation suggest that if anti-A ChEs produce damaging effects on the lipid components of nerve membranes, the effects are indirect, resulting from accumulation of high ACh levels and not from a direct action of the agent on the membrane lipid.
Collapse
Affiliation(s)
- Clarence A. Broomfield
- Biochemical Pharmacology Branch, Pharmacology Division, Neurotoxicology Branch, Pathophysiology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA
| | - Margaret G. Filbert
- Biochemical Pharmacology Branch, Pharmacology Division, Neurotoxicology Branch, Pathophysiology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
11
|
Zhao Y. The Oncogenic Functions of Nicotinic Acetylcholine Receptors. JOURNAL OF ONCOLOGY 2016; 2016:9650481. [PMID: 26981122 PMCID: PMC4769750 DOI: 10.1155/2016/9650481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhao
- Center of Cell biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
12
|
Medjber K, Freidja ML, Grelet S, Lorenzato M, Maouche K, Nawrocki-Raby B, Birembaut P, Polette M, Tournier JM. Role of nicotinic acetylcholine receptors in cell proliferation and tumour invasion in broncho-pulmonary carcinomas. Lung Cancer 2015; 87:258-64. [DOI: 10.1016/j.lungcan.2015.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 11/29/2022]
|
13
|
Bukowski R, Wąsowicz K. Expression of VPAC1 receptor at the level of mRNA and protein in the porcine female reproductive system. Pol J Vet Sci 2015; 18:199-206. [DOI: 10.1515/pjvs-2015-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The presence and distribution of vasoactive intestinal polypeptide (VIP) receptor VPAC1 was studied in the ovary, oviduct and uterus (uterine horn and cervix) of the domestic pig using methods of molecular biology (RT-PCR and immunoblot) and immunohistochemistry.
The expression of VPAC1 receptor at mRNA level was confirmed with RT-PCR in all the studied parts of the porcine female reproductive system by the presence of 525 bp PCR product and at the level of proteins by the detection of 46 kDa protein band in immunoblot. Immunohistochemical stainings revealed the cellular distribution of VPAC1 receptor protein. In the ovary it was present in the wall of arterial blood vessels, as well as in the ovarian follicles of different stages. In the tubular organs the VPAC1 receptor immunohistochemical stainings were observed in the wall of the arterial blood vessels, in the muscular membrane, as well as in the mucosal epithelium.
The study confirmed the presence of VPAC1 receptor in the tissues of the porcine female reproductive tract what clearly shows the possibility of influence of VIP on the porcine ovary, oviduct and uterus.
Collapse
|
14
|
Wang L, Tonggu L. Membrane protein reconstitution for functional and structural studies. SCIENCE CHINA-LIFE SCIENCES 2015; 58:66-74. [PMID: 25576454 DOI: 10.1007/s11427-014-4769-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Membrane proteins are involved in various critical biological processes, and studying membrane proteins represents a major challenge in protein biochemistry. As shown by both structural and functional studies, the membrane environment plays an essential role for membrane proteins. In vitro studies are reliant on the successful reconstitution of membrane proteins. This review describes the interaction between detergents and lipids that aids the understanding of the reconstitution processes. Then the techniques of detergent removal and a few useful techniques to refine the formed proteoliposomes are reviewed. Finally the applications of reconstitution techniques to study membrane proteins involved in Ca(2+) signaling are summarized.
Collapse
Affiliation(s)
- LiGuo Wang
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195, USA,
| | | |
Collapse
|
15
|
Changeux JP. The concept of allosteric modulation: an overview. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e223-8. [PMID: 24050272 DOI: 10.1016/j.ddtec.2012.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A brief historical overview of the concept of allosteric interaction is presented together with the different kinds of allosteric control recognized, in the past decades, with the model system of pentameric ligandgated ion channels. Multiple levels of allosteric modulation are identified that include sites distributed in the extracellular ligand binding domain (e.g. Ca2+ or benzodiazepines), the transmembrane domain (e.g. general anesthetic and various allosteric modulators) and the cytoplasmic domain, as potential targets for drug design. The new opportunities offered by the recent technological developments are discussed.
Collapse
|
16
|
Niessen K, Seeger T, Tattersall J, Timperley C, Bird M, Green C, Thiermann H, Worek F. Affinities of bispyridinium non-oxime compounds to [3H]epibatidine binding sites of Torpedo californica nicotinic acetylcholine receptors depend on linker length. Chem Biol Interact 2013; 206:545-54. [DOI: 10.1016/j.cbi.2013.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 01/20/2023]
|
17
|
Hamouda AK, Jayakar SS, Chiara DC, Cohen JB. Photoaffinity Labeling of Nicotinic Receptors: Diversity of Drug Binding Sites! J Mol Neurosci 2013; 53:480-6. [DOI: 10.1007/s12031-013-0150-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022]
|
18
|
Rudolf R, Khan MM, Lustrino D, Labeit S, Kettelhut IC, Navegantes LCC. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front Physiol 2013; 4:290. [PMID: 24146652 PMCID: PMC3797997 DOI: 10.3389/fphys.2013.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim, Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Structure and superorganization of acetylcholine receptor-rapsyn complexes. Proc Natl Acad Sci U S A 2013; 110:10622-7. [PMID: 23754381 DOI: 10.1073/pnas.1301277110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The scaffolding protein at the neuromuscular junction, rapsyn, enables clustering of nicotinic acetylcholine receptors in high concentration and is critical for muscle function. Patients with insufficient receptor clustering suffer from muscle weakness. However, the detailed organization of the receptor-rapsyn network is poorly understood: it is unclear whether rapsyn first forms a wide meshwork to which receptors can subsequently dock or whether it only forms short bridges linking receptors together to make a large cluster. Furthermore, the number of rapsyn-binding sites per receptor (a heteropentamer) has been controversial. Here, we show by cryoelectron tomography and subtomogram averaging of Torpedo postsynaptic membrane that receptors are connected by up to three rapsyn bridges, the minimum number required to form a 2D network. Half of the receptors belong to rapsyn-connected groups comprising between two and fourteen receptors. Our results provide a structural basis for explaining the stability and low diffusion of receptors within clusters.
Collapse
|
20
|
Pappalardo A, Pitto L, Fiorillo C, Alice Donati M, Bruno C, Santorelli FM. Neuromuscular disorders in zebrafish: state of the art and future perspectives. Neuromolecular Med 2013; 15:405-19. [PMID: 23584918 DOI: 10.1007/s12017-013-8228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/30/2013] [Indexed: 12/22/2022]
Abstract
Neuromuscular disorders are a broad group of inherited conditions affecting the structure and function of the motor system with polymorphic clinical presentation and disease severity. Although individually rare, collectively neuromuscular diseases have an incidence of 1 in 3,000 and represent a significant cause of disability of the motor system. The past decade has witnessed the identification of a large number of human genes causing muscular disorders, yet the underlying pathogenetic mechanisms remain largely unclear, limiting the developing of targeted therapeutic strategies. To overcome this barrier, model systems that replicate the different steps of human disorders are increasingly being developed. Among these, the zebrafish (Danio rerio) has emerged as an excellent organism for studying genetic disorders of the central and peripheral motor systems. In this review, we will encounter most of the available zebrafish models for childhood neuromuscular disorders, providing a brief overview of results and the techniques, mainly transgenesis and chemical biology, used for genetic manipulation. The amount of data collected in the past few years will lead zebrafish to became a common functional tool for assessing rapidly drug efficacy and off-target effects in neuromuscular diseases and, furthermore, to shed light on new etiologies emerging from large-scale massive sequencing studies.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Molecular Medicine, and Neuromuscular Lab, IRCCS Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Changeux JP. The nicotinic acetylcholine receptor: the founding father of the pentameric ligand-gated ion channel superfamily. J Biol Chem 2012; 287:40207-15. [PMID: 23038257 DOI: 10.1074/jbc.r112.407668] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A critical event in the history of biological chemistry was the chemical identification of the first neurotransmitter receptor, the nicotinic acetylcholine receptor. Disciplines as diverse as electrophysiology, pharmacology, and biochemistry joined together in a unified and rational manner with the common goal of successfully identifying the molecular device that converts a chemical signal into an electrical one in the nervous system. The nicotinic receptor has become the founding father of a broad family of pentameric membrane receptors, paving the way for their identification, including that of the GABA(A) receptors.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To highlight the current body of knowledge regarding the role of nicotinic acetylcholine receptors (nAChRs) in lung cancer predisposition. RECENT FINDINGS Smoking is a documented risk factor for cancer, especially for lung carcinomas. Nicotine and its derived carcinogenic nitrosamines contribute to lung cancer development and progression through the binding to nAChRs, which then activate proliferation, apoptosis, angiogenesis and tumour invasion. Recent genome-wide association studies have associated single nucleotide polymorphisms spanning the nAChR encoding genes cluster CHRNA3/A5/B4 with both nicotine dependence and lung cancer incidence and susceptibility. The α7 nAChR has also been implicated in the regulation of inflammation and immunity and, as a repressor of airway basal cell proliferation, α7 nAChR plays a role in the remodelling of the airway epithelium. Its decreased function may lead to squamous metaplasia and possibly the emergence of preneoplastic lesions. SUMMARY nAChRs participate in the predisposition for preneoplastic lesions and the further emergence of lung carcinomas. More studies are needed to determine the influence of gene polymorphisms on nAChRs function and of nAChRs activation/desensitization on lung diseases, which represents a new stimulating approach in the understanding of lung tumorigenesis with potential clinical applications.
Collapse
|
23
|
Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. JOURNAL OF ONCOLOGY 2011; 2011:456743. [PMID: 21541211 PMCID: PMC3085312 DOI: 10.1155/2011/456743] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/28/2011] [Indexed: 12/19/2022]
Abstract
Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer.
Collapse
|
24
|
Piguet J, Schreiter C, Segura JM, Vogel H, Hovius R. Acetylcholine receptor organization in membrane domains in muscle cells: evidence for rapsyn-independent and rapsyn-dependent mechanisms. J Biol Chem 2010; 286:363-9. [PMID: 20978122 DOI: 10.1074/jbc.m110.139782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) in muscle fibers are densely packed in the postsynaptic region at the neuromuscular junction. Rapsyn plays a central role in directing and clustering nAChR during cellular differentiation and neuromuscular junction formation; however, it has not been demonstrated whether rapsyn is the only cause of receptor immobilization. Here, we used single-molecule tracking methods to investigate nAChR mobility in plasma membranes of myoblast cells during their differentiation to myotubes in the presence and absence of rapsyn. We found that in myoblasts the majority of nAChR were immobile and that ∼20% of the receptors showed restricted diffusion in small domains of ∼50 nm. In myoblasts devoid of rapsyn, the fraction of mobile nAChR was considerably increased, accompanied by a 3-fold decrease in the immobile population of nAChR with respect to rapsyn-expressing cells. Half of the mobile receptors were confined to domains of ∼120 nm. Measurements performed in heterologously transfected HEK cells confirmed the direct immobilization of nAChR by rapsyn. However, irrespective of the presence of rapsyn, about one-third of nAChR were confined in 300-nm domains. Our results show (i) that rapsyn efficiently immobilizes nAChR independently of other postsynaptic scaffold components; (ii) nAChR is constrained in confined membrane domains independently of rapsyn; and (iii) in the presence of rapsyn, the size of these domains is strongly reduced.
Collapse
Affiliation(s)
- Joachim Piguet
- Laboratoire de Chimie Physique des Polymères et Membranes, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Anglade P, Larabi-Godinot Y. Historical landmarks in the histochemistry of the cholinergic synapse: Perspectives for future researches. ACTA ACUST UNITED AC 2010; 31:1-12. [PMID: 20203414 DOI: 10.2220/biomedres.31.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nearly one hundred years ago, acetylcholine (ACh) was proposed as a chemical agent responsible for nerve transmission at the synapse, the junction area between one neuron and its target cell. Since it has been proved that ACh played, indeed, a major role in the functioning of the nerve system in the vertebrates, cholinergic nerve transmission became a basic field of study in neuroscience. The birth of histochemistry and its ulterior developments allowed in situ localization of the molecular agents related to the functioning of the cholinergic synapse. This report presents historical landmarks in the histochemistry of major cholinergic agents (acetylcholinesterase, nicotinic acetylcholine receptor, choline acetyltransferase, and ACh), a domain which has greatly contributed to the knowledge of the nerve system. It is emphasized that despite extraordinary progresses made in this field, basic problems, such as in situ localization of ACh, still remain to be solved.
Collapse
|
26
|
|
27
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.
Collapse
|
28
|
Heilbronn E. Methods using tissue preparations and isolated biomolecules. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 52 Suppl 2:138-57. [PMID: 6308954 DOI: 10.1111/j.1600-0773.1983.tb02688.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The possibility to use organs, organelle preparations and biologically active chemicals in toxicity tests and in toxicology will be reviewed. Examples are perfused liver preparations, tissue slices and homogenates, isolated nerve preparations, nerve-muscle preparations, membrane preparations, microsomes, mitochondria, synaptosomes, antibodies and isolated chemical compounds (receptors, enzymes).
Collapse
|
29
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the central regulators of stimulatory and inhibitory neurotransmitters that control the synthesis and release of growth, angiogenic and neurotrophic factors in cancer cells, the cancer microenvironment and distant organs. Data discussed in this Review suggests that smoking and possibly other environmental and lifestyle factors increase the function of nAChRs that stimulate cancer cells and reduce the function of nAChRs that inhibit cancer cells. This novel paradigm necessitates the development of marker-guided cancer intervention strategies that aim to restore the balance between nAChR-mediated stimulatory and inhibitory neurotransmitters and their downstream effectors.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Experimental Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
30
|
Hue B, Buckingham SD, Buckingham D, Sattelle DB. Actions of snake neurotoxins on an insect nicotinic cholinergic synapse. INVERTEBRATE NEUROSCIENCE 2007; 7:173-8. [PMID: 17710455 DOI: 10.1007/s10158-007-0053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 07/27/2007] [Indexed: 01/15/2023]
Abstract
Here we examine the actions of six snake neurotoxins (alpha-cobratoxin from Naja naja siamensis, erabutoxin-a and b from Laticauda semifasciata; CM12 from N. haje annulifera, toxin III 4 from Notechis scutatus and a long toxin from N. haje) on nicotinic acetylcholine receptors in the cercal afferent, giant interneuron 2 synapse of the cockroach, Periplaneta americana. All toxins tested reduced responses to directly-applied ACh as well as EPSPs evoked by electrical stimulation of nerve XI with similar time courses, suggesting that their action is postsynaptic. Thus, these nicotinic receptors in a well-characterized insect synapse are sensitive to both long and short chain neurotoxins. This considerably expands the range of snake toxins that block insect nicotinic acetylcholine receptors and may enable further pharmacological distinctions between nAChR subtypes.
Collapse
Affiliation(s)
- Bernard Hue
- Laboratoire de Physiologie, Faculté de Médécine, Université d'Angers, 49045, Angers Cedex, France
| | | | | | | |
Collapse
|
31
|
Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F. Central Nicotinic Receptors: Structure, Function, Ligands, and Therapeutic Potential. ChemMedChem 2007; 2:746-67. [PMID: 17295372 DOI: 10.1002/cmdc.200600207] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.
Collapse
Affiliation(s)
- M Novella Romanelli
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Witzemann V. Development of the neuromuscular junction. Cell Tissue Res 2006; 326:263-71. [PMID: 16819627 DOI: 10.1007/s00441-006-0237-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 05/05/2006] [Indexed: 11/30/2022]
Abstract
The differentiation of the neuromuscular junction is a multistep process requiring coordinated interactions between nerve terminals and muscle. Although innervation is not needed for muscle production, the formation of nerve-muscle contacts, intramuscular nerve branching, and neuronal survival require reciprocal signals from nerve and muscle to regulate the formation of synapses. Following the production of muscle fibers, clusters of acetylcholine receptors (AChRs) are concentrated in the central regions of the myofibers via a process termed "prepatterning". The postsynaptic protein MuSK is essential for this process activating possibly its own expression, in addition to the expression of AChR. AChR complexes (aggregated and stabilized by rapsyn) are thus prepatterned independently of neuronal signals in developing myofibers. ACh released by branching motor nerves causes AChR-induced postsynaptic potentials and positively regulates the localization and stabilization of developing synaptic contacts. These "active" contact sites may prevent AChRs clustering in non-contacted regions and counteract the establishment of additional contacts. ACh-induced signals also cause the dispersion of non-synaptic AChR clusters and possibly the removal of excess AChR. A further neuronal factor, agrin, stabilizes the accumulation of AChR at synaptic sites. Agrin released from the branching motor nerve may form a structural link specifically to the ACh-activated endplates, thereby enhancing MuSK kinase activity and AChR accumulation and preventing dispersion of postsynaptic specializations. The successful stabilization of prepatterned AChR clusters by agrin and the generation of singly innervated myofibers appear to require AChR-mediated postsynaptic potentials indicating that the differentiation of the nerve terminal proceeds only after postsynaptic specializations have formed.
Collapse
Affiliation(s)
- Veit Witzemann
- Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Meltzer RH, Lurtz MM, Wensel TG, Pedersen SE. Nicotinic acetylcholine receptor channel electrostatics determined by diffusion-enhanced luminescence energy transfer. Biophys J 2006; 91:1315-24. [PMID: 16751249 PMCID: PMC1518635 DOI: 10.1529/biophysj.106.081448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electrostatic potentials within the pore of the nicotinic acetylcholine receptor (nAChR) were determined using lanthanide-based diffusion-enhanced fluorescence energy transfer experiments. Freely diffusing Tb3+ -chelates of varying charge constituted a set of energy transfer donors to the acceptor, crystal violet, a noncompetitive antagonist of the nAChR. Energy transfer from a neutral Tb3+ -chelate to nAChR-bound crystal violet was reduced 95% relative to the energy transfer to free crystal violet. This result indicated that crystal violet was strongly shielded from solvent when bound to the nAChR. Comparison of energy transfer from positively and negatively charged chelates indicate negative electrostatic potentials of -25 mV in the channel, measured in low ionic strength, and -10 mV measured in physiological ionic strength. Debye-Hückel analyses of potentials determined at various ionic strengths were consistent with 1-2 negative charges within 8 A of the crystal violet binding site. To complement the energy transfer experiments, the influence of pH and ionic strength on the binding of [3H]phencyclidine were determined. The ionic strength dependence of binding affinity was consistent with -3.3 charges within 8 A of the binding site, according to Debye-Hückel analysis. The pH dependence of binding had an apparent pKa of 7.2, a value indicative of a potential near -170 mV if the titratable residues are constituted of aspartates and glutamates. It is concluded that long-range potentials are small and likely contribute little to selectivity or conductance whereas close interactions are more likely to contribute to electrostatic stabilization of ions and binding of noncompetitive antagonists within the channel.
Collapse
Affiliation(s)
- Robert H Meltzer
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
34
|
Meltzer RH, Thompson E, Soman KV, Song XZ, Ebalunode JO, Wensel TG, Briggs JM, Pedersen SE. Electrostatic steering at acetylcholine binding sites. Biophys J 2006; 91:1302-14. [PMID: 16751247 PMCID: PMC1518644 DOI: 10.1529/biophysj.106.081463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electrostatic environments near the acetylcholine binding sites on the nicotinic acetylcholine receptor (nAChR) and acetylcholinesterase were measured by diffusion-enhanced fluorescence energy transfer (DEFET) to determine the influence of long-range electrostatic interactions on ligand binding kinetics and net binding energy. Changes in DEFET from variously charged Tb3+ -chelates revealed net potentials of -20 mV at the nAChR agonist sites and -14 mV at the entrance to the AChE active site, in physiological ionic strength conditions. The potential at the alphadelta-binding site of the nAChR was determined independently in the presence of d-tubocurarine to be -14 mV; the calculated potential at the alphagamma-site was approximately threefold stronger than at the alphadelta-site. By determining the local potential in increasing ionic strength, Debye-Hückel theory predicted that the potentials near the nAChR agonist binding sites are constituted by one to three charges in close proximity to the binding site. Examination of the binding kinetics of the fluorescent acetylcholine analog dansyl-C6-choline at ionic strengths from 12.5 to 400 mM revealed a twofold decrease in association rate. Debye-Hückel analysis of the kinetics revealed a similar charge distribution as seen by changes in the potentials. To determine whether the experimentally determined potentials are reflected by continuum electrostatics calculations, solutions to the nonlinear Poisson-Boltzmann equation were used to compute the potentials expected from DEFET measurements from high-resolution models of the nAChR and AChE. These calculations are in good agreement with the DEFET measurements for AChE and for the alphagamma-site of the nAChR. We conclude that long-range electrostatic interactions contribute -0.3 and -1 kcal/mol to the binding energy at the nAChR alphadelta- and alphagamma-sites due to an increase in association rates.
Collapse
Affiliation(s)
- Robert H Meltzer
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Madhavan R, Peng HB. Molecular regulation of postsynaptic differentiation at the neuromuscular junction. IUBMB Life 2005; 57:719-30. [PMID: 16511964 DOI: 10.1080/15216540500338739] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | |
Collapse
|
36
|
|
37
|
Lefkowitz RJ. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 2004; 25:413-22. [PMID: 15276710 DOI: 10.1016/j.tips.2004.06.006] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pharmacologists have studied receptors for more than a century but a molecular understanding of their properties has emerged only during the past 30-35 years. In this article, I provide a personal retrospective of how developments and discoveries primarily during the 1970s and 1980s led to current concepts about the largest group of receptors, the superfamily of seven-transmembrane (7TM) receptors [also known as G-protein-coupled receptors (GPCRs)]. Significant technical advances such as the development of methods for radioligand binding, solubilization and purification of the beta(2)-adrenoceptor and other adrenoceptors led to the cloning of receptor genes and the discovery of their 7TM architecture and homology with rhodopsin. A universal mechanism of receptor regulation by G-protein-coupled receptor kinases (GRKs) and arrestins, originally discovered as a means of "desensitizing" G-protein-mediated second-messenger generation, was subsequently found to mediate both receptor endocytosis and activation of a growing list of signaling pathways such as those involving mitogen-activated protein kinases. Numerous opportunities for novel therapeutics should emerge from current and future research on 7TM receptor biology.
Collapse
Affiliation(s)
- Robert J Lefkowitz
- Howard Hughes Medical Institute, James B. Duke Professor of Medicine, Duke University Medical Center, Room 468, CARL Bldg., Research Drive, DUMC Box 3821, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Bettendorff L, Nghiêm HO, Wins P, Lakaye B. A general method for the chemical synthesis of gamma-32P-labeled or unlabeled nucleoside 5(')-triphosphates and thiamine triphosphate. Anal Biochem 2004; 322:190-7. [PMID: 14596827 DOI: 10.1016/j.ab.2003.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several methods for the chemical synthesis of gamma-32P-labeled and unlabeled nucleoside 5(')-triphosphates and thiamine triphosphate (ThTP) have been described. They often proved unsatisfactory because of low yield, requirement for anhydrous solvents, procedures involving several steps or insufficient specific radioactivity of the labeled triphosphate. In the method described here, all these drawbacks are avoided. The synthesis of [gamma-32P]ThTP was carried out in one step, using 1,3-dicyclohexyl carbodiimide as condensing agent for thiamine diphosphate and phosphoric acid in a dimethyl sulfoxide/pyridine solvent mixture. Anhydrous solvents were not required and the yield reached 90%. After purification, [gamma-32P]ThTP had a specific radioactivity of 11Ci/mmol and was suitable for protein phosphorylation. The method can also be used for the synthesis of [gamma-32P]ATP of the desired specific radioactivity. It can easily be applied to the synthesis of unlabeled ThTP or ribo- and deoxyribonucleoside 5(')-triphosphates. In the latter case, inexpensive 5(')-monophosphate precursors can be used as reactants in a 20-fold excess of phosphoric acid. Deoxyribonucleoside 5(')-triphosphates were obtained in 6h with a yield of at least 70%. After purification, the nucleotides were found to be suitable substrates for Taq polymerase during polymerase chain reaction cycling. Our method can easily be scaled up for industrial synthesis of a variety of labeled and unlabeled triphosphoric derivatives from their mono- or diphosphate precursors.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Center for Cellular and Molecular Neurobiology, University of Liège, 17, place Delcour, 4020, Liège, Belgium.
| | | | | | | |
Collapse
|
39
|
Yasaki E, Prioleau C, Barbier J, Richard P, Andreux F, Leroy JP, Dartevelle P, Koenig J, Molgó J, Fardeau M, Eymard B, Hantaï D. Electrophysiological and morphological characterization of a case of autosomal recessive congenital myasthenic syndrome with acetylcholine receptor deficiency due to a N88K rapsyn homozygous mutation. Neuromuscul Disord 2004; 14:24-32. [PMID: 14659409 DOI: 10.1016/j.nmd.2003.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Congenital myasthenic syndromes are rare heterogeneous hereditary disorders, which lead to defective neuromuscular transmission resulting in fatigable muscle weakness. Post-synaptic congenital myasthenic syndromes are caused by acetylcholine receptor kinetic abnormalities or by acetylcholine receptor deficiency. Most of the congenital myasthenic syndromes with acetylcholine receptor deficiency are due to mutations in acetylcholine receptor subunit genes. Some have recently been attributed to mutations in the rapsyn gene. Here, we report the case of a 28-year-old French congenital myasthenic syndrome patient who had mild diplopia and fatigability from the age of 5 years. His muscle biopsy revealed a marked reduction in rapsyn and acetylcholine receptor at neuromuscular junctions together with a simplification of the subneural apparatus structure. In this patient, we excluded mutations in the acetylcholine receptor subunit genes and identified the homozygous N88K rapsyn mutation, which has already been shown by cell expression to impair rapsyn and acetylcholine receptor aggregation at the neuromuscular junction. The detection of the N88K mutation at the heterozygous state in five of 300 unrelated control subjects shows that this mutation is not infrequent in the healthy population. Electrophysiological measurements on biopsied intercostal muscle from this patient showed that his rapsyn mutation-induced fatigable weakness is expressed not only in a diminution in acetylcholine receptor membrane density but also in a decline of endplate potentials evoked at low frequency.
Collapse
Affiliation(s)
- Eriko Yasaki
- INSERM U.582, Institut de Myologie, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75651 Cedex 13, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Holton B, Tzartos SJ, Changeux JP. Comparison of embryonic and adulttorpedoacetylcholine receptor by sedimentation characteristics and antigenicity. Int J Dev Neurosci 2003; 2:549-55. [DOI: 10.1016/0736-5748(84)90032-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/1984] [Indexed: 11/15/2022] Open
Affiliation(s)
- Beatrice Holton
- Unité de Neurobiologie Moléculaire; Institut Pasteur; 25 rue du Docteur Roux 75724 Paris Cedex 15 France
| | | | - Jean-Pierre Changeux
- Unité de Neurobiologie Moléculaire; Institut Pasteur; 25 rue du Docteur Roux 75724 Paris Cedex 15 France
- Laboratory of Biochemistry; Hellenic Pasteur Institut; Athens 618 Greece
| |
Collapse
|
41
|
Le Novère N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. JOURNAL OF NEUROBIOLOGY 2002; 53:447-56. [PMID: 12436412 DOI: 10.1002/neu.10153] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nicotinic acetylcholine receptors are made up of homologous subunits, which are encoded by a large multigene family. The wide number of receptor oligomers generated display variable pharmacological properties. One of the main questions underlying research in molecular pharmacology resides in the actual role of this diversity. It is generally assumed that the observed differences between the pharmacology of homologous receptors, for instance, the EC(50) for the endogenous agonist, or the kinetics of desensitization, bear some kind of physiologic relevance in vivo. Here we develop the quite challenging point of view that, at least within a given subfamily of nicotinic receptor subunits, the pharmacologic variability observed in vitro would not be directly relevant to the function of receptor proteins in vivo. In vivo responses are not expected to be sensitive to mild differences in affinities, and several examples of functional replacement of one subunit by another have been unravelled by knockout animals. The diversity of subunits might have been conserved through evolution primarily to account for the topologic diversity of subunit distribution patterns, at the cellular and subcellular levels. A quantitative variation of pharmacological properties would be tolerated within a physiologic envelope, as a consequence of a near-neutral genetic drift. Such a "gratuitous" pharmacologic diversity is nevertheless of practical interest for the design of drugs, which would specifically tackle particular receptor oligomers with a defined subunit composition among the multiple nicotinic receptors present in the organism.
Collapse
Affiliation(s)
- Nicolas Le Novère
- Receptors and Cognition, CNRS URA 2182, Institut Pasteur, 75724 Paris, France.
| | | | | |
Collapse
|
42
|
Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 2002. [PMID: 12388596 DOI: 10.1523/jneurosci.22-20-08891.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 43 kDa receptor-associated protein rapsyn is a myristoylated peripheral protein that plays a central role in nicotinic acetylcholine receptor (AChR) clustering at the neuromuscular junction. In a previous study, we demonstrated that rapsyn is specifically cotransported with AChR via post-Golgi vesicles targeted to the innervated surface of the Torpedo electrocyte (Marchand et al., 2000). In the present study, to further elucidate the mechanisms for sorting and assembly of postsynaptic proteins, we analyzed the dynamics of the intracellular trafficking of fluorescently labeled rapsyn in the transient-expressing COS-7 cell system. Our approach was based on fluorescence, time-lapse imaging, and immunoelectron microscopies, as well as biochemical analyses. We report that newly synthesized rapsyn associates with the trans-Golgi network compartment and traffics via vesiculotubular organelles toward the cell surface of COS-7 cells. The targeting of rapsyn organelles appeared to be mediated by a microtubule-dependent transport. Using cotransfection experiments of rapsyn and AChR, we observed that these two molecules codistribute within distal exocytic routes and at the plasma membrane. Triton X-100 extraction on ice and flotation gradient centrifugation demonstrated that rapsyn and AChR are recovered in low-density fractions enriched in two rafts markers: caveolin-1 and flotillin-1. We propose that sorting and targeting of these two companion molecules are mediated by association with cholesterol-sphingolipid-enriched raft microdomains. Collectively, these data highlight rapsyn as an itinerant vesicular protein that may play a dynamic role in the sorting and targeting of its companion receptor to the postsynaptic membrane. These data also raise the interesting hypothesis of the participation of the raft machinery in the targeting of signaling molecules to synaptic sites.
Collapse
|
43
|
Martinez KL, Gohon Y, Corringer PJ, Tribet C, Mérola F, Changeux JP, Popot JL. Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 2002; 528:251-6. [PMID: 12297315 DOI: 10.1016/s0014-5793(02)03306-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of a fluorescent agonist to the acetycholine receptor from Torpedo electric organ has been studied by time-resolved spectroscopy in three different environments: in native membrane fragments, in the detergent CHAPS, and after complexation by amphipathic polymers ('amphipols'). Binding kinetics was similar in the membrane and in amphipols, demonstrating that the receptor can display unaltered allosteric transitions outside its natural lipid environment. In contrast, allosteric equilibria were strongly shifted towards the desensitized state in CHAPS. Therefore, the effect of CHAPS likely results from molecular interactions rather than from the loss of bulk physical properties of the membrane environment.
Collapse
Affiliation(s)
- Karen L Martinez
- Unité de Neurobiologie Moléculaire, CNRS URA 2182, Institut Pasteur, 25 rue du Dr Roux, 75734 Paris, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Aslanian D, Heidmann T, Negrerie M, Changeux JP. Raman spectroscopy of acetylcholine receptor-rich membranes from Torpedo marmorata
and of their isolated components. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80324-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Cartaud J, Oswald R, Clément G, Changeux JP. Evidence for a skeleton in acetylcholine receptor-rich membranes from Torpedo marmorata
electric organ. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)80177-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Preparation of sealed Torpedo marmorata
membrane fragments suitable for quantitative tracer flux studies. FEBS Lett 2001. [DOI: 10.1016/0014-5793(81)80611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Jacobson C, Côté PD, Rossi SG, Rotundo RL, Carbonetto S. The dystroglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane. J Cell Biol 2001; 152:435-50. [PMID: 11157973 PMCID: PMC2195998 DOI: 10.1083/jcb.152.3.435] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dystrophin-associated protein (DAP) complex spans the sarcolemmal membrane linking the cytoskeleton to the basement membrane surrounding each myofiber. Defects in the DAP complex have been linked previously to a variety of muscular dystrophies. Other evidence points to a role for the DAP complex in formation of nerve-muscle synapses. We show that myotubes differentiated from dystroglycan-/- embryonic stem cells are responsive to agrin, but produce acetylcholine receptor (AChR) clusters which are two to three times larger in area, about half as dense, and significantly less stable than those on dystroglycan+/+ myotubes. AChRs at neuromuscular junctions are similarly affected in dystroglycan-deficient chimeric mice and there is a coordinate increase in nerve terminal size at these junctions. In culture and in vivo the absence of dystroglycan disrupts the localization to AChR clusters of laminin, perlecan, and acetylcholinesterase (AChE), but not rapsyn or agrin. Treatment of myotubes in culture with laminin induces AChR clusters on dystroglycan+/+, but not -/- myotubes. These results suggest that dystroglycan is essential for the assembly of a synaptic basement membrane, most notably by localizing AChE through its binding to perlecan. In addition, they suggest that dystroglycan functions in the organization and stabilization of AChR clusters, which appear to be mediated through its binding of laminin.
Collapse
Affiliation(s)
- C Jacobson
- Department of Biology, McGill University/Center for Neuroscience Research, Montréal General Hospital Research Institute, Montréal, Québec H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
48
|
Barrantes FJ, Antollini SS, Blanton MP, Prieto M. Topography of nicotinic acetylcholine receptor membrane-embedded domains. J Biol Chem 2000; 275:37333-9. [PMID: 10967108 DOI: 10.1074/jbc.m005246200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The topography of nicotinic acetylcholine receptor (AChR) membrane-embedded domains and the relative affinity of lipids for these protein regions were studied using fluorescence methods. Intact Torpedo californica AChR protein and transmembrane peptides were derivatized with N-(1-pyrenyl)maleimide (PM), purified, and reconstituted into asolectin liposomes. Fluorescence mapped to proteolytic fragments consistent with PM labeling of cysteine residues in alphaM1, alphaM4, gammaM1, and gammaM4. The topography of the pyrene-labeled Cys residues with respect to the membrane and the apparent affinity for representative lipids were determined by differential fluorescence quenching with spin-labeled derivatives of fatty acids, phosphatidylcholine, and the steroids cholestane and androstane. Different spin label lipid analogs exhibit different selectivity for the whole AChR protein and its transmembrane domains. In all cases labeled residues were found to lie in a shallow position. For M4 segments, this is compatible with a linear alpha-helical structure, but not so for M1, for which "classical" models locate Cys residues at the center of the hydrophobic stretch. The transmembrane topography of M1 can be rationalized on the basis of the presence of a substantial amount of non-helical structure, and/or of kinks attributable to the occurrence of the evolutionarily conserved proline residues. The latter is a striking feature of M1 in the AChR and all members of the rapid ligand-gated ion channel superfamily.
Collapse
Affiliation(s)
- F J Barrantes
- Instituto de Investigaciones Bioquimicas de Bahia Blanca, B8000FWB Bahia Blanca, Argentina
| | | | | | | |
Collapse
|
49
|
Blanton MP, McCardy EA. Identifying the lipid-protein interface and transmembrane structural transitions of the Torpedo Na,K-ATPase using hydrophobic photoreactive probes. Biochemistry 2000; 39:13534-44. [PMID: 11063590 DOI: 10.1021/bi0015461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To identify regions of the Torpedo Na,K-ATPase alpha-subunit that interact with membrane lipid and to characterize conformationally dependent structural changes in the transmembrane domain, we have proteolytically mapped the sites of photoincorporation of the hydrophobic compounds 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) and the phosphatidylcholine analogue [(125)I]TIDPC/16. The principal sites of [(125)I]TIDPC/16 labeling were identified by amino-terminal sequence analysis of proteolytic fragments of the Na,K-ATPase alpha-subunit and are localized to hydrophobic segments M1, M3, M9, and M10. These membrane-spanning segments have the greatest levels of exposure to the lipid bilayer and constitute the bulk of the lipid-protein interface of the Na,K-ATPase alpha-subunit. The extent of [(125)I]TID and [(125)I]TIDPC/16 photoincorporation into these transmembrane segments was the same in the E(1) and E(2) conformations, indicating that lipid-exposed segments located at the periphery of the transmembrane complex do not undergo large-scale movements during the cation transport cycle. In contrast, for [(125)I]TID but not for [(125)I]TIDPC/16, there was enhanced photoincorporation in the E(2) conformation, and this component of labeling mapped to transmembrane segments M5 and M6. Conformationally sensitive [(125)I]TID photoincorporation into the M5 and M6 segments does not reflect a change in the levels of exposure of these segments to the lipid bilayer as evidenced by the lack of [(125)I]TIDPC/16 labeling of these two segments in either conformation. These results suggest that [(125)I]TID promises to be a useful tool for structural characterization of the cation translocation pathway and for conformationally dependent changes in the pathway. A model of the spatial organization of the transmembrane segments of the Na,K-ATPase alpha- and beta-subunits is presented.
Collapse
Affiliation(s)
- M P Blanton
- Departments of Pharmacology and Anesthesiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | |
Collapse
|
50
|
Cartaud J, Cartaud A, Kordeli E, Ludosky MA, Marchand S, Stetzkowski-Marden F. The torpedo electrocyte: a model system to study membrane-cytoskeleton interactions at the postsynaptic membrane. Microsc Res Tech 2000; 49:73-83. [PMID: 10757880 DOI: 10.1002/(sici)1097-0029(20000401)49:1<73::aid-jemt8>3.0.co;2-l] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many aspects of the organization of the electromotor synapse of electric fish resemble the nerve-muscle junction. In particular, the postsynaptic membrane in both systems share most of their proteins. As a remarquable source of cholinergic synapses, the Torpedo electrocyte model has served to identify the most important components involved in synaptic transmission such as the nicotinic acetylcholine receptor and the enzyme acetylcholinesterase, as well as proteins associated with the subsynaptic cytoskeleton and the extracellular matrix involved in the assembly of the postsynaptic membrane, namely the 43-kDa protein-rapsyn, the dystrophin/utrophin complex, agrin, and others. This review encompasses some representative experiments that helped to clarify essential aspects of the supramolecular organization and assembly of the postsynaptic apparatus of cholinergic synapses.
Collapse
Affiliation(s)
- J Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR 9275, CNRS, Universités Paris 6 et Paris7, 75251 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|