1
|
Zhang J, Jin Y, Lu X, Sun C, Ma W, Li Y, Zhang L, Chen R. Triggering anti-Kasha organic room temperature phosphorescence of clusteroluminescent materials. Chem Sci 2025; 16:7829-7837. [PMID: 40177316 PMCID: PMC11959490 DOI: 10.1039/d5sc01471a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Clusterization-triggered emission (CTE) from organic materials without π-conjugated structures for room temperature phosphorescence (RTP) is fascinating with extraordinary photophysical properties and diversified applications, but rather challenging in material design owing to the limited mechanism understanding. Here, we demonstrate a facile strategy to construct CTE polymers with stimuli-responsive emission, anti-Kasha RTP and organic ultralong RTP (OURTP) by introducing ions into the hydrolyzed nonconjugated maleic anhydride and acrylamide copolymers. Thanks to the synergistic effects of hydrogen and ionic bonding with the ion-triggered electrostatic and coordinate interactions to suppress non-radiative decays and promote intersystem crossing, the amorphous copolymers show efficient photoluminescence with quantum efficiencies up to 13.5%, anti-Kasha RTP blue-shift of 29 nm, and OURTP lifetime up to 420 ms. Moreover, the temperature-dependent and water-sensitive anti-Kasha RTP and OURTP are also observed due to the formation of highly emissive CTE structure regulated by ionization. With the excellent processability and flexibility of the copolymer, lifetime-, temperature- and color-encrypted information anti-counterfeiting is designed and explored. The anti-Kasha RTP in CTE materials realized for the first time demonstrates impressive potential for multi-level encryption/anti-counterfeiting applications and more importantly, providing fundamental mechanism understanding for the rational modulation and design of CTE materials with extraordinary photophysical properties.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Yishan Jin
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xinchi Lu
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chengxi Sun
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Wei Ma
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Yuhang Li
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Longyan Zhang
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Runfeng Chen
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| |
Collapse
|
2
|
Song ZP, Wei J, Liu J, Chu ZF, Hu JX, Chakraborty S, Ma Y, Li BX, Lu YQ, Zhao Q. Mechanically-Tunable and Full-Color Circularly Polarized Long-Lived Phosphorescence in Chiral Superstructure Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419640. [PMID: 40159792 DOI: 10.1002/adma.202419640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Developing full-color circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) materials with high dissymmetry factor (glum) holds significant promise for diverse optoelectronic applications. Controlling glum values is crucial for enhancing the performance and functionality of these materials, as it directly influences their chiroptical properties and potential utilities in advanced technologies. However, achieving reversible and dynamic manipulation of glum in CP-OURTP materials remains a formidable challenge. Herein, an effective strategy is presented to fabricate the chiral superstructure elastomers (CSEs) that display selective reflection colors, dynamically tunable CP-OURTP with robust glum values, full-color afterglow emissions, and superior processability within a single system. By integrating room temperature phosphorescence (RTP) polymers into the CSEs, CSEs are produced demonstrating tunable CP-OURTP with glum values switching between 0.8 and 0.15 by mechanical deformation. More importantly, these mechanochromic, programmable, and full-color CP-OURTP films enable the development of flexible and dynamic information encryption and decryption. The work provides new insights into the development of novel RTP materials and advances in their potential applications.
Collapse
Affiliation(s)
- Zhen-Peng Song
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Juan Wei
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiao Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- National Laboratory of Solid State Microstructures & Collaborative Innovation Center of Advanced Microstructures & College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhu-Fang Chu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jing-Xue Hu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Susanta Chakraborty
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yun Ma
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Bing-Xiang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures & Collaborative Innovation Center of Advanced Microstructures & College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
3
|
Gao Z, Cao T, Hu B, Chen L, Li H, Wang C, Guo CY. Gas sensing by long-wavelength and long-afterglow pectin/melamine-formaldehyde aerogel via resonance energy transfer. J Colloid Interface Sci 2025; 685:876-888. [PMID: 39870005 DOI: 10.1016/j.jcis.2025.01.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed. It exhibits a stable and persistent afterglow, with a phosphorescence lifetime reaching up to 1.99 s. Simultaneously, this aerogel possesses excellent mechanical properties, having a compressive modulus of 4.14 MPa, which is 490.8 times that of the PC aerogel. Its friction coefficient is also much lower than that of the single MF aerogel, enabling the material to achieve a better balance between rigidity and service life in practical applications. Moreover, through resonance energy transfer, the afterglow wavelength was redshifted from 504 nm to 576 nm and 620 nm, and aerogels with ultra-long yellow and red afterglows were successfully obtained. PCMF@PA aerogels display specific chemical stability in different organic solvents. Notably, PCMF@PA has a characteristic recognition for formic acid gas. The change in the luminous intensity and lifetime of the aerogel after gas absorption distinguishes it from gases such as ammonia and acetic acid. These phosphorescent polymer aerogels with self-monitoring and tracing capabilities not only foster the advancement of ordered phosphorescent materials but also broaden the application scope of RTP materials in environmental monitoring.
Collapse
Affiliation(s)
- Zeyu Gao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Tengyang Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Bingxuan Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Lei Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Helang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Caiqi Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China.
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China.
| |
Collapse
|
4
|
Jin L, Mo W, Wang Z, Hong W. Day-Long Organic Persistent Luminescence in Flexible Polymeric Materials. Angew Chem Int Ed Engl 2025:e202506261. [PMID: 40285736 DOI: 10.1002/anie.202506261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The progress in organic afterglow materials has drawn significant attention due to their extensive applications in fields such as optoelectronics, anti-counterfeiting, and bioimaging. Nonetheless, a general limitation of organic afterglow materials is their short emission lifetimes, typically spanning from milliseconds to seconds, which creates a substantial challenge in developing day-long organic afterglow (DOA). In this study, a DOA system is demonstrated through the incorporation of electron donor/acceptor exciplexes. Polyethylene naphthalate is used for both the electron acceptor and charge storage units, coupling with a spirobifluorene-carbazole derivative as the electron donor, providing effective charge separations under UV-light and sunlight excitation. The resulting DOA polymers demonstrate an exceptional bluish-green afterglow that endures for over 28 h under ambient conditions, setting a new record for the longest afterglow duration in polymeric materials. Moreover, the DOA-doped polymers, as both films and fibers, exhibit outstanding flexibility and transparency, making them highly suitable for flexible technologies and wearable devices.
Collapse
Affiliation(s)
- Longming Jin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wanqi Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyi Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Li C, Jiao F, Dong L, Hu J, Ma X, Lou Q, Chen X, Xu W, Zhu Y, Zhu J. Time-Division Multiplexing Physical Unclonable Functions Based on Multicolor Phosphorescent Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502522. [PMID: 40223363 DOI: 10.1002/adma.202502522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/26/2025] [Indexed: 04/15/2025]
Abstract
Phosphorescent materials offer a promising approach to information encryption due to their long luminescence lifetimes and high signal-to-noise ratios. However, fixed phosphorescent patterns are vulnerable to imitation over time, limiting their effectiveness in advanced encryption. Here, a time-division multiplexing physical unclonable function (TDM-PUF) label utilizing multicolor phosphorescent carbon dots (CDs) is proposed that leverages variations in wavelength and lifetime to construct time-resolved, multidimensional cryptographic protocols. Efficient multi-color phosphorescence in CDs is achieved by enhancing intersystem crossing, suppressing non-radiative transitions through confinement effects, and regulating emission spectra via energy transfer. The random spatial distribution and unpredictable emissions of phosphorescent CDs significantly enhance the complexity of the PUF system, thereby fortifying its defenses against mimicry attacks. Furthermore, this PUF system exhibits multiple optical responses over time, allowing correct information recognition only at specified time nodes, achieving time-resolved anti-counterfeiting. Finally, by segmenting PUF labels based on emission color and time channels, non-overlapping multicolor and multi-time segments are achieved, enabling highly secure time-division multiplexed encryption. The study provides a competitive anti-counterfeiting label and inspires the development of novel anti-counterfeiting strategies.
Collapse
Affiliation(s)
- Chao Li
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Fuhang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Junhua Hu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuejun Ma
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xu Chen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, P. R. China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Jinyang Zhu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Zhang J, Zhang S, Sun C, Wang R, Guo Z, Cui D, Tang G, Li D, Yuan J, Lu X, Zheng C, Huang W, Chen R. Highly Bright Pure Room Temperature Phosphorescence for Circularly Polarized Organic Hyperafterglow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500953. [PMID: 40025967 DOI: 10.1002/adma.202500953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Pure room-temperature phosphorescence (pRTP) promises great advantages in both exciton utilization and lifetime manipulation over existing organic luminophores for a variety of emerging applications, but the low brightness, low efficiency, and low color purity constrain the afterglow luminescence significantly. Here, a promising approach to design highly bright, efficient, and narrowband pRTP with long-lifetime for organic hyperafterglow is proposed by isolating a conjugated energy donor with circularly polarized (CP) luminescence and energy acceptor with multi-resonance effect into a rigid host. It is shown that the aggregation of chiral P-containing binaphthyl promotes the generation of CP-pRTP and afterglow with high brightness up to ≈50 cd m-2, while the simultaneous energy transfer and chirality transfer afford multi-color organic hyperafterglow with photoluminescence efficiency of ≈90%, full-width at half maxima of 31-39 nm, lifetime of 120-770 ms, and luminescent dissymmetry of ≈10-3. Also, excellent stability capable of resisting quenching effects of oxygen, organic solvents, and aqueous solutions of strong acids and bases are observed. With these advantages, applications of chirality information encryption, afterglow grayscale imaging, and 3D high-resolution afterglow models are realized, promoting significantly the fundamental understandings on the modulation of organic afterglow brightness and construction of high-performance pRTP materials with advanced photophysical properties and applications.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shuman Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengxi Sun
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ranran Wang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023, China
| | - Zhenli Guo
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dongyue Cui
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Gaoming Tang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dasheng Li
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Yuan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinchi Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chao Zheng
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
7
|
Wu K, Liu D, Zhu L, Wu T, Xu Y, He C, Xiong Y, Zhao Z, Tang BZ. Recent progress in triplet energy transfer systems toward organic afterglow materials. Commun Chem 2025; 8:85. [PMID: 40119114 PMCID: PMC11928605 DOI: 10.1038/s42004-025-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Organic room-temperature phosphorescence (RTP) has shown potential applications in the fields of biomedical imaging, chemical sensing, anti-counterfeiting, and encryption. Inspired by natural photosynthesis, artificial light-harvesting systems based on the phosphorescence-type energy transfer (ET) from the triplet excited states of organic RTP emitters have emerged as promising candidates to expand organic afterglow materials and promote practical applications. This review presents a fundamental understanding of phosphorescence-type ET processes, including the one-step triplet-to-singlet ET, stepwise triplet-to-singlet-to-singlet ET, and triplet-to-triplet ET. We highlight significant advances in the design, modulation, and application of phosphorescence-type ET systems and provide an outlook on application prospects and challenges.
Collapse
Affiliation(s)
- Kaiwen Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| | - Dan Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| | - Lixun Zhu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| | - Tianhao Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| | - Chenghan He
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518061, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
8
|
Sun H, Xiao Y, He Y, Wei X, Zou J, Luo Y, Wu Y, Zhao J, Au VKM, Yu T. 3D printable organic room-temperature phosphorescent materials and printed real-time sensing and display devices. Chem Sci 2025; 16:5299-5309. [PMID: 40007663 PMCID: PMC11848935 DOI: 10.1039/d5sc00316d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Polymer-based host-guest organic room-temperature phosphorescent (RTP) materials are promising candidates for new flexible electronic devices. Nowadays, the insufficient fabrication processes of polymeric RTP materials have hindered the development of these materials. Herein, we propose a strategy to realize 3D printable organic RTP materials and have successfully demonstrated real-time sensing and display devices through a Digital Light Processing (DLP) 3D printing process. We have designed and synthesized the molecules EtCzBP, PhCzBP and PhCzPM with A-D-A structures. The crucial role of strong intramolecular charge transfer (ICT) at the lowest triplet states in achieving bright photo-activated phosphorescence in polymer matrices has also been demonstrated. 3D printable RTP resins were manufactured by doping emissive guest molecules into methyl methacrylate (MMA). Based on these resins, a series of complex 3D structures and smart temperature responsive RTP performances were obtained by DLP 3D printing. Additionally, these RTP 3D structures have been applied in real-time temperature sensing and display panels for the first time. This work not only provides a guiding strategy for the design of emissive guest molecules to realize photo-activated RTP in poly(methyl methacrylate) (PMMA), but also paves the way for the development of 3D-printable real-time sensing structures and new-concept display devices.
Collapse
Affiliation(s)
- Haodong Sun
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xiaoyu Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuanda Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yazhang Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jiaxin Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong 10 Lo Ping Road, New Territories Tai Po Hong Kong China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
- Shenzhen Research Institute of Northwestern Polytechnical University 45 Gaoxin Nanjiu Road Shenzhen 518063 China
| |
Collapse
|
9
|
Liu G, Yan Z, Song Q, Sun Q, Xue S, Yang W. Pure Organic Thermally Activated Delayed Fluorescence Afterglow Polymers via Dopant Isomerization. ACS Macro Lett 2025; 14:265-271. [PMID: 39947671 DOI: 10.1021/acsmacrolett.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
N-(o-Cyanophenyl)carbazole can be dimerized at different positions, which may change excited state behaviors. Herein, 2,3'-dicyano-3,4'-di(carbazol-9-yl)biphenyl (D34C) is designed and synthesized and doped into polymers. However, we find that D34C does not exhibit room temperature phosphorescence but emits fluorescence (FL) and bright thermally activated delayed fluorescence (TADF) with lifetimes of hundreds of milliseconds, which is observed in diverse matrices such as PMMA, MBS, ABS, PS, HIPS, and SIS. The simple positional isomerization makes the abundant triplet excitons undergo only reverse intersystem crossing rather than room temperature phosphorescence (RTP) radiation, which is rather rare in organic doped polymers. Since the production of TADF afterglow requires a certain excitation time, the generally indistinguishable FL and TADF efficiencies are separated for the first time. This work not only provides novel TADF afterglow polymers with diverse mechanical properties but also will evoke the subtle design of conjugated organic molecules to dramatically change photoexcitation and emission behaviors.
Collapse
Affiliation(s)
- Guanyu Liu
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Zixin Yan
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Qi Song
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Qikun Sun
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Shanfeng Xue
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Wenjun Yang
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| |
Collapse
|
10
|
Yang X, Li N, Wang B, Chen P, Ma S, Deng Y, Lü S, Tang Y. Mechanics-Photophysics Correlation in Tough, Stretchable and Long-Lived Room Temperature Phosphorescence Ionogels Deciphered by Dynamic Mechanical Analysis. Angew Chem Int Ed Engl 2025; 64:e202419114. [PMID: 39567255 DOI: 10.1002/anie.202419114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
The development of tough, stretchable and long-lived room temperature phosphorescence (RTP) materials holds great significance for manufacturing and processing photoluminescent materials, but limited techniques are available to profile their mechanics-photophysics correlation. Here we report glassy ionogels, and their mechanical properties and photophysical properties are fused by dynamic mechanical analysis (DMA), functioning like a human brain that perceives a material instantaneously by linking sensory perception and cognition. Depending on two special temperatures presented in DMA curves, Tloss (the peak of loss modulus (E")) and Tg (glass transition temperature), the ionogels can vary from being either tough with persistent phosphorescence, extensible with effective phosphorescence or resilience with inefficient phosphorescence. Leveraging this method, we achieve stretchable and long-lived RTP ionogels with tensile yield strength of 53 MPa, tensile strain of 497 %, Young's modulus of 782 MPa, toughness of 111.2 MJ/m3, and lifetime of 113.05 ms. Our work provides a simple yet powerful method to reveal the mechanics-photophysics correlation of RTP ionogels, to predict their performance without laborious synthesis and characterization, opening new avenues for applications of RTP materials, including applications in harsh conditions (257 K or 347 K), shape memory and shape reconstruction.
Collapse
Affiliation(s)
- Xipeng Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Ningyan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Binbin Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Panyi Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Song Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Yifan Deng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
11
|
Feng R, Yan X, Sang Y, Liu X, Luo Z, Xie Z, Ke Y, Song Q. Transitioning Room-Temperature Phosphorescence from Solid States to Aqueous Phases via a Cyclic Peptide-Based Supramolecular Scaffold. Angew Chem Int Ed Engl 2025; 64:e202421729. [PMID: 39569830 DOI: 10.1002/anie.202421729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/22/2024]
Abstract
Aqueous room-temperature phosphorescence (RTP) materials have garnered considerable attention for their significant potential across various applications such as bioimaging, sensing, and encryption. However, establishing a universally applicable method for achieving aqueous RTP remains a substantial challenge. Herein, we present a versatile supramolecular strategy to transition RTP from solid states to aqueous phases. By leveraging a cyclic peptide-based supramolecular scaffold, we have developed a noncovalent approach to molecularly disperse diverse organic phosphors within its rigid hydrophobic microdomain in water, yielding a series of aqueous RTP materials. Moreover, high-performance supramolecular phosphorescence resonance energy transfer (PRET) systems have been constructed. Through the facile co-assembly of a fluorescent acceptor with the existing RTP system, these PRET systems exhibit high energy transfer efficiencies (>80 %), red-shifted afterglow emission (520-790 nm), ultralarge Stokes shifts (up to 450 nm), and improved photoluminescence quantum yields (6.1-30.7 %). This study not only provides a general strategy for constructing aqueous RTP materials from existing phosphors, but also facilitates the creation of PRET systems featuring color-tunable afterglow emission.
Collapse
Affiliation(s)
- Ruicong Feng
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xianjia Yan
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Sang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xindi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenhua Xie
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
12
|
Wang C, Ning Y, Wen X, Zhang J, Yue Y, Li J, Xie Y, Yang S, Lu X. Dual-Confinement and Surface-Ionization Induced Controllable Regulate Visible-Light-Activated Colorful Afterglow of Carbon Dots for Multifunctional Applications. SMALL METHODS 2025; 9:e2400921. [PMID: 39049688 DOI: 10.1002/smtd.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Low-energy visible-light-activated carbon dots (CDs)-based afterglow materials are difficult to realize due to the inherent aromatic carbon with high-energy absorption and the lack of effective regulation. Here, a new strategy for visible-light-activated CDs is proposed by combining dual-confinement and surface-ionization, which employs NaOH for additional confinement and surface ionization of CDs in a single boric acid (BA) matrix. The comparison experiments show that: i) shifting the excitation from UV-light to vis-light is realized by enhancing the low-energy surface states n→π* transition of the CDs by surface ionization of NaOH. ii) CDs are additionally protected by a more stable Na─O ionic bond after NaOH confinement, resulting in a brighter afterglow. iii) the energy gap (ΔEST) between the lowest singlet and triplet states is gradually shortened as increasing NaOH content, facilitating intersystem crossing, prolonging the lifetime of triplet excitons and efficiency. Further, vis-light-excited colorful afterglow powders are fabricated based on Förster Resonant Energy Transfer by combining the fluorescent dye 5-carboxytetramethylrhodamine. Finally, advanced white-light-activated time-resolved anti-counterfeiting and intelligent traffic flashing signs are realized. The work may shed new light on the design of low-energy-activated afterglow materials and broaden the application scenarios in the daily lives of human society.
Collapse
Affiliation(s)
- Changxing Wang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yayun Ning
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoxiang Wen
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinxia Zhang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yifan Yue
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianing Li
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuechi Xie
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sen Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuegang Lu
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
He Z, Song J, Li C, Huang Z, Liu W, Ma X. High-Performance Organic Ultralong Room Temperature Phosphorescence Based on Biomass Macrocycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418506. [PMID: 39930926 DOI: 10.1002/adma.202418506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Indexed: 03/21/2025]
Abstract
The pursuit of sustainable, high-performance organic ultralong room temperature phosphorescence (OURTP) materials with stimulus-responsive properties presents a significant and enticing yet formidable challenge. Herein, an efficient strategy to confining boric acid-based compounds into biomass macrocycle γ-cyclodextrin through multiple interactions is developed, enabling the construction of high-performance and multicolor OURTP doped systems. The synergistic effects of strong hydrogen bonding, C─O─B covalent cross-linking, and host-guest encapsulation significantly suppress non-radiative transition, culminating in an extraordinary lifetime and excellent phosphorescence quantum yield of 4.65 s and 32.8%, respectively, which are far superior to reported biomass RTP materials. Additionally, merging biomass macrocycle with phosphors contributes to multiple stimulus responses, overcoming the inherent limitations of degradation and recycling of organic RTP compounds, and dynamically modulating RTP signals through multiple-stimulus responses, achieving the integration of multifunctional dynamic data processing techniques. This work will provide a direction for new environmentally friendly and potentially commercially available stimulus-responsive OURTP materials.
Collapse
Affiliation(s)
- Zhenyi He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chunli Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, 200072, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Wang Y, Zhou S, Zhao Y, Xiao H, Xing LB, Sun X, Zhou J, Lu S. Construction of Carbon Dot-Based Color-Tunable Circularly Polarized Long Afterglow via in Situ Phosphorescence Resonance Energy Transfer. NANO LETTERS 2025. [PMID: 40017324 DOI: 10.1021/acs.nanolett.5c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Carbon dots (CDs) with circularly polarized long afterglow (CPLA) properties have received increasing attention as a cutting-edge research field. However, because the CDs with both long afterglow and chirality are difficult to prepare and the afterglow color of most phosphorescent CDs is mainly concentrated in short wavelengths, it is still a formidable challenge to explore a facile route to achieve intrinsic CD-based color-tunable CPLA materials on a large scale. Herein, we developed a facile gram-scale synthesis method to prepare intrinsic CD-based color-tunable CPLA materials via a simple hydrothermal mixture of boric acid, arginine, and various fluorescent dyes. The tunable afterglow color is successfully achieved by engineering in situ phosphorescence resonance energy transfer (PRET) between the CDs formed by carbonization of arginine with some of the dyes and those uncarbonized dyes. Finally, the applications of CD composites in multimode advanced anti-counterfeiting and information encryption were explored.
Collapse
Affiliation(s)
- Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yi Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
15
|
Lin F, Chen J, Qin T, Zhang L, Miao Y, Zhang Q, Liang G, Huang H. Fine Tuning of Hydrogen Bonding Interaction on Boosting the Room-Temperature Phosphorescence in Organic Host-Guest System. J Phys Chem Lett 2025; 16:1916-1923. [PMID: 39960230 DOI: 10.1021/acs.jpclett.4c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Organic room-temperature phosphorescence (RTP) materials have demonstrated great potential applications in optoelectronics, anticounterfeiting, and biomedicine fields. Among them, the RTP properties of host-guest systems can be easily regulated by changing their component parameters, which has attracted widespread attention. However, the key factor of the hosts (crystalline or noncovalent interaction network) for boosting phosphorescence emission at room temperature was still unclear. Herein, a triphenyl phosphor in the estradiol system was heated to remove the crystal water and then cooled to turn it into a powder. This enabled the afterglow brightness to improve by more than 90-fold and the phosphorescent quantum yield by over 700-fold. Further studies have indicated that the hydrogen bonding interactions of estradiol's -OH group were tuned during these processes, from bonding with crystal water to bonding with guests and then constructing a strong network with the guests. The triplet excitons thus were effectively stabilized, which, coupled with the suitable T1 energy level of the host, could significantly enhance the phosphorescence in the amorphous estradiol system. This work demonstrates fine-tuning of the hydrogen bonding interactions inside the doped estradiol RTP system to boost its phosphorescence. It also substantiates that a noncovalent interaction network is more important than crystalline for efficient phosphorescence in a host-guest RTP system.
Collapse
Affiliation(s)
- Faxu Lin
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jinzheng Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Tian Qin
- PCFM Lab, GETRC for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lina Zhang
- College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, PR China
| | - Yiling Miao
- PCFM Lab, GETRC for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qirui Zhang
- PCFM Lab, GETRC for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guodong Liang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Huahua Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
16
|
Gao Y, Shi YE, Cheng F, Huang C, Wang Z. Modulating room temperature phosphorescence of acrylamide by stepwise rigidification for its detection in potato crisps. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125372. [PMID: 39515232 DOI: 10.1016/j.saa.2024.125372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The selective detection of acrylamide (AA) is crucial, which is limited by the high background and interferences from food matrix. A room temperature phosphorescence (RTP) assay was developed through modulating its RTP by a stepwise rigidification strategy. The first step rigidification resulted in crosslinking of AA and denser of hydrogen bonding. This prompted the RTP efficiency from <0.1 to 3.8 % and emission lifetime of AA (from 3.0 μs to 0.29 s). Introducing boric acid resulted in the second step rigidification, triggered the formation of rigid matrix and chemical bonding. These synergistic effects prompted the photoluminescence quantum yield to 23.7 % and emission lifetime to 1.20 s. AA was quantitatively detected through monitoring the RTP intensity, with a limit of detection of 0.9 μg/mL. Benefiting from the delayed signal detection, background signal and the interferences from food matrices were eliminated, endowing the detection of AA in practical food samples.
Collapse
Affiliation(s)
- Yuncai Gao
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, PR China; College of Chemistry and Materials Science, Hebei University, Hebei 071002, PR China
| | - Yu-E Shi
- Library of Hebei Normal University, Hebei 050024, PR China.
| | - Feiyang Cheng
- College of Chemistry and Materials Science, Hebei University, Hebei 071002, PR China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China.
| | - Zhenguang Wang
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
17
|
Yan ZA, Yin C, Tian H, Ma X. Near-Infrared Room-Temperature Phosphorescence from Monocyclic Luminophores. Angew Chem Int Ed Engl 2025; 64:e202417397. [PMID: 39431924 DOI: 10.1002/anie.202417397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Compact luminophores with long emission wavelengths have aroused considerable theoretical and practical interest. Organics with room-temperature phosphorescence (RTP) are also desirable for their longer lifetimes and larger Stokes shifts than fluorescence. Utilizing the low electronic transition energy intrinsic to thiocarbonyl compounds, electron-withdrawing groups were attached to the 4H-pyran-4-thione core to further lower the excited state energies. The resulting mini-phosphors were doped into suitable polymer matrices. These purely organic, amorphous materials emitted near-infrared (NIR) RTP. Having a molar mass of only 162 g mol-1, one of the phosphors emitted RTP that peaked at 750 nm, with a very large Stokes shift of 15485 cm-1 (403 nm). Thanks to the good processability of the polymer film, light-emitting diodes (LEDs) with NIR emission were easily fabricated by coating doped polymer on ultraviolet LEDs. This work provides an intriguing strategy to achieve NIR RTP using compact luminophores.
Collapse
Affiliation(s)
- Zi-Ang Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Chenjia Yin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
18
|
Wang Y, Shao A, Li J, Wei J, Wei K, Liu S, Ma Y, Zhao Q. Programmable Persistent Room Temperature Phosphorescence Switches through Wavelength-Selective Photoactivation. Angew Chem Int Ed Engl 2025; 64:e202416189. [PMID: 39325535 DOI: 10.1002/anie.202416189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Controlling multicolor persistent room-temperature phosphorescence (RTP) through photoirradiation holds fundamental significance but remains a significant challenge. In this study, we engineered a wavelength-selective photoresponsive system utilizing the Förster resonance energy transfer strategy. This system integrates a photoactivated long-lived luminescent material as the energy donor with a fluorescent photoswitch as the energy acceptor, facilitating programmable persistent luminescence switches. Distinct afterglow color states, such as initial nonemissive, green, yellow, and orange, were achieved through irradiation at 400 nm, 365 nm, and 254 nm, respectively. Based on this capability, we established an interacting network for multistate afterglow color switching among these four emissive states. In addition, we demonstrate the potential of this wavelength-selective photoresponsive system in the photo-controlled rewritable printing of multicolor afterglow images on a single thin film. This work represents a substantial step towards the fabrication of sophisticated wavelength-selective photoresponsive systems, potentially revolutionizing applications in optical data storage, security labeling, and smart displays by enabling precise control over photoresponsive behaviors under various photoirradiation wavelengths.
Collapse
Affiliation(s)
- Yuchang Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Aiwen Shao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kuanjian Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
19
|
Guan S, Chen X, Yu R, Xu W, Wu Z, Doug Suh Y, Liu X, Huang W. Opal-Inspired SiO 2-Mediated Carbon Dot Doping Enables the Synthesis of Monodisperse Multifunctional Afterglow Nanocomposites for Advanced Information Encryption. Angew Chem Int Ed Engl 2025; 64:e202415632. [PMID: 39269260 DOI: 10.1002/anie.202415632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Despite recent advancements in inorganic and organic phosphors, creating monodisperse afterglow nanocomposites (NCs) remains challenging due to the complexities of wet chemistry synthesis. Inspired by nanoinclusions in opal, we introduce a novel SiO2-mediated carbon dot (CD) doping method for fabricating monodisperse, multifunctional afterglow NCs. This method involves growing a SiO2 shell matrix on monodisperse nanoparticles (NPs) and doping CDs into the SiO2 shell under hydrothermal conditions. Our approach preserves the monodispersity of the parent NP@SiO2 NCs while activating a green afterglow in the doped CDs with an impressive lifetime of 1.26 s. Additionally, this method is highly versatile, allowing for various core and dopant combinations to finely tune the afterglow through core-to-CD or CD-to-dye energy transfer. Our findings significantly enhance the potential of SiO2 coatings, transforming them from merely enhancing the biocompatibility of NCs to serving as a versatile matrix for emitters, facilitating afterglow generation and paving the way for new applications.
Collapse
Affiliation(s)
- Shuaimeng Guan
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Rui Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weidong Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering UNIST, Ulsan, 44919, Republic of South Korea
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
20
|
Sun S, Li T, Zhu Y, Wang G, Yin F, Li F, Tao F, Wang L, Li G. Construction of starch-based room temperature phosphorescence materials with wide color-tunable long afterglow and even persistent near-infrared luminescence via Förster resonance energy transfer. Int J Biol Macromol 2025; 284:138175. [PMID: 39615724 DOI: 10.1016/j.ijbiomac.2024.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Environmentally friendly natural polymer-based room temperature phosphorescence (RTP) materials exhibit promising applications in anti-counterfeiting and information encryption. However, the construction of natural polymer-based RTP materials with multicolor long afterglow and even persistent near-infrared (NIR) luminescence remains a tough challenge. Here, starch (S)-based ultralong RTP materials with wide color-tunability, persistent NIR luminescence are conveniently prepared through Förster resonance energy transfer (FRET) strategies. The binary doping system S-4-carboxyphenylboric acid with an ultralong phosphorescence lifetime of up to 449 ms is used as energy donor, and commercial dyes fluorescein, rhodamine 6G and lissamine rhodamine B (LRB) are selected as energy acceptors. By adjusting the weight ratio of energy donor and acceptor, tunable multicolor long afterglow from blue to yellow-green, purple, red and even nearly white (0.32, 0.33) can be successfully achieved through the triplet-to-singlet FRET process. The quaternary doping system displays persistent NIR luminescence band from 650 to 800 nm along with the longest phosphorescence lifetime of up to 131 ms via the stepwise FRET process using LRB as the intermediate energy acceptor and NIR dye Nile blue A as the energy acceptor. Satisfactorily, the prepared S-based RTP materials with wide-range color-tunable long afterglow demonstrate potential applications in multimode information encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Shaochen Sun
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Tianyu Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yan Zhu
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Guangqun Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Faqu Yin
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Farong Tao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Liping Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Guang Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
21
|
Zhu RX, Ge HC, Niu KK, Liu H, Dong R, Yu S, Xing LB. Tunable multicolor supramolecular assemblies based on phosphorescence cascade energy transfer for photocatalytic organic conversion and anti-counterfeiting. J Colloid Interface Sci 2024; 675:893-903. [PMID: 39002239 DOI: 10.1016/j.jcis.2024.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/16/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Making full use of the captured energy by phosphorescence light-harvesting systems (PLHSs) and the tunable photoluminescence in energy transfer process to realize the multiple applications is still the challenge of PLHSs research. In this study, we have successfully constructed a highly effective PLHS with tunable multicolor luminescence and efficient conversion of photosensitizer types, which can further be used in photocatalytic organic conversion, information anti-counterfeiting and storage. The supramolecular polymer of BDBP-CB[8], which is generated by cucurbit[8]uril (CB[8]) and 4-(4-bromophenyl)-pyridine derivative (BDBP), realizes a phosphorescence emission and a change in luminescence color. Notably, white light emission was achieved and the logic gate systems were constructed utilizing the application of adjustable luminescence color. More interestingly, PLHS can be constructed by employing BDBP-CB[8] as energy donors, Sulforhodamine 101 (SR101) and Cyanine5 (Cy5) as energy acceptors, which results in a remarkably tunable multicolor photoluminescence to achieve the information storage. Furthermore, we have also found that BDBP-CB[8] can serve as type II photosensitizer for the effective production of singlet oxygen (1O2) during the photooxidation process of styrene in aqueous environments, attaining a remarkable output rate reaching as high as 89 %. Particularly, compared with 1O2 produced by type II photosensitizer BDBP-CB[8], the construction of PLHS can effectively convert type II photosensitizer to type I photosensitizer and efficiently generate superoxide anion radical (O2•-), which can be used for photocatalytic cross-dehydrogenative coupling (CDC) reaction in the aqueous solution with a yield of 90 %. Thus, we have created a PLHS that not only achieves tunable multicolor emission for information anti-counterfeiting and storage, but also realizes the conversion of reactive oxygen species (ROS) for different types photocatalytic oxidation reactions.
Collapse
Affiliation(s)
- Rong-Xin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui-Cong Ge
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Ruizhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
22
|
Zhang L, Chen X, Xin M, Yang H, Guo D, Hu Y. Full-Color Dynamic Afterglow in Carbon Dot-Based Materials Regulated by Dual-Phosphorescence Resonance Energy Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406596. [PMID: 39420853 DOI: 10.1002/smll.202406596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Developing afterglow materials with wide-range and time-dependent colors is highly desirable but challenging. Herein, by calcinating the mixture of Rhodamine B and NH4Al(OH)2CO3, carbon dots (CDs) are generated and in situ embedded in the porous Al2O3, forming the CDs@Al2O3 composite, which exhibits time-dependent phosphorescence colors (TDPCs) from blue to green after excited by a UV lamp. Photophysical studies reveal that the blue phosphorescence with a short lifetime of 214 ms originates from the carbon core state, while the green phosphorescence with a long lifetime of 915 ms is associated with the surface state of CDs. Simultaneous activation of the blue and green phosphorescence with different lifetimes induces the TDPC performance. Using CDs@Al2O3 as the donor, a series of long-wavelength fluorescent dyes including Rhodamine 123, Rhodamine 6G, and Rhodamine B as the acceptors, and epoxy resin (ER) as the matrix, a dual-phosphorescence resonance energy transfer system (CDs@Al2O3-dye-ER) is constructed to rationally regulate the afterglow emission, conferring the full-color dynamic afterglow from blue to red at different decay times with high afterglow quantum yields of up to 48.2%. The fascinating afterglow properties of the CDs@Al2O3-dye-ER composites enable their successful applications in multidimensional information encryption and polychrome 3D artworks.
Collapse
Affiliation(s)
- Longyue Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xipao Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Mingyu Xin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hailiang Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Dongying Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yaoping Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
23
|
Xue XD, Wang SC, Li MY, Wang Z. Ultralong Room-Temperature Phosphorescence in Ca(II) Metal-Organic Frameworks Based on Nicotinic Acid Ligands. Inorg Chem 2024; 63:21336-21344. [PMID: 39437415 DOI: 10.1021/acs.inorgchem.4c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In recent years, metal-organic framework (MOF) materials with long persistent luminescence (LPL) have inspired extensive attention and presented various applications in security systems, information anticounterfeiting, and biological imaging fields. However, obtaining LPL materials with ultralong lifetime remains challenging. Halogen atoms, as nonmetallic elements existing in the frameworks, can not only induce the heavy-atom effect, effectively enhancing spin-orbit coupling and promoting intersystem crossing (ISC) processes, but also suppress non-radiative transition of the triplet states through the intra- and intermolecular interactions. Specifically, fluorine atoms with the strongest electronegativity may form intermolecular aggregate interlockings through halogen-bonding interactions that restrict molecular motions and vibrations, thereby improving phosphorescent lifetime. With the aforementioned considerations, two distinct types of MOFs with/without fluorine atoms (namely, Ca-MOF and 5FCa-MOF) were synthesized. Notably, by introducing fluorine atoms into MOFs, fluorine-induced intermolecular aggregate interlockings effectively enhanced the phosphorescent lifetime of 5FCa-MOF exceeding 264 ms compared to that of Ca-MOF (103.94 ms). Remarkably, both MOFs displayed bright LPL to the naked eye after removal of the irradiation source, especially 5FCa-MOF which can last for about 2 s. By introducing fluorine atoms, 5FCa-MOF exhibits greatly enhanced ISC with a rate constant up to 4.1 × 106 s-1 and suppressed non-radiative decay down to 3.73 s-1, thereby extending the LPL time. The thus obtained LPL provides potential in information encryption, security systems, optical anticounterfeiting, and so on.
Collapse
Affiliation(s)
- Xu-Dong Xue
- Xi'an Innovation College of Yan'an University, Xi'an 710100, China
| | - Shi-Cheng Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Meng-Yang Li
- School of Physics, Xidian University, Xi'an 710071, China
| | - Zheng Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
24
|
Guo G, Li H, Yan Y, Zhao W, Gao Z, Cao H, Yan X, Li H, Xie G, Chen R, Tao Y, Huang W. A Dynamic H-Bonding Network Enables Stimuli-Responsive Color-Tunable Chiral Afterglow Polymer for 4D Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412100. [PMID: 39370766 DOI: 10.1002/adma.202412100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The development of stimuli-responsive and color-tunable chiral organic afterglow materials has attracted great attention but remains a daunting challenge. Here, a simple yet effective strategy through the construction of a dynamic H-bonding network is proposed to explore the multi-color stimuli-responsive chiral afterglow by doping a self-designed chiral phosphorescent chromophore into a polyvinyl alcohol matrix. A stimuli-responsive deep blue chiral afterglow system with a lifetime of up to 3.35 s, quantum yield of 25.0%, and luminescent dissymmetry factor of up to 0.05 is achieved through reversible formation and breakdown of the H-bonding network upon thermal-heating and water-fumigating. Moreover, multi-color stimuli-responsive chiral afterglow can be obtained by chiral and afterglow energy transfer, allowing the establishment of afterglow information displays and high-level 4D encryption. This work not only offers a facile platform to develop advanced stimuli-responsive materials but also opens a new avenue for developing next-generation optical information technology with enhanced functionality and responsiveness.
Collapse
Affiliation(s)
- Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yingmeng Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hengyu Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
25
|
Gao Z, Yan X, Jia Q, Zhang J, Guo G, Li H, Li H, Xie G, Tao Y, Chen R. Stimulating Chiral Selective Expression of Room Temperature Phosphorescence for Chirality Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410671. [PMID: 39377218 PMCID: PMC11600253 DOI: 10.1002/advs.202410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Chiral recognition is crucial for applications in chiral purity assessment and biomedical fields. However, achieving chiral recognition through visible room temperature phosphorescence remains challenging. Here, two chiral molecules, designated as host and guest are synthesized, which possess similar structural configurations. A viable strategy involving a chiral configuration-dependent energy transfer process to enable selective phosphorescence expression is proposed, thereby enabling chiral recognition in a host-guest doping system. The chiral and structural similarity between host and guest facilitates efficient Dexter energy transfer due to the reduced spatial distance between the molecules. This mechanism significantly enhances the intensity of red phosphorescence from the guest molecule, characterized by an emission peak at 612 nm and a prolonged lifetime of 32.7 ms. This work elucidates the mechanism of chiral-dependent energy transfer, demonstrating its potential for selectively expressing phosphorescence in chiral recognition.
Collapse
Affiliation(s)
- Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Qi Jia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Jingru Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| |
Collapse
|
26
|
Zhu J, Li C, Zhu Y, Hu J, Nan Y, Chen X, Liu KK, Wang H, Shan C, Xu W, Lou Q. Long-Wavelength Afterglow Emission with Nearly 100% Efficiency through Space-Confined Energy Transfer in Organic-Carbon Dot Hybrid. NANO LETTERS 2024; 24:13307-13314. [PMID: 39388536 DOI: 10.1021/acs.nanolett.4c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Long-wavelength afterglow emitters are crucial for optoelectronics and information security; however, it remains a challenge in achieving high luminescence efficiency due to the lack of effective modulation in electronic coupling and nonradiative transitions of singlet/triplet excitons. Here, we demonstrate an organic-carbon-dot (CD) hybrid system that operates via a space-confined energy transfer strategy to obtain bright afterglow emission centered at 600 nm with near-unity luminescence efficiency. Photophysical characterization and theoretical calculation confirm efficient luminescence can be assigned to the synergistic effect of intermolecular energy transfer from triplet excitons of CDs to singlets of subluminophores and the intense restraint in nonradiative decay losses of singlet/triplet-state excitons via rationally space-confined rigidification and amination modification. By utilizing precursor engineering, yellow and near-infrared afterglow centered at 575 and 680 nm with luminescence efficiencies of 94.4% and 45.9% has been obtained. Lastly, these highly emissive powders enable superior performance in lighting and information security.
Collapse
Affiliation(s)
- Jinyang Zhu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chao Li
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Junhua Hu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yang Nan
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Kai-Kai Liu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Hailong Wang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chongxin Shan
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Wen Xu
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, P. R. China
| | - Qing Lou
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
27
|
Gao H, Zhang T, Lei Y, Jiao D, Yu B, Yuan WZ, Ji J, Jin Q, Ding D. An Organophosphorescence Probe with Ultralong Lifetime and Intrinsic Tissue Selectivity for Specific Tumor Imaging and Guided Tumor Surgery. Angew Chem Int Ed Engl 2024; 63:e202406651. [PMID: 38781352 DOI: 10.1002/anie.202406651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Tingting Zhang
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Di Jiao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wang Zhang Yuan
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
28
|
He Z, Huang Z, Li T, Song J, Wu J, Ma X. Achieving Tunable Monomeric TADF and Aggregated RTP via Molecular Stacking. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54742-54750. [PMID: 39324810 DOI: 10.1021/acsami.4c14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Organic emitters with both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) have attracted widespread interest for their intriguing luminescent properties. Herein, a series of triphenylamine-substituted isoquinoline derivatives possessing monomeric TADF and aggregated RTP properties are reported. As the molecules exhibited various forms of π-π and charge transfer (CT) stacking with different intensities, inter/intramolecular CT can be meticulously modulated to achieve tunable TADF-RTP. Aggregated phosphorescence originates from intermolecular CT initiated by CT dimers, whereas monomeric TADF is facilitated by intramolecular CT enhanced by π-π dimers. Leveraging the properties of these molecules, luminescent materials with tunable TADF-RTP properties in multistates are obtained by molecular substitution position alignment, dealing with different solvents, grinding, adjusting concentration, changing polymer matrix, photoactivation, and heat treatment. This work is critical for a deeper understanding of construction and regulation of the TADF-RTP dual-channel emission, enabling the development of advanced optoelectronic devices with tailored emission properties.
Collapse
Affiliation(s)
- Zhenyi He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Tao Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Junfeng Wu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
29
|
Zhang J, Wang W, Bian Y, Wang Y, Lu X, Guo Z, Sun C, Li Z, Zhang X, Yuan J, Tao Y, Huang W, Chen R. Exciton Dissociation and Recombination Afford Narrowband Organic Afterglow Through Efficient FRET. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404769. [PMID: 39135413 DOI: 10.1002/adma.202404769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Indexed: 10/11/2024]
Abstract
Organic afterglow with long-persistent luminescence (LPL) after photoexcitation is highly attractive, but the realization of narrowband afterglow with small full-width at half-maximum (FWHM) is a huge challenge since it is intrinsically contradictory to the triplet- and solid-state emission nature of organic afterglow. Here, narrow-band, long-lived, and full-color organic LPL is realized by isolating multi-resonant thermally activated delayed fluorescent (MR-TADF) fluorophores in a glassy steroid-type host through a facile melt-cooling treatment. Such prepared host becomes capable of exciton dissociation and recombination (EDR) upon photoirradiation for both long-lived fluorescence and phosphorescence; and, the efficient Förster resonance energy transfer (FRET) from the host to various MR-TADF emitters leads to high-performance LPL, exhibiting small FWHM of 33 nm, long persistent time over 10 s, and facile color-tuning in a wide range from deep-blue to orange (414-600 nm). Moreover, with the extraordinary narrowband LPL and easy processability of the material, centimeter-scale flexible optical waveguide fibers and integrated FWHM/color/lifetime-resolved multilevel encryption/decryption devices have been designed and fabricated. This novel EDR and singlet/triplet-to-singlet FRET strategy to achieve excellent LPL performances illustrates a promising way for constructing flexible organic afterglow with easy preparation methods, shedding valuable scientific insights into the design of narrow-band emission in organic afterglow.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wuji Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yanfang Bian
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yike Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinchi Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhenli Guo
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengxi Sun
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zecai Li
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiao Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Yuan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
30
|
Chen X, Che M, Xu W, Wu Z, Suh YD, Wu S, Liu X, Huang W. Matrix-induced defects and molecular doping in the afterglow of SiO 2 microparticles. Nat Commun 2024; 15:8111. [PMID: 39285162 PMCID: PMC11405531 DOI: 10.1038/s41467-024-51591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024] Open
Abstract
A deep understanding of how the host matrix influences the afterglow properties of molecule dopants is crucial for designing advanced afterglow materials. Despite its appeal, the impact of defects on the afterglow performance in molecule-doped SiO2 matrices has remained largely unexplored. Herein, we detail the synthesis of monodisperse SiO2 microparticles by hydrothermally doping molecules, such as 4-phenylpyridine, 4,4'-bipyridine, and 1,4-bis(pyrid-4-yl)benzene. Our results demonstrate that hydrothermal reactions induce not only the formation of emissive defects in the SiO2 matrix but also enable molecule doping through SiO2 pseudomorphic transformation. Optical analyses reveal a remarkable afterglow activation of doped molecules, driven by a synergistic interplay of hydrogen bonding and physical fixation. Specifically, 4-phenylpyridine doping leads to an impressive 227- and 271-fold enhancement in fluorescence and afterglow, respectively, and an extraordinary 3711-fold enhancement in the afterglow lifetime of the resulting SiO2 MPs. We also document hybrid states involving molecule dopants and SiO2 defects, explaining energy transfer from molecule dopants to defects in both singlet and triplet states. The robust achievement of molecule doping provides flexibility to tailor excitation-dependent afterglow attributes while preserving angle-dependent structural colors, facilitating the creation of diverse building blocks for multiscale optical platforms for afterglow modulation and information encoding.
Collapse
Affiliation(s)
- Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Shaanxi Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Mengfen Che
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Shaanxi Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weidong Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Shaanxi Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Shaanxi Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering UNIST, Ulsan, 44919, Republic of South Korea
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2nd Linggong Road, Dalian, 116024, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Shaanxi Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Shaanxi Key Laboratory of Flexible Electronics & Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
31
|
Ding Y, Yang C, Gan F, Zhang G, Shen C, Qiu H. Ultrahigh-Temperature Long-Persistent Luminescence from B 2O 3-Confined Polycyclic Aromatic Compounds. J Am Chem Soc 2024; 146:25211-25220. [PMID: 39197149 DOI: 10.1021/jacs.4c09165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Organic molecules and polymers have recently been intensively explored for afterglow materials owing to their low cost and flexible design. However, they normally fail to generate long-persistent luminescence at elevated temperatures, mostly due to the fast deactivation of triplet excited states. Here, we report that polycyclic aromatic compounds (PACs) individually confined in a B2O3 crystalloid emit long-persistent luminescence at high temperatures up to 400 °C. This is facilely accomplished by dispersing a series of aromatic derivatives in an aqueous solution of boric acid, followed by drying, melting, and dehydrating. The resulting highly rigid and thermostable B2O3 crystalloid network provides a matched ultrastrong confinement effect and completely restricts the vibration and rotation of the molecularly distributed PACs even at ultrahigh temperatures and thereby prevents the nonradiative dissipation of triplet excitons and promotes the generation of ultrahigh-temperature long-persistent luminescence. The afterglow colors are responsive to both temperature and time, spanning from ultraviolet to near-infrared regions over a wide temperature range, which is substantially modulated by the subtle balance of phosphorescence and thermally activated delayed fluorescence. These features favor the creation of advanced afterglow materials for visual 3D temperature probing, anticounterfeiting, and data encryption in extreme environments.
Collapse
Affiliation(s)
- Yuanfei Ding
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenyu Yang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Zhang X, Suo H, Guo Y, Chen J, Wang Y, Wei X, Zheng W, Li S, Wang F. Continuous tuning of persistent luminescence wavelength by intermediate-phase engineering in inorganic crystals. Nat Commun 2024; 15:6797. [PMID: 39122769 PMCID: PMC11316030 DOI: 10.1038/s41467-024-51180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Multicolor tuning of persistent luminescence has been extensively studied by deliberately integrating various luminescent units, known as activators or chromophores, into certain host compounds. However, it remains a formidable challenge to fine-tune the persistent luminescence spectra either in organic materials, such as small molecules, polymers, metal-organic complexes and carbon dots, or in doped inorganic crystals. Herein, we present a strategy to delicately control the persistent luminescence wavelength by engineering sub-bandgap donor-acceptor states in a series of single-phase Ca(Sr)ZnOS crystals. The persistent luminescence emission peak can be quasi-linearly tuned across a broad wavelength range (500-630 nm) as a function of Sr/Ca ratio, achieving a precision down to ~5 nm. Theoretical calculations reveal that the persistent luminescence wavelength fine-tuning stems from constantly lowered donor levels accompanying the modified band structure by Sr alloying. Besides, our experimental results show that these crystals exhibit a high initial luminance of 5.36 cd m-2 at 5 sec after charging and a maximum persistent luminescence duration of 6 h. The superior, color-tunable persistent luminescence enables a rapid, programable patterning technique for high-throughput optical encryption.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Suo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- College of Physics Science & Technology, Hebei University, Baoding, 071002, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- College of Physics Science & Technology, Hebei University, Baoding, 071002, China
| | - Xiaohe Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Shuohan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
33
|
Chen T, Yan D. Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites. Nat Commun 2024; 15:5281. [PMID: 38902239 PMCID: PMC11190143 DOI: 10.1038/s41467-024-49654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Long persistent luminescence (LPL) has gained considerable attention for the applications in decoration, emergency signage, information encryption and biomedicine. However, recently developed LPL materials - encompassing inorganics, organics and inorganic-organic hybrids - often display monochromatic afterglow with limited functionality. Furthermore, triplet exciton-based phosphors are prone to thermal quenching, significantly restricting their high emission efficiency. Here, we show a straightforward wet-chemistry approach for fabricating multimode LPL materials by introducing both anion (Br-) and cation (Sn2+) doping into hexagonal CsCdCl3 all-inorganic perovskites. This process involves establishing new trapping centers from [CdCl6-nBrn]4- and/or [Sn2-nCdnCl9]5- linker units, disrupting the local symmetry in the host framework. These halide perovskites demonstrate afterglow duration time ( > 2,000 s), nearly full-color coverage, high photoluminescence quantum yield ( ~ 84.47%), and the anti-thermal quenching temperature up to 377 K. Particularly, CsCdCl3:x%Br display temperature-dependent LPL and time-valve controllable time-dependent luminescence, while CsCdCl3:x%Sn exhibit forward and reverse excitation-dependent Janus-type luminescence. Combining both experimental and computational studies, this finding not only introduces a local-symmetry breaking strategy for simultaneously enhancing afterglow lifetime and efficiency, but also provides new insights into the multimode LPL materials with dynamic tunability for applications in luminescence, photonics, high-security anti-counterfeiting and information storage.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
34
|
Li Y, Ren H, Chi C, Miao Y. Artificial Intelligence-Guided Gut-Microenvironment-Triggered Imaging Sensor Reveals Potential Indicators of Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307819. [PMID: 38569219 PMCID: PMC11187919 DOI: 10.1002/advs.202307819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/16/2024] [Indexed: 04/05/2024]
Abstract
The gut-brain axis has recently emerged as a crucial link in the development and progression of Parkinson's disease (PD). Dysregulation of the gut microbiota has been implicated in the pathogenesis of this disease, sparking growing interest in the quest for non-invasive biomarkers derived from the gut for early PD diagnosis. Herein, an artificial intelligence-guided gut-microenvironment-triggered imaging sensor (Eu-MOF@Au-Aptmer) to achieve non-invasive, accurate screening for various stages of PD is presented. The sensor works by analyzing α-Syn in the gut using deep learning algorithms. By monitoring changes in α-Syn, the sensor can predict the onset of PD with high accuracy. This work has the potential to revolutionize the diagnosis and treatment of PD by allowing for early intervention and personalized treatment plans. Moreover, it exemplifies the promising prospects of integrating artificial intelligence (AI) and advanced sensors in the monitoring and prediction of a broad spectrum of diseases and health conditions.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of Medicine of University of Electronic Science and Technology of ChinaNo. 32, West Section 2, First Ring Road, Qingyang DistrictChengdu610000China
- Institute of Communications Engineering & Department of Electrical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Hong‐Xia Ren
- Sichuan Technology & Business CollegeChengdu611800China
| | - Chong‐Yung Chi
- Institute of Communications Engineering & Department of Electrical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Yang‐Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of Medicine of University of Electronic Science and Technology of ChinaNo. 32, West Section 2, First Ring Road, Qingyang DistrictChengdu610000China
| |
Collapse
|
35
|
Jiao F, Lin C, Dong L, Mao X, Wu Y, Dong F, Zhang Z, Sun J, Li S, Yang X, Liu K, Wang L, Shan C. Silicon Vacancies Diamond/Silk/PVA Hierarchical Physical Unclonable Functions for Multi-Level Encryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308337. [PMID: 38572504 PMCID: PMC11186112 DOI: 10.1002/advs.202308337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Indexed: 04/05/2024]
Abstract
Physical unclonable functions (PUFs) have emerged as a promising encryption technology, utilizing intrinsic physical identifiers that offer enhanced security and tamper resistance. Multi-level PUFs boost system complexity, thereby improving system reliability and fault tolerance. However, crosstalk-free multi-level PUFs remain a persistent challenge. In this study, a hierarchical PUF system that harnesses the spontaneous phase separation of silk fibroin /PVA blend and the random distribution of silicon-vacancy diamonds within the blend is presented. The thermodynamic instability of phase separation and inherent unpredictability of diamond dispersion gives rise to intricate random patterns at two distinct scales, enabling time-efficient hierarchical authentication for cryptographic keys. These patterns are complementary yet independent, inherently resistant to replication and damage thus affording robust security and reliability to the proposed system. Furthermore, customized authentication algorithms are constructed: visual PUFs authentication utilizes neural network combined structural similarity index measure, while spectral PUFs authentication employs Hamming distance and cross-correlation bit operation. This hierarchical PUF system attains a high recognition rate without interscale crosstalk. Additionally, the coding capacity is exponentially enhanced using M-ary encoding to reinforce multi-level encryption. Hierarchical PUFs hold significant potential for immediate application, offering unprecedented data protection and cryptographic key authentication capabilities.
Collapse
Affiliation(s)
- Fuhang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Chaonan Lin
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Xin Mao
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Yi Wu
- MOE Key Laboratory of Fundamental Physical Quantities MeasurementHubei Key Laboratory of Gravitation and Quantum PhysicsPGMFSchool of PhysicsHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Fuying Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Zhenfeng Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Shunfang Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Xun Yang
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Kaikai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Lijun Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Chong‐Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Materials PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
36
|
Wang F, Wang Y, Guo R, Wu Y, Zhou S, Xiao H, Sun X. Achieving long-lived white circularly polarized luminescence from carbonized polymer dots via phosphorescence resonance energy transfer. Chem Commun (Camb) 2024; 60:5419-5422. [PMID: 38683641 DOI: 10.1039/d4cc00532e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Achieving white-light emission, especially long-lived white circularly polarized luminescence, is challenging. Herein, chiral phosphorescent carbonized polymer dots (CPDs) have been prepared by using chiral polymer sodium alginate and chiral small molecule L-lysine as precursors. Benefiting from the efficient triplet-to-singlet phosphorescence resonance energy transfer (PRET), CPD-based long-lived warm white CPL has been achieved for the first time. This study provides a universal strategy for the convenient and efficient preparation of CPD-based long-lived white CPL materials.
Collapse
Affiliation(s)
- Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Yushuang Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China.
| |
Collapse
|
37
|
Li Z, Yue Q, He Y, Zhang H. Achieving Colorful Ultralong-Lifetime Room-Temperature Phosphorescence Based on Benzocarbazole Derivatives through Resonance Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38696539 DOI: 10.1021/acsami.4c04921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
It is of practical significance to develop polymer-based room-temperature phosphorescence (RTP) materials with ultralong lifetime and multicolor afterglow. Herein, the benzocarbazole derivatives were selected and combined with a poly(vinyl alcohol) (PVA) matrix by a coassembly strategy. Owing to the hydrogen-bonding interactions between benzocarbazole derivatives and the PVA matrix, the nonradiative transition and the quenching of triplet excitons are effectively inhibited. Therefore, the maximum phosphorescence emission lifetime of 2202.17 ms from ABfCz-PVA and the maximum phosphorescence quantum efficiency of 34.97% from ABtCz-PVA were obtained, respectively. In addition, commercially available dye molecules were selected to construct phosphorescent resonance energy transfer (PRET) systems for energy acceptors, enabling full-color afterglow emission in blue, green, yellow, red, and even white. Based on the characteristics of prepared RTP materials, multifunctional applications to flexibility, information encryption, and erasable drawing were deeply explored.
Collapse
Affiliation(s)
- Zhizheng Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qian Yue
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ye He
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Guo D, Wang W, Zhang K, Chen J, Wang Y, Wang T, Hou W, Zhang Z, Huang H, Chi Z, Yang Z. Visible-light-excited robust room-temperature phosphorescence of dimeric single-component luminophores in the amorphous state. Nat Commun 2024; 15:3598. [PMID: 38678049 PMCID: PMC11055858 DOI: 10.1038/s41467-024-47937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Organic room temperature phosphorescence (RTP) has significant potential in various applications of information storage, anti-counterfeiting, and bio-imaging. However, achieving robust organic RTP emission of the single-component system is challenging to overcome the restriction of the crystalline state or other rigid environments with cautious treatment. Herein, we report a single-component system with robust persistent RTP emission in various aggregated forms, such as crystal, fine powder, and even amorphous states. Our experimental data reveal that the vigorous RTP emissions rely on their tight dimers based on strong and large-overlap π-π interactions between polycyclic aromatic hydrocarbon (PAH) groups. The dimer structure can offer not only excitons in low energy levels for visible-light excited red long-lived RTP but also suppression of the nonradiative decays even in an amorphous state for good resistance of RTP to heat (up to 70 °C) or water. Furthermore, we demonstrate the water-dispersible nanoparticle with persistent RTP over 600 nm and a lifetime of 0.22 s for visible-light excited cellular and in-vivo imaging, prepared through the common microemulsion approach without overcaution for nanocrystal formation.
Collapse
Affiliation(s)
- Danman Guo
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wen Wang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kaimin Zhang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jinzheng Chen
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuyuan Wang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Tianyi Wang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wangmeng Hou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhen Zhang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Huahua Huang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhenguo Chi
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhiyong Yang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functuional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming, 525000, P.R. China.
| |
Collapse
|
39
|
Cao Y, Wang D, Zhang Y, Li G, Gao C, Li W, Chen X, Chen X, Sun P, Dong Y, Cai Z, He Z. Multi-Functional Integration of Phosphor, Initiator, and Crosslinker for the Photo-Polymerization of Flexible Phosphorescent Polymer Gels. Angew Chem Int Ed Engl 2024; 63:e202401331. [PMID: 38456641 DOI: 10.1002/anie.202401331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
A general approach to constructing room temperature phosphorescence (RTP) materials involves the incorporation of a phosphorescent emitter into a rigid host or polymers with high glass transition temperature. However, these materials often suffer from poor processability and suboptimal mechanical properties, limiting their practical applications. In this work, we developed benzothiadiazole-based dialkene (BTD-HEA), a multifunctional phosphorescent emitter with a remarkable yield of intersystem crossing (ΦISC, 99.83 %). Its high triplet exciton generation ability and dialkene structure enable BTD-HEA to act as a photoinitiator and crosslinker, efficiently initiating the polymerization of various monomers within 120 seconds. A range of flexible phosphorescence gels, including hydrogels, organogels, ionogels, and aerogels were fabricated, which exhibit outstanding stretchability and recoverability. Furthermore, the unique fluorescent-phosphorescent colorimetric properties of the gels provide a more sensitive method for the visual determination of the polymerization process. Notably, the phosphorescent emission intensity of the hydrogel can be increased by the formation of ice, allowing for the precise detection of hydrogel freezing. The versatility of this emitter paves the way for fabricating various flexible phosphorescence gels with diverse morphologies using microfluidics, film-shearing, roll coating process, and two/three-dimensional printing, showcasing its potential applications in the fields of bioimaging and bioengineering.
Collapse
Affiliation(s)
- Yanyan Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dan Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongfeng Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Gengchen Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Gao
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Li
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoting Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaofei Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengxu Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiyuan He
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
40
|
Zeng M, Wang W, Zhang S, Gao Z, Yan Y, Liu Y, Qi Y, Yan X, Zhao W, Zhang X, Guo N, Li H, Li H, Xie G, Tao Y, Chen R, Huang W. Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore. Nat Commun 2024; 15:3053. [PMID: 38594234 PMCID: PMC11004163 DOI: 10.1038/s41467-024-47240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Creating circularly polarized organic afterglow system with elevated triplet energy levels, suppressed non-radiative transitions, and effective chirality, which are three critical prerequisites for achieving blue circularly polarized afterglow, has posed a formidable challenge. Herein, a straightforward approach is unveiled to attain blue circularly polarized afterglow materials by covalently self-confining isolated chiral chromophore within polymer matrix. The formation of robust hydrogen bonds within the polymer matrix confers a distinctly isolated and stabilized molecular state of chiral chromophores, endowing a blue emission band at 414 nm, lifetime of 3.0 s, and luminescent dissymmetry factor of ~ 10-2. Utilizing the synergistic afterglow and chirality energy transfer, full-color circularly polarized afterglow systems are endowed by doping colorful fluorescent molecules into designed blue polymers, empowering versatile applications. This work paves the way for the streamlined design of blue circularly polarized afterglow materials, expanding the horizons of circularly polarized afterglow materials into various domains.
Collapse
Affiliation(s)
- Mingjian Zeng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Weiguang Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Shuman Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yingmeng Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yitong Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Yulong Qi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Wei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Xin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Ningning Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Tele communications, Nanjing, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, Shanxi, China.
| |
Collapse
|
41
|
Chen Q, Qu L, Hou H, Huang J, Li C, Zhu Y, Wang Y, Chen X, Zhou Q, Yang Y, Yang C. Long lifetimes white afterglow in slightly crosslinked polymer systems. Nat Commun 2024; 15:2947. [PMID: 38580680 PMCID: PMC10997626 DOI: 10.1038/s41467-024-47378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Intrinsic polymer room-temperature phosphorescence (IPRTP) materials have attracted considerable attention for application in flexible electronics, information encryption, lighting displays, and other fields due to their excellent processabilities and luminescence properties. However, achieving multicolor long-lived luminescence, particularly white afterglow, in undoped polymers is challenging. Herein, we propose a strategy of covalently coupling different conjugated chromophores with poly(acrylic acid (AA)-AA-N-succinimide ester) (PAA-NHS) by a simple and rapid one-pot reaction to obtain pure polymers with long-lived RTPs of various colors. Among these polymers, the highest phosphorescence quantum yield of PAPHE reaches 14.7%. Furthermore, the afterglow colors of polymers can be modulated from blue to red by introducing three chromophores into them. Importantly, the acquired polymer TPAP-514 exhibits a white afterglow at room temperature with the chromaticity coordinates (0.33, 0.33) when the ratio of chromophores reaches a suitable value owing to the three-primary-color mechanism. Systematic studies prove that the emission comes from the superposition of different triplet excited states of the three components. Moreover, the potential applications of the obtained polymers in light-emitting diodes and dynamic anti-counterfeiting are explored. The proposed strategy provides a new idea for constructing intrinsic polymers with diverse white-light emission RTPs.
Collapse
Affiliation(s)
- Qingao Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui Hou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiayue Huang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chen Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ying Zhu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yongkang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaohong Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Zhou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
42
|
Zhou Y, Zhang P, Liu Z, Yan W, Gao H, Liang G, Qin W. Sunlight-Activated Hour-Long Afterglow from Transparent and Flexible Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312439. [PMID: 38281100 DOI: 10.1002/adma.202312439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Afterglow materials featuring long emission durations ranging from milliseconds to hours have garnered increasing interest owing to their potential applications in sensing, bioimaging, and anti-counterfeiting. Unfortunately, polymeric materials rarely exhibit afterglow properties under ambient conditions because of the rapid nonradiative decay rate of triplet excitons. In this study, hour-long afterglow (HLA) polymer films are fabricated using a facile molecular doping strategy. Flexible and transparent polymer films emitted a bright afterglow lasting over 11 h at room temperature in air, which is one of the best performances among the organic afterglow materials reported to date. Intriguingly, HLA polymer films can be activated by sunlight, and their cyan afterglow in air can be readily observed by the naked eye. Moreover, the HLA color of the polymer films could be tuned from cyan to red through the Förster resonance energy transfer mechanism. Their application in flexible displays and information storage has also been demonstrated. With remarkable advantages, including an hour-long and bright afterglow, tunable afterglow colors, superior flexibility and transparency, and ease of fabrication, the HLA polymer paves the way for the practical application of afterglow materials in the engineering sector.
Collapse
Affiliation(s)
- Yusheng Zhou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Zhang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Liu
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenqing Yan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Haiyang Gao
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guodong Liang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Qin
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
43
|
Wang F, Zhou S, Zhang Y, Wang Y, Guo R, Xiao H, Sun X. Chiral Phosphorescent Carbonized Polymer Dots Relayed Light-Harvesting System for Color-Tunable Circularly Polarized Room Temperature Phosphorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306969. [PMID: 37994220 DOI: 10.1002/smll.202306969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Carbonized polymer dots (CPDs) with a circularly polarized fluorescence property have received increasing attention in recent years. However, it is still a great challenge to construct circularly polarized room-temperature phosphorescence (CPRTP) CPDs. Herein, a simple approach to the synthesis of intrinsically CPRTP CPDs for the first time by utilizing sodium alginate and l-/d-arginine as precursors under relatively mild reaction conditions is presented. Notably, the CPDs exhibit both chirality and green RTP in solid states. Furthermore, color-tunable CPRTP is successfully achieved by engineering chiral light-harvesting systems based on circularly polarized phosphorescence resonance energy transfer (C-PRET) where the CPDs with green RTP function as an initiator of chirality and light absorbance, and commercially available fluorescent dyes with different emission colors ranging from yellow to red serve as the terminal acceptors. Through one-step or sequential C-PRET, the light-harvesting systems can simultaneously furnish energy transfer and chirality transmission/amplification. Given the multicolor long afterglow, lifetime-tunable, and CPRTP properties, their potential applications in multiple information encryption are demonstrated.
Collapse
Affiliation(s)
- Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Youxin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| |
Collapse
|
44
|
Li Q, Zhao H, Yang D, Meng S, Gu H, Xiao C, Li Y, Cheng D, Qu S, Zeng H, Zhu X, Tan J, Ding J. Direct in Situ Fabrication of Multicolor Afterglow Carbon Dot Patterns with Transparent and Traceless Features via Laser Direct Writing. NANO LETTERS 2024; 24:3028-3035. [PMID: 38411557 DOI: 10.1021/acs.nanolett.3c04192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Multicolor afterglow patterns with transparent and traceless features are important for the exploration of new functionalities and applications. Herein, we report a direct in situ patterning technique for fabricating afterglow carbon dots (CDs) based on laser direct writing (LDW) for the first time. We explore a facile step-scanning method that reduces the heat-affected zone and avoids uneven heating, thus producing a fine-resolution afterglow CD pattern with a minimum line width of 80 μm. Unlike previous LDW-induced luminescence patterns, the patterned CD films are traceless and transparent, which is mainly attributed to a uniform heat distribution and gentle temperature rise process. Interestingly, by regulating the laser parameters and CD precursors, an increased carbonization and oxidation degree of CDs could be obtained, thus enabling time-dependent, tunable afterglow colors from blue to red. In addition, we demonstrate their potential applications in the in situ fabrication of flexible and stretchable optoelectronics.
Collapse
Affiliation(s)
- Qijun Li
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Hongjia Zhao
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Daiqi Yang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shuai Meng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hailing Gu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chi Xiao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yi Li
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dengke Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, People's Republic of China
| | - Haibo Zeng
- Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xingwang Zhu
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jing Tan
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jianning Ding
- School of Mechanical Engineering; Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, People's Republic of China
| |
Collapse
|
45
|
Miao Y, Lin F, Guo D, Chen J, Zhang K, Wu T, Huang H, Chi Z, Yang Z. Stable and ultralong room-temperature phosphorescent copolymers with excellent adhesion, resistance, and toughness. SCIENCE ADVANCES 2024; 10:eadk3354. [PMID: 38457505 PMCID: PMC11809654 DOI: 10.1126/sciadv.adk3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
Developing stable room-temperature phosphorescence (RTP) emission without being affected by moisture and mechanical force remains a great challenge for purely organic systems, due to their triplet states sensitive to the infinitesimal motion of phosphors and the oxygen quencher. We report a kind of highly robust phosphorescent systems, by doping a rigid phosphor into a copolymer (polyvinyl butyral resin) matrix with a balance of mutually exclusive features, including a rigidly hydrophilic hydrogen bond network and elastically hydrophobic constituent. Impressively, these RTP polymeric films have superior adhesive ability on various surfaces and showed reversible photoactivated RTP with lifetimes up to 5.82 seconds, which can be used as in situ modulated anticounterfeit labels. They can maintain a bright afterglow for over 25.0 seconds under various practical conditions, such as storage in refrigerators, soaking in natural water for a month, or even being subjected to strong collisions and impacts. These findings provide deep insights for developing stable ultralong RTP materials with desirable comprehensive performance.
Collapse
Affiliation(s)
- Yiling Miao
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Faxu Lin
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Danman Guo
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jinzheng Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Kaimin Zhang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Tongfei Wu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Huahua Huang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhenguo Chi
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhiyong Yang
- PCFM Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Optical Chemicals, XinHuaYue Group, Maoming 525000, P.R. China
| |
Collapse
|
46
|
Liang Y, Hu P, Zhang H, Yang Q, Wei H, Chen R, Yu J, Liu C, Wang Y, Luo S, Shi G, Chi Z, Xu B. Enabling Highly Robust Full-Color Ultralong Room-Temperature Phosphorescence and Stable White Organic Afterglow from Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2024; 63:e202318516. [PMID: 38241198 DOI: 10.1002/anie.202318516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
In this work, full-color and stable white organic afterglow materials with outstanding water, organic solvents, and temperature resistances have been developed for the first time by embedding the selected polycyclic aromatic hydrocarbons into melamine-formaldehyde polymer via solution polymerization. The afterglow quantum yields and lifetimes of the resulting polymer films were up to 22.7 % and 4.83 s, respectively, under ambient conditions. For the coronene-doped sample, its afterglow color could be linearly tuned between yellow and blue by adjusting the temperature, and it could still emit an intense blue afterglow with a lifetime of 0.68 s at 440 K. Moreover, the films showed a bright and stable white afterglow at 370 K with a lifetime of 2.80 s and maintained an excellent afterglow performance after soaking in water and organic solvents for more than 150 days. In addition, the application potential of the polymer films in information encryption and anti-counterfeiting was also demonstrated.
Collapse
Affiliation(s)
- Yaohui Liang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Pengtao Hu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingchen Yang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Hengshan Wei
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Ruitai Chen
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Jiahai Yu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Yuhai Wang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Suilian Luo
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhenguo Chi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bingjia Xu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
47
|
Wang J, Yang Y, Sun X, Li X, Zhang L, Li Z. Management of triplet excitons transition: fine regulation of Förster and dexter energy transfer simultaneously. LIGHT, SCIENCE & APPLICATIONS 2024; 13:35. [PMID: 38291023 PMCID: PMC10828450 DOI: 10.1038/s41377-023-01366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
Understanding and management of triplet excitons transition in the same molecule remain a great challenge. Hence, for the first time, by host engineering, manageable transitions of triplet excitons in a naphthalimide derivative NDOH were achieved, and monitored through the intensity ratio (ITADF/IRTP) between thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP). Energy differences between lowest triplet excited states of host and guest were changed from 0.03 to 0.17 eV, and ITADF/IRTP of NDOH decreased by 200 times, thus red shifting the afterglow color. It was proposed that shorter conjugation length led to larger band gaps of host materials, thus contributing to efficient Dexter and inefficient Förster energy transfer. Interestingly, no transition to singlet state and only strongest RTP with quantum yield of 13.9% could be observed, when PBNC with loosest stacking and largest band gap acted as host. This work provides novel insight for the management and prediction of triplet exciton transitions and the development of smart afterglow materials.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xinnan Sun
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liyao Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430072, China.
- Joint School of National University of Singapore, Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
48
|
Dai XY, Song Q, Zhou WL, Liu Y. Cucurbit[8]uril Confinement-Based Secondary Coassembly for High-Efficiency Phosphorescence Energy Transfer Behavior. JACS AU 2024; 4:216-227. [PMID: 38274263 PMCID: PMC10806769 DOI: 10.1021/jacsau.3c00642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Aqueous supramolecular long-lived near-infrared (NIR) material is highly attractive but still remains great challenge. Herein, we report cucurbit[8]uril confinement-based secondary coassembly for achieving NIR phosphorescence energy transfer in water, which is fabricated from dicationic dodecyl-chain-bridged 4-(4-bromophenyl)-pyridine derivative (G), cucurbit[8]uril (CB[8]), and polyelectrolyte poly(4-styrene-sulfonic sodium) (PSS) via the hierarchical confinement strategy. As compared to the dumbbell-shaped G, the formation of unprecedented linear polypseudorotaxane G⊂CB[8] with nanofiber morphology engenders an emerging phosphorescent emission at 510 nm due to the macrocyclic confinement effect. Moreover, benefiting from the following secondary assembly confinement, such tight polypseudorotaxane G⊂CB[8] can further assemble with anionic polyelectrolyte PSS to yield uniform spherical nanoparticle, thereby significantly strengthening phosphorescence performance with an extended lifetime (i.e., 2.39 ms, c.f., 45.0 μs). Subsequently, the organic dye Rhodamine 800 serving as energy acceptor can be slightly doped into the polyelectrolyte assembly, which enables the occurrence of efficient phosphorescence energy transfer process with efficiency up to 80.1% at a high donor/acceptor ratio, and concurrently endows the final system with red-shifted and long-lived NIR emission (710 nm). Ultimately, the as-prepared assembly is successfully exploited as versatile imaging agent for NIR window labeling and detecting in living cells.
Collapse
Affiliation(s)
- Xian-Yin Dai
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Qi Song
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Wei-Lei Zhou
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
49
|
Zuo M, Li T, Feng H, Wang K, Zhao Y, Wang L, Hu XY. Chaperone Mimetic Strategy for Achieving Organic Room-Temperature Phosphorescence based on Confined Supramolecular Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306746. [PMID: 37658491 DOI: 10.1002/smll.202306746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Indexed: 09/03/2023]
Abstract
The development of organic materials that deliver room-temperature phosphorescence (RTP) is highly interesting for potential applications such as anticounterfeiting, optoelectronic devices, and bioimaging. Herein, a molecular chaperone strategy for controlling isolated chromophores to achieve high-performance RTP is demonstrated. Systematic experiments coupled with theoretical evidence reveal that the host plays a similar role as a molecular chaperone that anchors the chromophores for limited nonradiative decay and directs the proper conformation of guests for enhanced intersystem crossing through noncovalent interactions. For deduction of structure-property relationships, various structure-related descriptors that correlate with the RTP performance are identified, thus offering the possibility to quantitatively design and predict the phosphorescent behaviors of these systems. Furthermore, application in thermal printing is well realized for these RTP materials. The present work discloses an effective strategy for efficient construction of organic RTP materials, delivering a modular model which is expected to help expand the diversity of desirable RTP systems.
Collapse
Affiliation(s)
- Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Haohui Feng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Yue Zhao
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| |
Collapse
|
50
|
Dai XY, Huo M, Liu Y. Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat Rev Chem 2023; 7:854-874. [PMID: 37993737 DOI: 10.1038/s41570-023-00555-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/24/2023]
Abstract
Phosphorescence energy transfer systems have been applied in encryption, biomedical imaging and chemical sensing. These systems exhibit ultra-large Stokes shifts, high quantum yields and are colour-tuneable with long-wavelength afterglow fluorescence (particularly in the near-infrared) under ambient conditions. This review discusses triplet-to-singlet PRET or triplet-to-singlet-to-singlet cascaded PRET systems based on macrocyclic or assembly-confined purely organic phosphorescence introducing the critical toles of supramolecular noncovalent interactions in the process. These interactions promote intersystem crossing, restricting the motion of phosphors, minimizing non-radiative decay and organizing donor-acceptor pairs in close proximity. We discuss the applications of these systems and focus on the challenges ahead in facilitating their further development.
Collapse
Affiliation(s)
- Xian-Yin Dai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Man Huo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China.
| |
Collapse
|