1
|
Chen J, Zheng Y, Wang Z, Gao Q, Hao K, Chen X, Ke N, Lv X, Weng J, Zhong Y, Huang Z, Fu M, Zhao L, Lin F, Mi H, Tang H, Yu C, Huang Y. Development a glycosylated extracellular vesicle-derived miRNA Signature for early detection of esophageal squamous cell carcinoma. BMC Med 2025; 23:39. [PMID: 39849483 PMCID: PMC11755925 DOI: 10.1186/s12916-025-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is often diagnosed at an advanced stage due to the lack of non-invasive early detection tools, which significantly impacts patient prognosis. Given that glycosylation alterations especially high sialylation and fucosylation, frequently occur during cellular malignant transformation, but their roles are not elucidated. We examined alterations in disease-specific glycosylated extracellular vesicles (EVs)-derived miRNAs in the serum of ESCC patients, evaluating their utility as diagnostic biomarkers. METHODS A total of 371 ESCC and 303 healthy controls (HCs) were recruited in this multi-stage, multicentre case-control study. Fucosylated (Fuc-) and sialylated (Sia-) EVs were isolated utilizing Lentil lectin (LCA) and wheat germ lectin (WGA)-coated magnetic beads, respectively. The glycosylated EVs-derived miRNAs-based signature (RiskscoreFuc-&Sia-) was established through logistic regression in a training cohort and subsequently validated in an internal and an external multicentre cohort. RESULTS The RiskscoreFuc-&Sia- effectively identified ESCC across all stages, demonstrating high AUC values in training (0.980), internal validation (0.957), and external multicentre validation (0.973) cohorts, markedly higher than carcinoembryonic antigen (CEA) (AUC = 0.769, training cohort; AUC = 0.749, internal validation cohort; AUC = 0.765, external validation cohort). Notably, this score exhibited robust accuracy in detecting CEA (-) ESCC cases (CEA < 5 ng/ml) (AUC = 0.974, training & internal cohort; AUC = 0.973, external multicentre validation cohort). Additionally, it displayed strong efficacy in differentiating early-stage ESCC patients (AUC = 0.982, training cohort; AUC = 0.977, external multicentre validation cohort). CONCLUSIONS Our study illustrates the effectiveness of glycosylated EVs capture strategy for isolating tumour-specific EVs. The unique glycosylated EVs-derived miRNAs-based signature shows the optimal potential as a biomarker for early detection of ESCC.
Collapse
Affiliation(s)
- Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yue Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Zhen Wang
- Department of Clinical Laboratory, Shishi Hospital, Fujian, 362700, Shishi, China
| | - Qi Gao
- Research and development center, Beijing Youngen Technology Co. Ltd, Beijing, 102600, People's Republic of China
| | - Kun Hao
- Research and development center, Beijing Hotgen Biotech Co., Ltd, Beijing, 102600, People's Republic of China
| | - Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Scientific Research, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
| | - Nantian Ke
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Xiang Lv
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jiamiao Weng
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yuhong Zhong
- Department of Clinical Laboratory, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310009, China
| | - Zhixin Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fujian, Fuzhou, 350108, China
| | - Miao Fu
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Zhejiang, 321000, Jinhua, China
| | - Lilan Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
| | - Fan Lin
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
- Fujian Provincial Centre for Geriatrics, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China
| | - Hui Mi
- Departments of Clinical Laboratory, Changzhi People's Hospital, Shanxi, Changzhi, 046000, China
| | - Haijun Tang
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
| | - Chundong Yu
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Centre for Cell Signalling Network, School of Life Sciences, Xiamen University, Fujian, Xiamen, 361102, China.
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fujian, Fuzhou, 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
- Central Laboratory, Fujian Provincial Hospital, Fujian, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118583. [PMID: 39353793 DOI: 10.1016/j.atherosclerosis.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.
Collapse
Affiliation(s)
- Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| | - Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Philips C, Terrie L, Muylle E, Thorrez L. Determination of DNA content as quality control in decellularized tissues: challenges and pitfalls. Regen Biomater 2024; 11:rbae123. [PMID: 39569078 PMCID: PMC11578598 DOI: 10.1093/rb/rbae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Decellularized organs and tissues are emerging within the field of regenerative medicine to meet the growing demand for organ and tissue transplantation. Quality control of these acellular matrices prior to transplantation is of paramount importance to ensure the absence of an adverse reaction. In particular, thorough evaluation of the DNA content is essential but also poses technical challenges. Therefore, in this study, we compared different methods for quantitative and qualitative evaluation of DNA content in native and decellularized skeletal muscle tissue to identify strengths and weaknesses for each. Histological analysis revealed that Feulgen staining is more sensitive and robust than the commonly used hematoxylin-eosin and 4',6-diamidino-2-phenylindole staining for detection of remaining nuclear material. Furthermore, gel electrophoresis allowed to identify the quality and length of remaining DNA fragments. The results of the quantitative analysis indicated that direct measurement of DNA content in tissue lysates is preferred over silica-based extraction methods, since the latter resulted in the loss of small DNA fragments during extraction. Moreover, a weight loss correction factor should be implemented to take into account the impact of the decellularization on the extracellular matrix. With regard to the detection method, the results revealed that a fluorescence-based approach is more accurate than the use of UV/VIS absorbance. Through combination of the proposed methods, it should be possible to achieve a more standardized evaluation of novel acellular matrices in terms of DNA content and to enhance the predictability of clinical success.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Lisanne Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Ewout Muylle
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| |
Collapse
|
4
|
Ban E, Kim A. PicoGreen assay for nucleic acid quantification - Applications, challenges, and solutions. Anal Biochem 2024; 692:115577. [PMID: 38789006 DOI: 10.1016/j.ab.2024.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Various analytical methods and reagents have been employed for nucleic acid analysis in cells, biological fluids, and formulations. Standard techniques like gel electrophoresis and qRT-PCR are widely used for qualitative and quantitative nucleic acid analysis. However, these methods can be time-consuming and labor-intensive, with limitations such as inapplicability to small RNA at low concentrations and high costs associated with qRT-PCR reagents and instruments. As an alternative, PicoGreen (PG) has emerged as a valuable method for the quantitative analysis of nucleic acids. PG, a fluorescent dye, enables the quantitation of double-stranded DNA (dsDNA) or double-stranded RNA, including miRNA mimic and siRNA, in solution. It is also applicable to DNA and RNA analysis within cells using techniques like FACS and fluorescence microscopy. Despite its advantages, PG's fluorescence intensity is affected by various experimental conditions, such as pH, salts, and chemical reagents. This review explores the recent applications of PG as a rapid, cost-effective, robust, and accurate assay tool for nucleic acid quantification. We also address the limitations of PG and discuss approaches to overcome these challenges, recognizing the expanding range of its applications.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam, 13488, South Korea.
| |
Collapse
|
5
|
Boggi B, Sharpen JDA, Taylor G, Drosou K. A novel integrated extraction protocol for multi-omic studies in heavily degraded samples. Sci Rep 2024; 14:17477. [PMID: 39080329 PMCID: PMC11289452 DOI: 10.1038/s41598-024-67104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
The combination of multi-omic techniques, such as genomics, transcriptomics, proteomics, metabolomics and epigenomics, has revolutionised studies in medical research. These techniques are employed to support biomarker discovery, better understand molecular pathways and identify novel drug targets. Despite concerted efforts in integrating omic datasets, there is an absence of protocols that integrate all four biomolecules in a single extraction process. Here, we demonstrate for the first time a minimally destructive integrated protocol for the simultaneous extraction of artificially degraded DNA, proteins, lipids and metabolites from pig brain samples. We used an MTBE-based approach to separate lipids and metabolites, followed by subsequent isolation of DNA and proteins. We have validated this protocol against standalone extraction protocols and show comparable or higher yields of all four biomolecules. This integrated protocol is key to facilitating the preservation of irreplaceable samples while promoting downstream analyses and successful data integration by removing bias from univariate dataset noise and varied distribution characteristics.
Collapse
Affiliation(s)
- Byron Boggi
- Faculty of Biology, Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Jack D A Sharpen
- Faculty of Biology, Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - George Taylor
- Faculty of Biology, Medicine and Health, Research and Innovation, University of Manchester, Manchester, M13 9PG, UK
| | - Konstantina Drosou
- Faculty of Biology, Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
6
|
Versmessen N, Van Simaey L, Negash AA, Vandekerckhove M, Hulpiau P, Vaneechoutte M, Cools P. Comparison of DeNovix, NanoDrop and Qubit for DNA quantification and impurity detection of bacterial DNA extracts. PLoS One 2024; 19:e0305650. [PMID: 38885212 PMCID: PMC11182499 DOI: 10.1371/journal.pone.0305650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Accurate DNA quantification is key for downstream application including library preparations for whole genome sequencing (WGS) and the quantification of standards for quantitative PCR. Two commonly used technologies for nucleic acid quantification are based on spectrometry, such as NanoDrop, and fluorometry, such as Qubit. The DS-11+ Series spectrophotometer/fluorometer (DeNovix) is a UV spectrophotometry-based instrument and is a relatively new spectrophotometric method but has not yet been compared to established platforms. Here, we compared three DNA quantification platforms, including two UV spectrophotometry-based techniques (DeNovix and NanoDrop) and one fluorometry-based approach (Qubit). We used genomic prokaryotic DNA extracted from Streptococcus pneumoniae using a Roche DNA extraction kit. We also evaluated purity assessment and effect of a single freeze-thaw cycle. Spectrophotometry-based methods reported 3 to 4-fold higher mean DNA concentrations compared to Qubit, both before and after freezing. The ratio of DNA concentrations assessed by spectrophotometry on the one hand, and Qubit on the other hand, was function of the A260/280. In case DNA was pure (A260/280 between 1.7 and 2.0), the ratio DeNovix or Nanodrop vs. Qubit was close or equal to 2, while this ratio showed an incline for DNA with increasing A260/280 values > 2.0. The A260/280 and A260/230 purity ratios exhibited negligible variation across spectrophotometric methods and freezing conditions. The comparison of DNA concentrations from before and after freezing revealed no statistically significant disparities for each technique. DeNovix exhibited the highest Spearman correlation coefficient (0.999), followed by NanoDrop (0.81), and Qubit (0.77). In summary, there is no difference between DeNovix and NanoDrop in estimated gDNA concentrations of S. pneumoniae, and the spectrophotometry methods estimated close or equal to 2 times higher concentrations compared to Qubit for pure DNA.
Collapse
Affiliation(s)
- Nick Versmessen
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Leen Van Simaey
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Paco Hulpiau
- HOWEST University of Applied Sciences, Bruges, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Piet Cools
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Harikai N, Takada Y, Saito M, Zaima K, Shinomiya K. Relationship Between Amplicon Size and Heat Conditions in Polymerase Chain Reaction Detection of DNA Degraded by Autoclaving. Biopreserv Biobank 2024; 22:268-274. [PMID: 37870764 DOI: 10.1089/bio.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
This study examined the influence of heat exposure on DNA samples during polymerase chain reaction (PCR) detection. In this study, λDNA samples, as model DNA, were exposed to 105°C for 3-90 minutes or to 105°C-115°C for 15 minutes by autoclaving. The exposed samples were subjected to real-time PCR using nine primer sets with amplicon sizes of 45-504 bp. Regarding DNA samples exposed to 105°C by autoclaving, the data showed negative correlations between the logarithm of λDNA concentration (log λDNA) calculated using real-time PCR and exposure duration and a good relationship between the slope of the regression line and amplicon size. Regarding λDNA samples exposed to heat for 15 minutes, the data showed negative correlations between the log λDNA and exposure temperature and a good relationship between the slope of the regression line and amplicon size. These results showed that the equations used in this study could predict the degree of degradation in λDNA samples by autoclaving, and the PCR detection levels of the DNA at each amplicon size.
Collapse
Affiliation(s)
- Naoki Harikai
- School of Pharmacy, Nihon University, Funabashi, Japan
| | - Yuki Takada
- School of Pharmacy, Nihon University, Funabashi, Japan
| | - Misaki Saito
- School of Pharmacy, Nihon University, Funabashi, Japan
| | | | | |
Collapse
|
8
|
Plekhanov AA, Kozlov DS, Shepeleva AA, Kiseleva EB, Shimolina LE, Druzhkova IN, Plekhanova MA, Karabut MM, Gubarkova EV, Gavrina AI, Krylov DP, Sovetsky AA, Gamayunov SV, Kuznetsova DS, Zaitsev VY, Sirotkina MA, Gladkova ND. Tissue Elasticity as a Diagnostic Marker of Molecular Mutations in Morphologically Heterogeneous Colorectal Cancer. Int J Mol Sci 2024; 25:5337. [PMID: 38791375 PMCID: PMC11120711 DOI: 10.3390/ijms25105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of molecular mutations in colorectal cancer (CRC) is a decisive factor in selecting the most effective first-line therapy. However, molecular analysis is routinely performed only in a limited number of patients with remote metastases. We propose to use tissue stiffness as a marker of the presence of molecular mutations in CRC samples. For this purpose, we applied compression optical coherence elastography (C-OCE) to calculate stiffness values in regions corresponding to specific CRC morphological patterns (n = 54). In parallel to estimating stiffness, molecular analysis from the same zones was performed to establish their relationships. As a result, a high correlation between the presence of KRAS/NRAS/BRAF driver mutations and high stiffness values was revealed regardless of CRC morphological pattern type. Further, we proposed threshold stiffness values for label-free targeted detection of molecular alterations in CRC tissues: for KRAS, NRAS, or BRAF driver mutation-above 803 kPa (sensitivity-91%; specificity-80%; diagnostic accuracy-85%), and only for KRAS driver mutation-above 850 kPa (sensitivity-90%; specificity-88%; diagnostic accuracy-89%). To conclude, C-OCE estimation of tissue stiffness can be used as a clinical diagnostic tool for preliminary screening of genetic burden in CRC tissues.
Collapse
Affiliation(s)
- Anton A. Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Dmitry S. Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Anastasia A. Shepeleva
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Elena B. Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Liubov E. Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Irina N. Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Maria A. Plekhanova
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
- Nizhny Novgorod City Polyclinic #1, 5 Marshala Zhukova Sq., 603107 Nizhny Novgorod, Russia
| | - Maria M. Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Ekaterina V. Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Alena I. Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Dmitry P. Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Alexander A. Sovetsky
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia
| | - Sergey V. Gamayunov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia
| | - Daria S. Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Vladimir Y. Zaitsev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia
| | - Marina A. Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Natalia D. Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Heestermans R, Schots R, De Becker A, Van Riet I. Liquid Biopsies as Non-Invasive Tools for Mutation Profiling in Multiple Myeloma: Application Potential, Challenges, and Opportunities. Int J Mol Sci 2024; 25:5208. [PMID: 38791247 PMCID: PMC11121516 DOI: 10.3390/ijms25105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Over the last decades, the survival of multiple myeloma (MM) patients has considerably improved. However, despite the availability of new treatments, most patients still relapse and become therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM patients' outcome, while typically evolving over time. Because of the patchy bone marrow (BM) infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation without the discomfort of repeated BM aspirations. In this review, we compare the application potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.
Collapse
Affiliation(s)
- Robbe Heestermans
- Department of Clinical Biology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Rik Schots
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Kan CM, Tsang HF, Pei XM, Ng SSM, Yim AKY, Yu ACS, Wong SCC. Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis. Int J Mol Sci 2024; 25:3333. [PMID: 38542307 PMCID: PMC10970082 DOI: 10.3390/ijms25063333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Metagenomic sequencing has emerged as a transformative tool in infectious disease diagnosis, offering a comprehensive and unbiased approach to pathogen detection. Leveraging international standards and guidelines is essential for ensuring the quality and reliability of metagenomic sequencing in clinical practice. This review explores the implications of international standards and guidelines for the application of metagenomic sequencing in infectious disease diagnosis. By adhering to established standards, such as those outlined by regulatory bodies and expert consensus, healthcare providers can enhance the accuracy and clinical utility of metagenomic sequencing. The integration of international standards and guidelines into metagenomic sequencing workflows can streamline diagnostic processes, improve pathogen identification, and optimize patient care. Strategies in implementing these standards for infectious disease diagnosis using metagenomic sequencing are discussed, highlighting the importance of standardized approaches in advancing precision infectious disease diagnosis initiatives.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (C.-M.K.); (H.F.T.)
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (C.-M.K.); (H.F.T.)
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | | | - Allen Chi-Shing Yu
- Codex Genetics Limited, Shatin, Hong Kong, China; (A.K.-Y.Y.); (A.C.-S.Y.)
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
11
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
12
|
Sultana GNN, Akter F, Israfil SMH, Ray UC, Jahan RA, Ali MS, Din SA, Rahman S, Halim R, Alam MS. Quantitative analysis of serum cell-free DNA as a predictive and prognostic marker in breast cancer patients. Front Oncol 2023; 13:1171412. [PMID: 37427131 PMCID: PMC10324030 DOI: 10.3389/fonc.2023.1171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction According to the GLOBOCAN (Global Cancer Observatory) 2020 report, 13,028 new cases of breast cancer (19%) were diagnosed in the United States, and 6,783 of them succumbed to the disease, making it the most common cancer among women. The clinical stage at the time of diagnosis is one of the most significant survival predictors in breast cancer. With delayed illness detection comes a lower survival rate. The prognosis of breast cancer may be predicted using circulating cell-free DNA (cfDNA), a non-invasive diagnosis technique. Objective This study aimed to determine the most sensitive and effective method for detecting changes in cfDNA levels and for using cfDNA as a diagnostic and prognostic marker of breast cancer. Methods The potential function of serum cfDNA levels as a marker for early breast cancer diagnosis was investigated using UV spectrophotometric, fluorometric, and real-time qPCR assays. Results This research suggests that the most successful way to measure the amount of cfDNA described decades ago could be used as a "liquid biopsy" to track cancer in real time. The RT-qPCR (ALU115) method produced the most statistically significant results (p=0.000). At the threshold concentration of 395.65 ng/ml of cfDNA, the ROC curve reflects the maximum AUC= 0.7607, with a sensitivity of 0.65 and specificity of 0.80. Conclusion For a preliminary assessment of total circulating cfDNA, a combination of all of the above techniques will be most efficacious. Based on our results, we conclude that the RT-qPCR technique combined with fluorometric measurement can identify a statistically significant difference in cfDNA levels between cohorts of breast cancer patients and healthy controls.
Collapse
Affiliation(s)
| | - Ferdowsi Akter
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - S. M. Hasan Israfil
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Utpal Chandra Ray
- Genetic and Cytology Laboratory, Invent Technologies, Banani, Dhaka, Bangladesh
| | - Rumana Akther Jahan
- Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Shawkat Ali
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Salim Al Din
- Genetic and Cytology Laboratory, Invent Technologies, Banani, Dhaka, Bangladesh
| | - Shafiqur Rahman
- Institute of Statistical Research and Training, University of Dhaka, Dhaka, Bangladesh
| | - Rezaul Halim
- Genetic and Cytology Laboratory, Invent Technologies, Banani, Dhaka, Bangladesh
| | - Mohammad Sahajadul Alam
- Department of Surgical Oncology, National Institute of Cancer Research and Hospital, Dhaka, Bangladesh
| |
Collapse
|
13
|
Nair S, El-Yazbi AF. Novel genosensor for probing DNA mismatches and UV-induced DNA damage: Sequence-specific recognition. Int J Biol Macromol 2023; 233:123510. [PMID: 36739048 DOI: 10.1016/j.ijbiomac.2023.123510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Human genome is continuously susceptible to changes that may lead to undesirable mutations causing various diseases and cancer. Vast majority of techniques has investigated the discrimination between base-pair mismatched nucleic acid, but many of these techniques are time-consuming, complex, expensive, and limited to the detection of specific type of dsDNA mismatches. In this study, we introduce a simple mix-and-read assay for the sensitive and cost-effective analysis of DNA base mismatches and UV-induced DNA damage using Hoechst genosensor dye (H258). This dye is a minor groove binder that undergoes a drastic conformational change upon binding with mismatch DNA. The difference in binding affinity between perfectly matched and mismatched DNA was studied for sequences at different base mismatch locations and finally, extended for the detection of dsDNA damage by UVC radiation in calf thymus DNA. In addition, a comparative DNA damage kinetic study was performed using H258 (minor groove binder) and EvaGreen (intercalating) dye to get insight on assay selectivity and sensitivity with dye binding mechanism. The result shows good reproducibility making H258 genosensor a cheaper alternative for DNA mismatch and damage studies with possibility of extension for in-vitro detection of hot spots of DNA mutations.
Collapse
Affiliation(s)
- Sindhu Nair
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Amira F El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
14
|
Andrade Zampieri R, Ide Aoki J, Müller KE, Jon Shaw J, Maria Floeter-Winter L. Comparison of Sampling Procedures for the Molecular Diagnosis of Leishmaniases. Am J Trop Med Hyg 2023; 108:548-554. [PMID: 36689945 PMCID: PMC9978564 DOI: 10.4269/ajtmh.21-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/03/2022] [Indexed: 01/24/2023] Open
Abstract
The present work evaluates sampling protocols, storage procedures, and DNA purification methods for Leishmania spp. detection and quantification in different biological samples. The efficiency of three preservation solutions, a phosphate buffer solution, an ethylenediaminetetraacetic acid (EDTA) buffer solution, and 70% ethanol, was compared in combination with three DNA extraction protocols: a commercial silica column kit, salting-out protein precipitation, and organic extraction with phenol-chloroform. Tissue samples from BALB/c mice experimentally infected with Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, or Leishmania (Leishmania) infantum were stored in the three preservation solutions and subsequently subjected to the three different DNA extraction methods. The extracted DNA was then used in real-time polymerase chain reaction (PCR) assays for the detection and quantification of parasite ribosomal small subunit DNA targets as well as mammalian glyceraldehyde-3-phosphate dehydrogenase (gapdh) targets. The results of the optimized protocols showed that the DNA extraction method did not influence test quality, but DNA from samples preserved with the EDTA buffer solution produced higher amounts of target amplicons. Based on these results, we concluded that samples from suspected cases of leishmaniasis for submission to molecular diagnostic procedures should be preferentially preserved in EDTA, followed by any one of the DNA purification methods evaluated.
Collapse
Affiliation(s)
| | - Juliana Ide Aoki
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Karl Erik Müller
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Jeffrey Jon Shaw
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
15
|
Gavina K, Franco LC, Robinson CM, Hymas W, Lei GS, Sinclair W, Hall T, Carlquist J, Lavik JP, Emery CL, Heaton PR, Hillyard D, Lopransi BK, Relich RF. Standardization of SARS-CoV-2 Cycle Threshold Values: Multisite Investigation Evaluating Viral Quantitation across Multiple Commercial COVID-19 Detection Platforms. Microbiol Spectr 2023; 11:e0447022. [PMID: 36651781 PMCID: PMC9927101 DOI: 10.1128/spectrum.04470-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
The demand for testing during the coronavirus disease 2019 (COVID-19) pandemic has resulted in the production of several different commercial platforms and laboratory-developed assays for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This has created several challenges, including, but not limited to, the standardization of diagnostic testing, utilization of cycle threshold (CT) values for quantitation and clinical interpretation, and data harmonization. Using reference standards consisting of a linear range of SARS-CoV-2 concentrations quantitated by viral culture-based methods and droplet digital PCR, we investigated the commutability and standardization of SARS-CoV-2 quantitation across different laboratories in the United States. We assessed SARS-CoV-2 CT values generated on multiple reverse transcription-PCR (RT-PCR) platforms and analyzed PCR efficiencies, linearity, gene targets, and CT value agreement. Our results demonstrate the inappropriateness of using SARS-CoV-2 CT values without established standards for viral quantitation. Further, we emphasize the importance of using reference standards and controls validated to independent assays, to compare results across different testing platforms and move toward better harmonization of COVID-19 quantitative test results. IMPORTANCE From the onset of the COVID-19 pandemic, the demand for SARS-CoV-2 testing has resulted in an explosion of analytical tests with very different approaches and designs. The variability in testing modalities, compounded by the lack of available commercial reference materials for standardization early in the pandemic, has led to several challenges regarding data harmonization for viral quantitation. In this study, we assessed multiple commercially available RT-PCR platforms across different laboratories within the United States using standardized reference materials characterized by viral culture methods and droplet digital PCR. We observed variability in the results generated by different instruments and laboratories, further emphasizing the importance of utilizing validated reference standards for quantitation, to better harmonize SARS-CoV-2 test results.
Collapse
Affiliation(s)
- Kenneth Gavina
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Clinical Microbiology, Indiana University Health, Indianapolis, Indiana, USA
| | - Lauren C. Franco
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Weston Hymas
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - Guang-Sheng Lei
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Will Sinclair
- Intermountain Laboratory Services, Department of Pathology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Tara Hall
- Intermountain Laboratory Services, Department of Pathology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - John Carlquist
- Intermountain Laboratory Services, Department of Pathology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - John-Paul Lavik
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Clinical Microbiology, Indiana University Health, Indianapolis, Indiana, USA
| | - Christopher L. Emery
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Clinical Microbiology, Indiana University Health, Indianapolis, Indiana, USA
| | - Phillip R. Heaton
- Department of Pathology and Laboratory Medicine, Health Partners, Bloomington, Minnesota, USA
| | - David Hillyard
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA
| | - Bert K. Lopransi
- Intermountain Laboratory Services, Department of Pathology, Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Clinical Microbiology, Indiana University Health, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Sun L, Lehnert T, Gijs MAM, Li S. Polydimethylsiloxane microstructure-induced acoustic streaming for enhanced ultrasonic DNA fragmentation on a microfluidic chip. LAB ON A CHIP 2022; 22:4224-4237. [PMID: 36178361 DOI: 10.1039/d2lc00366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Next-generation sequencing (NGS) is an essential technology for DNA identification in genomic research. DNA fragmentation is a critical step for NGS and doing this on-chip is of great interest for future integrated genomic solutions. Here we demonstrate fast acoustofluidic DNA fragmentation via ultrasound-actuated elastic polydimethylsiloxane (PDMS) microstructures that induce acoustic streaming and associated shear forces when placed in the field of an ultrasonic transducer. Indeed, acoustic streaming locally generates high tensile stresses that can mechanically stretch and break DNA molecule chains. The improvement in efficiency of the on-chip DNA fragmentation is due to the synergistic effect of these tensile stresses and ultrasonic cavitation phenomena. We tested these microstructure-induced effects in a DNA-containing microfluidic channel both experimentally and by simulation. The DNA fragmentation process was evaluated by measuring the change in the DNA fragment size over time. The chip works well with both long and short DNA chains; in particular, purified lambda (λ) DNA was cut from 48.5 kbp to 3 kbp in one minute with selected microstructures and further down to 300 bp within two and a half minutes. The fragment size of mouse genomic DNA was reduced from 1.4 kbp to 400 bp in one minute and then to 200 bp in two and a half minutes. The DNA fragmentation efficiency of the chip equipped with the PDMS microstructures was twice that of the chip without the microstructures. Exhaustive comparison shows that the on-chip fragmentation performance reaches the level of high-end professional standards. Recently, DNA fragmentation was shown to be enhanced using vibrating air microbubbles when the chip was placed in an acoustic field. We think the microbubble-free microstructure-based device we present is easier to operate and more reliable, as it avoids microbubble preparation and maintenance, while showing high DNA fragmentation performance.
Collapse
Affiliation(s)
- Lin Sun
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
| |
Collapse
|
17
|
Johnston AD, Lu J, Korbie D, Trau M. Modelling clinical DNA fragmentation in the development of universal PCR-based assays for bisulfite-converted, formalin-fixed and cell-free DNA sample analysis. Sci Rep 2022; 12:16051. [PMID: 36163372 PMCID: PMC9512909 DOI: 10.1038/s41598-022-18196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
In fragmented DNA, PCR-based methods quantify the number of intact regions at a specific amplicon length. However, the relationship between the population of DNA fragments within a sample and the likelihood they will amplify has not been fully described. To address this, we have derived a mathematical equation that relates the distribution profile of a stochastically fragmented DNA sample to the probability that a DNA fragment within that sample can be amplified by any PCR assay of arbitrary length. Two panels of multiplex PCR assays for quantifying fragmented DNA were then developed: a four-plex panel that can be applied to any human DNA sample and used to estimate the percentage of regions that are intact at any length; and a two-plex panel optimized for quantifying circulating cell-free DNA (cfDNA). For these assays, regions of the human genome least affected by copy number aberration were identified and selected; within these copy-neutral regions, each PCR assay was designed to amplify both genomic and bisulfite-converted DNA; and all assays were validated for use in both conventional qPCR and droplet-digital PCR. Finally, using the cfDNA-optimized assays we find evidence of universally conserved nucleosome positioning among individuals.
Collapse
Affiliation(s)
- Andrew D Johnston
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, Westmead, NSW, Australia
| | - Jennifer Lu
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Darren Korbie
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
18
|
Liu C, Yu Y, Wang G, Liu J, Liu R, Liu L, Yang X, Li H, Gao C, Lu Y, Zhuang J. From tumor mutational burden to characteristic targets analysis: Identifying the predictive biomarkers and natural product interventions in cancer management. Front Nutr 2022; 9:989989. [PMID: 36204371 PMCID: PMC9530334 DOI: 10.3389/fnut.2022.989989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
High-throughput next-generation sequencing (NGS) provides insights into genome-wide mutations and can be used to identify biomarkers for the prediction of immune and targeted responses. A deeper understanding of the molecular biological significance of genetic variation and effective interventions is required and ultimately needs to be associated with clinical benefits. We conducted a retrospective observational study of patients in two cancer cohorts who underwent NGS in a “real-world” setting. The association between differences in tumor mutational burden (TMB) and clinical presentation was evaluated. We aimed to identify several key mutation targets and describe their biological characteristics and potential clinical value. A pan-cancer dataset was downloaded as a verification set for further analysis and summary. Natural product screening for the targeted intervention of key markers was also achieved. The majority of tumor patients were younger adult males with advanced cancer. The gene identified with the highest mutation rate was TP53, followed by PIK3CA, EGFR, and LRP1B. The association of TMB (0–103.7 muts/Mb) with various clinical subgroups was determined. More frequent mutations, such as in LRP1B, as well as higher levels of ferritin and neuron-specific enolase, led to higher TMB levels. Further analysis of the key targets, LRP1B and APC, was performed, and mutations in LRP1B led to better immune benefits compared to APC. APC, one of the most frequently mutated genes in gastrointestinal tumors, was further investigated, and the potential interventions by cochinchinone B and rottlerin were clarified. In summary, based on the analysis of the characteristics of gene mutations in the “real world,” we obtained the potential association indicators of TMB, found the key signatures LRP1B and APC, and further described their biological significance and potential interventions.
Collapse
Affiliation(s)
- Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Yang Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ge Wang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Jingyang Liu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoxu Yang
- School of Life Sciences and Technology, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- *Correspondence: Yi Lu,
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Jing Zhuang,
| |
Collapse
|
19
|
Performance of Spectrophotometric and Fluorometric DNA Quantification Methods. ANALYTICA 2022. [DOI: 10.3390/analytica3030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Accurate DNA quantification is a highly important method within molecular biology. Methods widely used to quantify DNA are UV spectrometry and fluorometry. In this research, seven different DNA samples and one blank (MilliQ ultrapure water) were quantified by three analysts using one spectrophotometric (i.e., a NanoDrop instrument) and three fluorometric (i.e., the AccuGreen High Sensitivity kit, the AccuClear Ultra High Sensitivity kit, and the Qubit dsDNA HS Assay kit) methods. An analysis of variance (ANOVA) scheme was used to determine the influence of the analyst, the method, and the combination of analyst and method, on DNA quantification. For most samples, the measured DNA concentration was close to or slightly above the concentration of 10 ng/μL as specified by the supplier. Results obtained by the three analysts were equal. However, it was found that, compared to the fluorometric kits, the used spectrophotometric instrument in the case of fish DNA samples tends to overestimate the DNA concentration. Therefore, if sufficient sample volume is available, a combination of a spectrophotometric and a fluorometric method is recommended for obtaining data on the purity and the dsDNA concentration of a sample.
Collapse
|
20
|
The suitability of using spectrophotometry to determine the concentration and purity of DNA extracted from processed food matrices. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
McCloskey D, Erickson D. Rapid nucleic acid extraction from skin biopsies using a point-of-care device. LAB ON A CHIP 2022; 22:3229-3235. [PMID: 35861177 PMCID: PMC9399003 DOI: 10.1039/d2lc00457g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Sample processing is often the rate-limiting step for point-of-care nucleic acid testing, especially for large, robust tissues such as skin biopsies, which can be used to diagnose a variety of dermatological diseases. Extraction of nucleic acids from these samples often relies on lengthy enzymatic digestions, increasing the time to result and reducing the potential impact of rapid molecular diagnostic approaches. To address this, we have developed BLENDER, a device for rapid nucleic acid extraction from tissue biopsies that combines bead-beating homogenization with simultaneous sample heating for enzymatic lysis. Our device can produce a complete DNA yield from a 3 mm cylindrical skin biopsy with only a 15 minute extraction compared to 4 hours when using a commercially available extraction protocol. Decreasing sample-processing time for tissue biopsies could reduce time-to-result for downstream analysis, enabling faster point-of-care diagnosis of solid cancers in limited resource settings.
Collapse
Affiliation(s)
- Duncan McCloskey
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Division of Nutritional Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Wei J, Wang Y, Gao J, Li Z, Pang R, Zhai T, Ma Y, Wang Z, Meng X. Detection of BRAFV600E mutation of thyroid cancer in circulating tumor DNA by an electrochemical-enrichment assisted ARMS-qPCR assay. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Two novel "release-on-demand" fluorescent biosensors for probing UV-induced DNA damage induced in single stranded and double stranded DNA: Comparative study. Int J Biol Macromol 2022; 215:657-664. [PMID: 35777509 DOI: 10.1016/j.ijbiomac.2022.06.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Light in the UVC spectral region damages both single-strand (ssDNA) and double-strand DNA (dsDNA), and contributes to the formation of mutagenic photoproducts. In-vivo studies show greater damage for ssDNA compared to dsDNA. However, excited-state spectroscopy shows that dsDNA has longer excited-state lifetime than ssDNA, which increases the probability of damage for dsDNA. However, lack of a direct comparison of in-vitro ssDNA and dsDNA damage rates precludes the development of a model that elucidates the molecular factors responsible for damage. In this work, two novel sensitive "release-on-demand" biosensors are developed for the selective probing of DNA-damage and comparing the rate of DNA damage in ssDNA and dsDNA. The two biosensors involve the use of EvaGreen and Hoechst dyes for the sensitive probing of DNA-damage. The results show that ssDNA is damaged at a faster rate than dsDNA in the presence of UVC light (200-295 nm). Furthermore, we examined the effect of G/C composition on the damage rate for mostly A/T ssDNA and dsDNA oligonucleotides. Our results show that DNA damage rates are highly dependent on the fraction of guanines in the sequence, but that in-vitro dsDNA always exhibits an overall slower rate of damage compared to ssDNA, essentially independent of sequence.
Collapse
|
24
|
Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review. MICROMACHINES 2022; 13:mi13050730. [PMID: 35630197 PMCID: PMC9147043 DOI: 10.3390/mi13050730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a group of communication organelles enclosed by a phospholipid bilayer, secreted by all types of cells. The size of these vesicles ranges from 30 to 1000 nm, and they contain a myriad of compounds such as RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. Exosomes (30 to 100 nm) are a subset of EVs, and their importance in future medicine is beyond any doubt. However, the lack of efficient isolation and detection techniques hinders their practical applications as biomarkers. Versatile and cutting-edge platforms are required to detect and isolate exosomes selectively for further clinical analysis. This review paper focuses on lab-on-chip devices for capturing, detecting, and isolating extracellular vesicles. The first part of the paper discusses the main characteristics of different cell-derived vesicles, EV functions, and their clinical applications. In the second part, various microfluidic platforms suitable for the isolation and detection of exosomes are described, and their performance in terms of yield, sensitivity, and time of analysis is discussed.
Collapse
|
25
|
Abd Algabar FA, Abdalameer Baqer B. Detection of biofilm formation of (Serratia and E.coli) and determination of the inhibitory effect of Quercus plant extract against these infectious pathogens. BIONATURA 2022; 7:1-4. [DOI: 10.21931/rb/2022.07.01.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Biofilm is a complex microbial regional, especially resisting antimicrobials Quorum sensing function ate flow into an essential role in the composition concerning completely advanced superior biofilms on numerous microorganism, Biofilms change autonomous cells into particular cell groups. They are obtainable about comprehensions keen on biofilm materialization determined through the best-characterized strain, Escherichia col. The hastened biofilm obstacle of accord containing regular remedying decorates the requirement between significance with toughening modern rule approaches. By resources of the use of Congo process then PCR method since detection around biofilms arrangement, By way of the sunscreens of Quorum detecting were noticed over molecular finding using the PCR of the gene accountable for the structure of Biofilm in Serratia bacteria. The study showed that during the induction period, after 48 hours, the effects of bacterial inhabitation, the methanolic extract was more effective against (Serratia, Ecoli) regarding superb consciousness (10, 20, 30 mg/I).
Collapse
|
26
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
27
|
Masago K, Fujita S, Oya Y, Takahashi Y, Matsushita H, Sasaki E, Kuroda H. Comparison between Fluorimetry (Qubit) and Spectrophotometry (NanoDrop) in the Quantification of DNA and RNA Extracted from Frozen and FFPE Tissues from Lung Cancer Patients: A Real-World Use of Genomic Tests. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57121375. [PMID: 34946321 PMCID: PMC8709233 DOI: 10.3390/medicina57121375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 05/26/2023]
Abstract
Background and Objectives: Panel-based next-generation sequencing (NGS) has been carried out in daily clinical settings for the diagnosis and treatment guidance of patients with non-small cell lung cancer (NSCLC). The success of genomic tests including NGS depends in large part on preparing better-quality DNA or RNA; however, there are no established operating methods for preparing genomic DNA and RNA samples. Materials and Methods: We compared the following two quantitative methods, the QubitTM and NanoDropTM, using 585 surgical specimens, 278 biopsy specimens, and 82 cell block specimens of lung cancer that were used for genetic tests, including NGS. We analyzed the success rate of the genomic tests, including NGS, which were performed with DNA and RNA with concentrations that were outliers for the Qubit Fluorometer. Results: The absolute value for DNA concentrations had a tendency to be higher when measured with NanoDropTM regardless of the type of specimen; however, this was not the case for RNA. The success rate of DNA-based genomic tests using specimens with a concentration below the lower limit of QubitTM detection was as high as approximately 96%. At less than 60%, the success rate of RNA-based genomic tests, including RT-PCR, was not as satisfactory. The success rates of the AmpliSeqTM DNA panel sequencing and RNA panel sequencing were 77.8% and 91.5%, respectively. If at least one PCR amplification product could be obtained, then all RNA-based sequencing was performed successfully. Conclusions: The concentration measurements with NanoDropTM are reliable. The success rate of NGS with samples at concentrations below the limit of detection of QubitTM was relatively higher than expected, and it is worth performing PCR-based panel sequencing, especially in cases where re-biopsy cannot be performed.
Collapse
Affiliation(s)
- Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya 4648681, Japan;
| | - Shiro Fujita
- Department of Respiratory Medicine, Kobe Central Hospital, Kobe 651115, Japan;
| | - Yuko Oya
- Department of Thoracic Surgery, Aichi Cancer Center, Nagoya 4648681, Japan; (Y.O.); (Y.T.); (H.K.)
| | - Yusuke Takahashi
- Department of Thoracic Surgery, Aichi Cancer Center, Nagoya 4648681, Japan; (Y.O.); (Y.T.); (H.K.)
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Nagoya 4648681, Japan;
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya 4648681, Japan;
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center, Nagoya 4648681, Japan; (Y.O.); (Y.T.); (H.K.)
| |
Collapse
|
28
|
Efficacy and specificity of different methods for human neutrophil extracellular trap isolation and handling. Cent Eur J Immunol 2021; 46:384-387. [PMID: 34764811 PMCID: PMC8574115 DOI: 10.5114/ceji.2021.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction Although in vitro incubation of various cell types with neutrophil extracellular traps (NETs) is commonly used to investigate the influence of NETs on cellular function, it is unclear which human NET isolation and handling protocol is superior. The present study sought to assess the efficacy (yield and purity) and efficiency (time taken) of different available human NET isolation and handling protocols. Material and methods Neutrophils isolated from human blood were stimulated using phorbol 12-myristate 13-acetate. Four distinct protocols were used to isolate NETs, and the yield was quantified using fluorimetry. Results Addition of the restriction enzyme AluI prior to centrifugation is unique to the most effective NET isolation method, yielding a NET concentration of 1077.22 ±229.04 ng/ml (at 523 nm) measured with PicoGreen. Immediate centrifugation to pellet neutrophils is unique to the most efficient method. Conclusions Balancing protocol efficacy and efficiency, the method incorporating centrifugation for 5 min at 450 × γ to pellet neutrophils is more than adequate.
Collapse
|
29
|
Krasic J, Abramovic I, Vrtaric A, Nikolac Gabaj N, Kralik-Oguic S, Katusic Bojanac A, Jezek D, Sincic N. Impact of Preanalytical and Analytical Methods on Cell-Free DNA Diagnostics. Front Cell Dev Biol 2021; 9:686149. [PMID: 34552921 PMCID: PMC8451956 DOI: 10.3389/fcell.2021.686149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
While tissue biopsy has for the longest time been the gold-standard in biomedicine, precision/personalized medicine is making the shift toward liquid biopsies. Cell-free DNA (cfDNA) based genetic and epigenetic biomarkers reflect the molecular status of its tissue-of-origin allowing for early and non-invasive diagnostics of different pathologies. However, selection of preanalytical procedures (including cfDNA isolation) as well as analytical methods are known to impact the downstream results. Calls for greater standardization are made continuously, yet comprehensive assessments of the impact on diagnostic parameters are lacking. This study aims to evaluate the preanalytic and analytic factors that influence cfDNA diagnostic parameters in blood and semen. Text mining analysis has been performed to assess cfDNA research trends, and identify studies on isolation methods, preanalytical and analytical impact. Seminal and blood plasma were tested as liquid biopsy sources. Traditional methods of cfDNA isolation, commercial kits (CKs), and an in-house developed protocol were tested, as well as the impact of dithiothreitol (DTT) on cfDNA isolation performance. Fluorimetry, qPCR, digital droplet PCR (ddPCR), and bioanalyzer were compared as cfDNA quantification methods. Fragment analysis was performed by qPCR and bioanalyzer while the downstream application (cfDNA methylation) was analyzed by pyrosequencing. In contrast to blood, semen as a liquid biopsy source has only recently begun to be reported as a liquid biopsy source, with almost half of all publications on it being review articles. Experimental data revealed that cfDNA isolation protocols give a wide range of cfDNA yields, both from blood and seminal plasma. The addition of DTT to CKs has improved yields in seminal plasma and had a neutral/negative impact in blood plasma. Capillary electrophoresis and fluorometry reported much higher yields than PCR methods. While cfDNA yield and integrity were highly impacted, cfDNA methylation was not affected by isolation methodology or DTT. In conclusion, NucleoSnap was recognized as the kit with the best overall performance. DTT improved CK yields in seminal plasma. The in-house developed protocol has shown near-kit isolation performance. ddPCR LINE-1 assay for absolute detection of minute amounts of cfDNA was established and allowed for quantification of samples inhibited in qPCR. cfDNA methylation was recognized as a stable biomarker unimpacted by cfDNA isolation method. Finally, semen was found to be an abundant source of cfDNA offering potential research opportunities and benefits for cfDNA based biomarkers development related to male reproductive health.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Irena Abramovic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alen Vrtaric
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Nora Nikolac Gabaj
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sasa Kralik-Oguic
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
30
|
Lozano-Peral D, Rubio L, Santos I, Gaitán MJ, Viguera E, Martín-de-Las-Heras S. DNA degradation in human teeth exposed to thermal stress. Sci Rep 2021; 11:12118. [PMID: 34108558 PMCID: PMC8190102 DOI: 10.1038/s41598-021-91505-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/26/2021] [Indexed: 11/09/2022] Open
Abstract
Human identification from burned remains poses a challenge to forensic laboratories, and DNA profiling is widely used for this purpose. Our aim was to evaluate the effect of temperature on DNA degradation in human teeth. Thirty teeth were exposed to temperatures of 100, 200, or 400 °C for 60 min. DNA was quantified by Real-Time qPCR (Quantifiler Human DNA Quantification Kit) and fluorescence spectroscopy (Qubit 3.0 Fluorometer). DNA degradation was evaluated by using STR markers (AmpFLSTR Identifiler Plus PCR Amplification Kit) to determine the allele and locus dropout, inter-locus balance, and degradation slope (observed (Oa) to expected (Ea) locus peak height ratio against the molecular weight). Most of the genomic DNA was degraded between 100 °C and 200 °C. At 100 °C, locus dropout ratios showed significant differences between the largest loci (FGA, D7S820, D18S51, D16S539, D2S1338 and CSF1PO) and amelogenin. Inter-locus balance values significantly differed between all dye channels except between NED and PET. The dropout ratio between D18S51 (NED) and amelogenin (PET) can be recommended for the evaluation of DNA degradation. The Oa/Ea regression model can predict locus peak heights in DNA degradation (R2 = 0.7881). These findings may be useful to assess the reliability of DNA typing for human identification in teeth subjected to prolonged incineration.
Collapse
Affiliation(s)
- Diego Lozano-Peral
- Department of Forensic Dentistry and Medicine, Instituto de Investigación Biomédica de Málaga-IBIMA (CE-18), School of Medicine, University of Malaga, 29071, Malaga, Spain
- Supercomputing and Bioinnovation Center, Servicios Centrales de Apoyo a la Investigación, University of Malaga, 29590, Malaga, Spain
| | - Leticia Rubio
- Department of Forensic Dentistry and Medicine, Instituto de Investigación Biomédica de Málaga-IBIMA (CE-18), School of Medicine, University of Malaga, 29071, Malaga, Spain.
| | - Ignacio Santos
- Department of Forensic Dentistry and Medicine, Instituto de Investigación Biomédica de Málaga-IBIMA (CE-18), School of Medicine, University of Malaga, 29071, Malaga, Spain
| | - María Jesús Gaitán
- Department of Forensic Dentistry and Medicine, Instituto de Investigación Biomédica de Málaga-IBIMA (CE-18), School of Medicine, University of Malaga, 29071, Malaga, Spain
| | - Enrique Viguera
- Department of Cellular Biology, Genetics and Physiology, University of Malaga, 29071, Malaga, Spain
| | - Stella Martín-de-Las-Heras
- Department of Forensic Dentistry and Medicine, Instituto de Investigación Biomédica de Málaga-IBIMA (CE-18), School of Medicine, University of Malaga, 29071, Malaga, Spain
| |
Collapse
|
31
|
Suoranta T, Laham-Karam N, Ylä-Herttuala S. Optimized Protocol for Accurate Titration of Adeno-Associated Virus Vectors. Hum Gene Ther 2021; 32:1270-1279. [PMID: 33560161 DOI: 10.1089/hum.2020.318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adeno-associated virus (AAV) is currently the most popular gene delivery vector for in vivo gene therapy. However, variability in titration methods between different laboratories affects the reproducibility of experiments and evaluation of safety and efficacy in clinical trials. We describe an optimized protocol for AAV titration, including quantitative PCR (qPCR) standard preparation and quantitation and treatment of AAV samples before qPCR and droplet digital PCR (ddPCR) titration. During the protocol development, we observed that quantitation of the qPCR standard was dependent on its conformation and that A260-based quantitation overestimated the plasmid copy numbers, introducing significant error. Linearized, free inverted terminal repeat (free-ITR), and supercoiled standards were compared with enhanced green fluorescent protein (EGFP), SV40p(A), and AAV2-ITR qPCR assays and we found that using the AAV2-ITR assay together with either linearized or supercoiled standard led to overestimation of the titers, while EGFP and SV40p(A) assays were more accurate with the linearized standard. Finally, we compared extraction of AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9 genomes by heat denaturation, proteinase K treatment, and kit extraction. Kit extraction, which contained proteinase K treatment in denaturing buffer before spin-column purification, significantly increased the titers acquired for all the serotypes in both qPCR and ddPCR. These improvements resulted in an accurate quantitation of the ATCC reference standard and in a robust and reliable protocol for AAV titration.
Collapse
Affiliation(s)
- Tuisku Suoranta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
32
|
Pedini P, Graiet H, Laget L, Filosa L, Chatron J, Cherouat N, Chiaroni J, Hubert L, Frassati C, Picard C. Qualitative and quantitative comparison of cell-free DNA and cell-free fetal DNA isolation by four (semi-)automated extraction methods: impact in two clinical applications: chimerism quantification and noninvasive prenatal diagnosis. J Transl Med 2021; 19:15. [PMID: 33407582 PMCID: PMC7788686 DOI: 10.1186/s12967-020-02671-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-invasive molecular analysis of cell-free DNA (cfDNA) became a sensitive biomarker for monitoring organ transplantation or for detection of fetal DNA (cffDNA) in noninvasive prenatal test. In this study, we compared the efficiencies of four (semi)-automated cfDNA isolation instruments using their respective isolation kit: MagNA Pure 24 (Roche®), IDEAL (IDSolution®), LABTurbo 24 (Taigen®) and Chemagic 360 (Perkin Elmer®). The cfDNA was isolated from 5 plasma samples and the Rhesus D (RhD)-cffDNA from 5 maternal plasmas. The cfDNA were quantified by digital droplet PCR (ddPCR), BIABooster system and QUBIT fluorometer. The cfDNA fragment size profiles were assessed by BIABooster system. Chimerism were quantified by home-made ddPCR and Devyser NGS kit. RhD-cffDNA in maternal plasma were detected between weeks 14 and 24 of amenorrhea using free DNA Fetal RHD Kit® (Biorad®). RESULTS Statistical tests have shown differences in DNA yield depending on the isolation procedure and quantification method used. Magna Pure isolates smaller cfDNA fragment size than other extraction methods (90% ± 9% vs. 74% ± 8%; p = 0.009). Chimerism was only reliable from LABTurbo 24 extractions using the NGS but not with ddPCR whatever extraction methods. RhD-cffDNA were detected by all isolation methods, although IDEAL and LABTurbo 24 systems seemed more efficient. CONCLUSIONS This comparative study showed a dependency of cfDNA yield depending on isolation procedure and quantification method used. In total, these results suggest that the choice of pre-analytical isolation systems needs to be carefully validated in routine clinical practice.
Collapse
Affiliation(s)
- Pascal Pedini
- Department of Histocompatibility, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France.
| | - Hajer Graiet
- Department of Histocompatibility, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
| | - Laurine Laget
- Department of Immunohematology, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
| | - Lugdivine Filosa
- Department of Immunohematology, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
| | - Jade Chatron
- Department of Histocompatibility, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
| | - Nicem Cherouat
- Department of Histocompatibility, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
| | - Jacques Chiaroni
- Department of Immunohematology, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
- UMR 7268, ADÉS Aix-Marseille Université/EFS, CNRS, 27 Bd Jean Moulin, 13385, Marseille Cedex 05, France
| | - Lucas Hubert
- Department of Histocompatibility, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
| | - Coralie Frassati
- Department of Histocompatibility, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
| | - Christophe Picard
- Department of Histocompatibility, Établissement Français du Sang PACA-Corse, 149 Bd Baille, 13005, Marseille, France
- UMR 7268, ADÉS Aix-Marseille Université/EFS, CNRS, 27 Bd Jean Moulin, 13385, Marseille Cedex 05, France
| |
Collapse
|
33
|
Onyemata EJ, Jonathan E, Balogun O, Agala N, Ozumba PJ, Croxton T, Nadoma S, Anazodo T, Peters S, Beiswanger CM, Abimiku A. Affordable method for quality DNA for genomic research in low to middle-income country research settings. Anal Biochem 2020; 614:114023. [PMID: 33249001 DOI: 10.1016/j.ab.2020.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Ezenwa James Onyemata
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | - Emmanuel Jonathan
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | - Olasinbo Balogun
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | - Ndidi Agala
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | - Petronilla Jean Ozumba
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | - Talishiea Croxton
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria; Institute of Human Virology at the University of Maryland School of Medicine Baltimore MD, 21201, USA.
| | - Sunji Nadoma
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | - ThankGod Anazodo
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | - Sam Peters
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria.
| | | | - Alash'le Abimiku
- International Research Center of Excellence Institute of Human Virology Nigeria Plot 252 Herbert Macaulay Way Central Business District, Abuja, 900211, Nigeria; Institute of Human Virology at the University of Maryland School of Medicine Baltimore MD, 21201, USA.
| |
Collapse
|
34
|
Pös Z, Pös O, Styk J, Mocova A, Strieskova L, Budis J, Kadasi L, Radvanszky J, Szemes T. Technical and Methodological Aspects of Cell-Free Nucleic Acids Analyzes. Int J Mol Sci 2020; 21:ijms21228634. [PMID: 33207777 PMCID: PMC7697251 DOI: 10.3390/ijms21228634] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Analyzes of cell-free nucleic acids (cfNAs) have shown huge potential in many biomedical applications, gradually entering several fields of research and everyday clinical care. Many biological properties of cfNAs can be informative to gain deeper insights into the function of the organism, such as their different types (DNA, RNAs) and subtypes (gDNA, mtDNA, bacterial DNA, miRNAs, etc.), forms (naked or vesicle bound NAs), fragmentation profiles, sequence composition, epigenetic modifications, and many others. On the other hand, the workflows of their analyzes comprise many important steps, from sample collection, storage and transportation, through extraction and laboratory analysis, up to bioinformatic analyzes and statistical evaluations, where each of these steps has the potential to affect the outcome and informational value of the performed analyzes. There are, however, no universal or standard protocols on how to exactly proceed when analyzing different cfNAs for different applications, at least according to our best knowledge. We decided therefore to prepare an overview of the available literature and products commercialized for cfNAs processing, in an attempt to summarize the benefits and limitations of the currently available approaches, devices, consumables, and protocols, together with various factors influencing the workflow, its processes, and outcomes.
Collapse
Affiliation(s)
- Zuzana Pös
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
| | - Ondrej Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
| | - Jakub Styk
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, 811 08 Bratislava, Slovakia
| | - Angelika Mocova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | | | - Jaroslav Budis
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Slovak Center of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Ludevit Kadasi
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
| | - Jan Radvanszky
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (Z.P.); (A.M.); (L.K.)
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (J.R.); (T.S.); Tel.: +421-2-60296637 (J.R.); +421-2-9026-8807 (T.S.)
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia;
- Geneton Ltd., 841 04 Bratislava, Slovakia; (L.S.); (J.B.)
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia;
- Correspondence: (J.R.); (T.S.); Tel.: +421-2-60296637 (J.R.); +421-2-9026-8807 (T.S.)
| |
Collapse
|
35
|
Gargiulo E, Morande PE, Largeot A, Moussay E, Paggetti J. Diagnostic and Therapeutic Potential of Extracellular Vesicles in B-Cell Malignancies. Front Oncol 2020; 10:580874. [PMID: 33117718 PMCID: PMC7550802 DOI: 10.3389/fonc.2020.580874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EV), comprising microvesicles and exosomes, are particles released by every cell of an organism, found in all biological fluids, and commonly involved in cell-to-cell communication through the transfer of cargo materials such as miRNA, proteins, and immune-related ligands (e.g., FasL and PD-L1). An important characteristic of EV is that their composition, abundance, and roles are tightly related to the parental cells. This translates into a higher release of characteristic pro-tumor EV by cancer cells that leads to harming signals toward healthy microenvironment cells. In line with this, the key role of tumor-derived EV in cancer progression was demonstrated in multiple studies and is considered a hot topic in the field of oncology. Given their characteristics, tumor-derived EV carry important information concerning the state of tumor cells. This can be used to follow the outset, development, and progression of the neoplasia and to evaluate the design of appropriate therapeutic strategies. In keeping with this, the present brief review will focus on B-cell malignancies and how EV can be used as potential biomarkers to follow disease progression and stage. Furthermore, we will explore several proposed strategies aimed at using biologically engineered EV for treatment (e.g., drug delivery mechanisms) as well as for impairing the biogenesis, release, and internalization of cancer-derived EV, with the final objective to disrupt tumor–microenvironment communication.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Pablo Elías Morande
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
36
|
Schmitz TC, Dede Eren A, Spierings J, de Boer J, Ito K, Foolen J. Solid-phase silica-based extraction leads to underestimation of residual DNA in decellularized tissues. Xenotransplantation 2020; 28:e12643. [PMID: 32935355 PMCID: PMC9286341 DOI: 10.1111/xen.12643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Decellularization of animal tissues is a novel route to obtain biomaterials for use in tissue engineering and organ transplantation. Successful decellularization is required as animal DNA causes inflammatory reactions and contains endogenous retroviruses, which could be transmitted to the patient. One of the criteria for successful decellularization is digestion (fragmentation) and elimination (residual quantity) of DNA from the tissue. Quantification of DNA can be done in many ways, but it has recently been shown that silica‐based solid‐phase extraction methods often do not completely purify in particular small DNA fragments. In the context of decellularization, this means that the measured DNA amount is underestimated, which could compromise safety of the processed tissue for in‐patient use. In this article, we review DNA quantification methods used by researchers and assess their influence on the reported DNA contents after decellularization. We find that underestimation of residual DNA amount after silica‐based solid‐phase extraction may be as large as a factor of ten. We therefore recommend a direct assessment of DNA amount in tissue lysate using dsDNA‐specific binding dyes, such as Picogreen, due to their higher accuracy for small fragment detection as well as ease of use and widespread availability.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- BioInterface Science, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Janne Spierings
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,BioInterface Science, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jan de Boer
- BioInterface Science, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jasper Foolen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
37
|
Truszewska A, Wirkowska A, Gala K, Truszewski P, Krzemień-Ojak Ł, Perkowska-Ptasińska A, Mucha K, Pączek L, Foroncewicz B. Cell-free DNA profiling in patients with lupus nephritis. Lupus 2020; 29:1759-1772. [DOI: 10.1177/0961203320957717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Increased level of cell-free DNA (cf-DNA) is associated with systemic lupus erythematosus (SLE) and might be related to disease activity. The aim of this study was to evaluate whether cfDNA integrity, size distribution and concentration of different cfDNA fractions is associated with lupus activity and kidney involvement. Methods Blood samples were collected from 43 SLE patients and 50 healthy controls. Nuclear and mitochondrial fractions of cfDNA and intracellular DNA were quantified by real-time qPCR. Sizing and quantification of total cfDNA level was performed on Bioanalyzer. Results We determined four parameters that characterized cfDNA profile: fragmentation index, ratio of intra- to extracellular mtDNA copy number, cfDNA concentration, and presence of 54–149 bp and 209–297 bp fragments. Patients with healthy-like cfDNA profile had higher eGFR ( P = 0.009) and more often no indications for kidney biopsy or less advanced lupus nephritis (LN) ( P = 0.037). In contrary, SLE patients with distinct cfDNA profile (characterized by increased cfDNA concentration and fragmentation, higher discrepancy between intra- to extracellular mtDNA copy number, and the presence of 54–149 bp and 209–297 bp fragments) had lower eGFR ( P = 0.005) and more often advanced LN or history of renal transplantation ( P = 0.001). Conclusions We showed that cfDNA profiling may help to distinguish SLE patients with renal involvement and severe disease course from patients with more favorable outcomes. We suggest cfDNA profile a promising SLE biomarker.
Collapse
Affiliation(s)
- Anna Truszewska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Wirkowska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Gala
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Truszewski
- Department of Orthopedics and Traumatology of Musculoskeletal System, Baby Jesus Clinical Hospital, Warsaw, Poland
| | - Łucja Krzemień-Ojak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, Warsaw, Poland
| | | | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Foroncewicz
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
Demeke T, Beecher B, Eng M. Assessment of genetically engineered events in heat-treated and non-treated samples using droplet digital PCR and real-time quantitative PCR. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Ponti G, Maccaferri M, Percesepe A, Tomasi A, Ozben T. Liquid biopsy with cell free DNA: new horizons for prostate cancer. Crit Rev Clin Lab Sci 2020; 58:60-76. [PMID: 32805148 DOI: 10.1080/10408363.2020.1803789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although prostate cancer (PCa) is one of the most common tumors in European males, the only minimally invasive diagnostic tool in PCa setup is the determination of PSA in serum. Cell-free DNA (cfDNA) has been demonstrated to be helpful for PCa diagnosis but has not yet been integrated into the clinical setting. This review aims to provide a systematic update of cfDNA and its fragmentation patterns in PCa reported in literature published over the last twenty years. Due to the high variability of the scientific methods adopted and a lack of standardized median cfDNA levels, results fluctuate across different studies. These differences may be due to the cfDNA source, the quantification method, or the fragmentation pattern. Blood plasma is the most frequently analyzed biological fluid, but seminal plasma has been reported to contain higher cfDNA concentration due to its vicinity to the tumor origin. CfDNA has been shown to be composed of single-stranded (ssDNA) and double-stranded DNA (dsDNA), so the total cfDNA concentration should be preferred as it corresponds best to the tumor mass. Fluorometry and capillary electrophoresis (CE) may be quick and cost-effective tools for cfDNA assessment in a clinical setting. The greatest future challenge is the elaboration of common guidelines and standardized procedures for diagnostic laboratories performing cfDNA analysis. A multiparametric approach combining the analysis of total cfDNA (both ssDNA and dsDNA), cfDNA fragment length, and specific genetic mutations (ctDNA assessment) is required for optimal future applications of liquid biopsy.
Collapse
Affiliation(s)
- Giovanni Ponti
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Dermatology Unit, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Antonio Percesepe
- Medical Genetics Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Aldo Tomasi
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Tomris Ozben
- Faculty of Medicine, Department of Clinical Biochemistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
40
|
Alhusaini AM, Fadda LM, Hasan IH, Ali HM, Badr A, Elorabi N, Alomar H, Alqahtani Q, Zakaria E, Alanazi A. Role of some natural anti-oxidants in the down regulation of Kim, VCAM1, Cystatin C protein expression in lead acetate-induced acute kidney injury. Pharmacol Rep 2020; 72:360-367. [PMID: 32109309 DOI: 10.1007/s43440-020-00072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 10/24/2022]
Abstract
BACKGROUND Lead is a dangerous systemic toxicant and can provoke life-threatening renal injury. The plan of this study was to evaluate the potential impact of curcumin (CRMN) and L-ascorbic acid (L-ascb) alone or together to counteract lead acetate (Pb-acetate)-induced renal damage in rats and to find out the underlying mechanisms of action of these nutraceuticals. METHODS Pb-acetate (100 mg/kg/day, i.p.) was injected in male rats along with L-ascb (250 mg/kg/day) and/or CRMN (200 mg/kg/day) orally for 7 days. RESULTS Pb-acetate administration increased serum urea, creatinine and uric acid. Renal tissue showed a marked depletion in reduced glutathione level and superoxide dismutase activity and elevation in nitric oxide and malondialdehyde levels. Serum C-reactive protein and IL-1β levels were elevated. Up-regulation of the expression of kidney injury molecule, vascular adhesion molecule-1 and Cystatin C were noticed after Pb-acetate administration. DNA fragmentation was also increased in renal tissues. Histopathological examination revealed a destructed partial layer of Bowman's capsule, proximal and distal convoluted tubules. Treatment with the aforementioned antioxidants ameliorated most of the altered measured biomarker levels. CONCLUSION Interestingly, the combination of L-ascb and CRMN showed the superlative protective effect against Pb-acetate-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Laila M Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M Ali
- Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia
- Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| | - Amira Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, AIN Shams University, Cairo, Egypt
| | - Najlaa Elorabi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Hatun Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Qamraa Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Enas Zakaria
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Jo A, Ringel-Scaia VM, McDaniel DK, Thomas CA, Zhang R, Riffle JS, Allen IC, Davis RM. Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR-Cas9 plasmid. J Nanobiotechnology 2020; 18:16. [PMID: 31959180 PMCID: PMC6970287 DOI: 10.1186/s12951-019-0564-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background The clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 protein system is a revolutionary tool for gene therapy. Despite promising reports of the utility of CRISPR–Cas9 for in vivo gene editing, a principal problem in implementing this new process is delivery of high molecular weight DNA into cells. Results Using poly(lactic-co-glycolic acid) (PLGA), a nanoparticle carrier was designed to deliver a model CRISPR–Cas9 plasmid into primary bone marrow derived macrophages. The engineered PLGA-based carriers were approximately 160 nm and fluorescently labeled by encapsulation of the fluorophore 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). An amine-end capped PLGA encapsulated 1.6 wt% DNA, with an encapsulation efficiency of 80%. Release studies revealed that most of the DNA was released within the first 24 h and corresponded to ~ 2–3 plasmid copies released per nanoparticle. In vitro experiments conducted with murine bone marrow derived macrophages demonstrated that after 24 h of treatment with the PLGA-encapsulated CRISPR plasmids, the majority of cells were positive for TIPS pentacene and the protein Cas9 was detectable within the cells. Conclusions In this work, plasmids for the CRISPR–Cas9 system were encapsulated in nanoparticles comprised of PLGA and were shown to induce expression of bacterial Cas9 in murine bone marrow derived macrophages in vitro. These results suggest that this nanoparticle-based plasmid delivery method can be effective for future in vivo applications of the CRISPR–Cas9 system.
Collapse
Affiliation(s)
- Ami Jo
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Veronica M Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Dylan K McDaniel
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Cassidy A Thomas
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rui Zhang
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Judy S Riffle
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA. .,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| | - Richey M Davis
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA. .,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA. .,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
42
|
Muscarella LA, Fabrizio FP, De Bonis M, Mancini MT, Balsamo T, Graziano P, Centra F, Sparaneo A, Trombetta D, Bonfitto A, Scagliusi V, Larizza P, Capoluongo ED, Fazio VM. Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics. Cancers (Basel) 2019; 11:cancers11111691. [PMID: 31671666 PMCID: PMC6896097 DOI: 10.3390/cancers11111691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Thanks to personalized medicine trends and collaborations between industry, clinical research groups and regulatory agencies, next generation sequencing (NGS) is turning into a common practice faster than one could have originally expected. When considering clinical applications of NGS in oncology, a rapid workflow for DNA extraction from formalin-fixed paraffin-embedded (FFPE) tissue samples, as well as producing high quality library preparation, can be real challenges. Here we consider these targets and how applying effective automation technology to NGS workflows may help improve yield, timing and quality-control. We firstly evaluated DNA recovery from archived FFPE blocks from three different manual extraction methods and two automated extraction workstations. The workflow was then implemented to somatic (lung/colon panel) and germline (BRCA1/2) library preparation for NGS analysis exploiting two automated workstations. All commercial kits gave good results in terms of DNA yield and quality. On the other hand, the automated workstation workflow has been proven to be a valid automatic extraction system to obtain high quality DNA suitable for NGS analysis (lung/colon Ampli-seq panel). Moreover, it can be efficiently integrated with an open liquid handling platform to provide high-quality libraries from germline DNA with more reproducibility and high coverage for targeted sequences in less time (BRCA1/2). The introduction of automation in routine workflow leads to an improvement of NGS standardization and increased scale up of sample preparations, reducing labor and timing, with optimization of reagents and management.
Collapse
Affiliation(s)
- Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | - Maria De Bonis
- Department of Laboratory Medicine of the 'Agostino Gemelli' Foundation in Rome, 00168 Rome, Italy.
| | | | - Teresa Balsamo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | - Flavia Centra
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | - Angelo Sparaneo
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | - Domenico Trombetta
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | - Antonio Bonfitto
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
| | | | | | - Ettore Domenico Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II-CEINGE, 80145 Naples, Italy.
| | - Vito Michele Fazio
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, (FG), Italy.
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy.
| |
Collapse
|
43
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Comparison of methods for the quantification of cell-free DNA isolated from cell culture supernatant. Tumour Biol 2019; 41:1010428319866369. [DOI: 10.1177/1010428319866369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gaining a better understanding of the biological properties of cell-free DNA constitutes an important step in the development of clinically meaningful cell-free DNA–based tests. Since the in vivo characterization of cell-free DNA is complicated by the immense heterogeneity of blood samples, an increasing number of in vitro cell culture experiments, which offer a greater level of control, are being conducted. However, cell culture studies are currently faced with three notable caveats. First, the concentration of cell-free DNA in vitro is relatively low. Second, the median amount and size of cell-free DNA in culture medium varies greatly between cell types. Third, the amount and size of cell-free DNA in the culture medium of a single cell line fluctuates over time. Although these are interesting findings, it can also be a great source of experimental confusion and emphasizes the importance of method optimization and standardization. Therefore, in this study, we compared five commonly used cell-free DNA quantification methods, including quantitative polymerase chain reaction, Qubit Double-Stranded DNA High Sensitivity assay, Quant-iT PicoGreen Assay, Bioanalyzer High Sensitivity DNA assay, and NanoDrop Onec. Analysis of the resulting data, along with an interpretation of theoretical values (i.e. the theoretical detection and quantification limits of the respective methods), enables the calculation of optimal conditions for several important preanalytical steps pertaining to each quantification method and different cell types, including the (1) time-point at which culture medium should be collected for cell-free DNA extraction, (2) amount of cell culture supernatant from which to isolate cell-free DNA, (3) volume of elution buffer, and (4) volume of cell-free DNA sample to use for quantification.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
44
|
Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 2019; 13:34. [PMID: 31370908 PMCID: PMC6669976 DOI: 10.1186/s40246-019-0220-8] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, the rapid development of next-generation sequencing (NGS) technologies has led to a significant reduction in sequencing cost with improved accuracy. In the area of liquid biopsy, NGS has been applied to sequence circulating tumor DNA (ctDNA). Since ctDNA is the DNA fragments released by tumor cells, it can provide a molecular profile of cancer. Liquid biopsy can be applied to all stages of cancer diagnosis and treatment, allowing non-invasive and real-time monitoring of disease development. The most promising aspects of liquid biopsy in cancer applications are cancer screening and early diagnosis because they can lead to better survival results and less disease burden. Although many ctDNA sequencing methods have enough sensitivity to detect extremely low levels of mutation frequency at the early stage of cancer, how to effectively implement them in population screening settings remains challenging. This paper focuses on the application of liquid biopsy in the early screening and diagnosis of cancer, introduces NGS-related methods, reviews recent progress, summarizes challenges, and discusses future research directions.
Collapse
|
45
|
Mathieson W, Thomas G. Using FFPE Tissue in Genomic Analyses: Advantages, Disadvantages and the Role of Biospecimen Science. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00194-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Chang L, Ni J, Zhu Y, Pang B, Graham P, Zhang H, Li Y. Liquid biopsy in ovarian cancer: recent advances in circulating extracellular vesicle detection for early diagnosis and monitoring progression. Am J Cancer Res 2019; 9:4130-4140. [PMID: 31281536 PMCID: PMC6592165 DOI: 10.7150/thno.34692] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
The current biomarkers available in the clinic are not enough for early diagnosis or for monitoring disease progression of ovarian cancer. Liquid biopsy is a minimally invasive test and has the advantage of early diagnosis and real-time monitoring of treatment response. Although significant progress has been made in the usage of circulating tumor cells and cell-free DNA for ovarian cancer diagnosis, their potential for early detection or monitoring progression remains elusive. Extracellular vesicles (EVs) are a heterogeneous group of lipid membranous particles released from almost all cell types. EVs contain proteins, mRNA, DNA fragments, non-coding RNAs, and lipids and play a critical role in intercellular communication. Emerging evidence suggests that EVs have crucial roles in cancer development and metastasis, thus holding promise for liquid biopsy-based biomarker discovery for ovarian cancer diagnosis. In this review, we discuss the advantages of EV-based liquid biopsy, summarize the protein biomarkers identified from EVs in ovarian cancer, and highlight the utility of new technologies recently developed for EV detection with an emphasis on their use for diagnosing ovarian cancer, monitoring cancer progression, and developing personalized medicine.
Collapse
|
47
|
DNA extraction from FFPE tissue samples - a comparison of three procedures. Contemp Oncol (Pozn) 2019; 23:52-58. [PMID: 31061638 PMCID: PMC6500389 DOI: 10.5114/wo.2019.83875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/26/2019] [Indexed: 12/29/2022] Open
Abstract
Aim of the study One of the critical steps in molecular oncology diagnostics is obtaining high quality genomic DNA. Therefore, it is important to evaluate and compare the techniques used to extract DNA from tissue samples. Since formalin-fixed, paraffin-embedded (FFPE) tissues are routinely used for both retrospective and prospective studies, we compared three commercially available methods of nucleic acid extraction in terms of quantity and quality of isolated DNA. Material and methods Slides prepared from 42 FFPE blocks were macro-dissected. Resulting material was divided and processed simultaneously using three extraction kits: QIAamp DNA FFPE Tissue Kit (QIAGEN), Cobas DNA Sample Preparation Kit (Roche Molecular Systems) and Maxwell 16 FFPE Plus LEV DNA Purification Kit (Promega). Subsequently, quantity and quality of obtained DNA samples were analysed spectrophotometrically (NanoDrop 2000, Thermo Scientific). Results of quantitative analysis were confirmed by a fluorometric procedure (Qubit 3.0 Fluorometer, Life Technologies). Results The results demonstrated that the yields of total DNA extracted using either Maxwell or Cobas methods were significantly higher compared to the QIAamp method (p < 0.001). The Maxwell Extraction Kit delivered DNA samples of the highest quality (p < 0.01). However, the highest total yield of extracted DNA was achieved with the Cobas technique, which may be due to a higher volume of eluate compared to the Maxwell method. Conclusions To our knowledge, this is the first paper which directly compares three extraction methods: Cobas, Maxwell and QIAamp. The data herein provide information required for the selection of a protocol that best suits the needs of the overall study design in terms of the quantity and quality of the extracted DNA.
Collapse
|
48
|
Mendivil-Perez M, Velez-Pardo C, Kosik KS, Lopera F, Jimenez-Del-Rio M. iPSCs-derived nerve-like cells from familial Alzheimer's disease PSEN 1 E280A reveal increased amyloid-beta levels and loss of the Y chromosome. Neurosci Lett 2019; 703:111-118. [PMID: 30904577 DOI: 10.1016/j.neulet.2019.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder that mainly results in memory loss and a cognitive disorder. Although the cause of AD is still unknown, a minor percentage of AD cases are produced by genetic mutations in the presenilin-1 (PSEN1) gene. Differentiated neuronal cells derived from induced pluripotent stem cells (iPSCs) of patients can recapitulate key pathological features of AD in vitro; however, iPSCs studies focused on the p.E280 A mutation, which afflicts the largest family in the world with familial AD, have not been carried out yet. Although a link between the loss of the Y (LOY) chromosome in peripheral blood cells and risk for AD has been reported, LOY-associated phenotype has not been previously studied in PSEN1 E280 A carriers. Here, we report the reprogramming of fibroblast cells into iPSCs from a familial AD patient with the PSEN1 E280 A mutation, followed by neuronal differentiation into neural precursor cells (NPCs), and the differentiation of NPCs into differentiated neurons that lacked a Y chromosome. Although the PSEN1 E280 A iPSCs and NPCs were successfully obtained, after 8 days of differentiation, PSEN1 E280 A differentiated neurons massively died reflected by release and/ or activation of death markers, and failed to reach complete neural differentiation compared to PSEN 1 wild type cells.
Collapse
Affiliation(s)
- Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU Medellin, Colombia
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular Cellular Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Francisco Lopera
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU Medellin, Colombia.
| |
Collapse
|
49
|
Wang W, Luo J, Wang S. Recent Progress in Isolation and Detection of Extracellular Vesicles for Cancer Diagnostics. Adv Healthc Mater 2018; 7:e1800484. [PMID: 30009550 DOI: 10.1002/adhm.201800484] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/20/2018] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are emerging as one of the many new and promising biomarkers for liquid biopsy of cancer due to their loading capability of some specific proteins and nucleic acids that are closely associated with cancer states. As such, the isolation and detection of cancer-derived EVs offer important information in noninvasive diagnosis of early-stage cancer and real-time monitoring of cancer development. In light of the importance of EVs, over the last decade, researchers have made remarkable innovations to advance the development of EV isolation and detection methods by taking advantage of microfluidics, biomolecule probes, nanomaterials, surface plasmon, optics, and so on. This review introduces the basic properties of EVs and common cancer-derived EV ingredients, and provides a comprehensive overview of EV isolation and detection strategies, with emphasis on liquid biopsies of EVs for cancer diagnostics.
Collapse
Affiliation(s)
- Wenshuo Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jing Luo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
50
|
Alhusaini A, Fadda L, Hassan I, Ali HM, Alsaadan N, Aldowsari N, Aldosari A, Alharbi B. Liposomal Curcumin Attenuates the Incidence of Oxidative Stress, Inflammation, and DNA Damage Induced by Copper Sulfate in Rat Liver. Dose Response 2018; 16:1559325818790869. [PMID: 30116168 PMCID: PMC6088486 DOI: 10.1177/1559325818790869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Background Copper is an essential element that is used widely in agriculture as fungicides and insecticides; for example, it is used to control schistosomiasis and as an antiseptic and germicide. Copper sulfate (CuSO4) induces multiorgan dysfunction through the stimulation of reactive oxygen species and oxidative stress. Despite the numerous pharmacological effects of curcumin (CUR), its pharmacokinetic properties are less promising. Hence, there is an urgent need for novel, effective strategies to attenuate heavy metal toxicity and consequently improve the treatment efficiency. Liposomal curcumin (L-CUR) improves the dissolution, stability, and bioavailability of treatment agents. This study compared the efficacy of CUR and L-CUR with that of desferrioxamine (DES), which is a heavy metal chelator against CuSO4 hepatotoxicity. Methods All treatments with the aforementioned antioxidants were administered for 7 days along with CuSO4. Serum levels of alanine aminotransferase, aspartate transaminase, lactate dehydrogenase, and C-reactive protein, hepatic nitric oxide (NO), and lipid peroxides (malondialdehyde) were measured; protein expression of cyclooxygenase 2 and DNA fragmentation were evaluated. Histopathological examinations were also conducted. Results A toxic dose of CuSO4 induced elevations in the previously measured parameters; these increases were reduced by the tested antioxidants, whereas glutathione (GSH) and superoxide dismutase (SOD) levels were decreased. Treatment with the antioxidants in question modulated these levels. Liposomal CUR has more hepatoprotective efficiency than CUR, and its efficacy was similar to that of DES. The histopathological examinations confirmed these results. Conclusions Liposomal CUR may be useful for the prevention of CuSO4-induced liver injury. Cyclooxygenase 2 protein expression and DNA fragmentation were involved in CuSO4 toxicity and treatment.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Fadda
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman Hassan
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M Ali
- King Saud University, Riyadh, Saudi Arabia.,Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| | - Njood Alsaadan
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Aldowsari
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azizah Aldosari
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bshayer Alharbi
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|