1
|
Pannerchelvan S, Jawlan LLL, Wasoh H, Mohamed MS, Wong FWF, Sobri MZM, Mohamad R, Halim M. Enhancing cell viability and GABA production in fermented milk using fruit juice-coated alginate microencapsulated Lactiplantibacillus plantarum B7 during storage. Int Microbiol 2025:10.1007/s10123-025-00662-7. [PMID: 40234355 DOI: 10.1007/s10123-025-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid with diverse health benefits, prompting interest in its incorporation into functional foods. In vitro probiotic characterization of Lactiplantibacillus plantarum B7, selected for its superior GABA production in a previous study, was performed before studying its microencapsulation using alginate coated with apple and pear juices to enhance cell viability and stability during storage in fermented milk. Both apple and pear juice-coated alginate microcapsules (AL-A + B7 and AL-P + B7) showed superior encapsulation, GIT condition tolerance, and release efficiency compared to alginate-only microcapsules. In comparison, free-cell L. plantarum B7 exhibited higher GABA production (2.59 ± 0.03 g/L), cell growth (8.96 ± 0.02 log CFU/mL), and the lowest pH (5.27 ± 0.06) at 48 h of fermentation. Among microencapsulated samples, AL-A + B7 showed the highest cell growth (8.93 ± 0.05 log CFU/g), GABA production (2.45 ± 0.05 g/L), and a lower pH (5.32 ± 0.06). During storage, AL-A + B7 retained higher viable cell counts (8.34 ± 0.13 log CFU/g) and improved GABA levels (3.90 ± 0.25 g/L) after 28 days, while free-cell samples showed a significant decline in cell count (from 8.96 ± 0.05 to 5.51 ± 0.13 log CFU/mL) and no significant improvement in GABA. These results highlight that apple juice-coated alginate (AL-A + B7) enhances the stability and viability of L. plantarum B7 during storage, while also promoting GABA production under storage conditions. These findings suggest its potential application in the development of functional foods with possible health benefits.
Collapse
Affiliation(s)
- Sangkaran Pannerchelvan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Louise Lorna Lanne Jawlan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamad Zulfazli Mohd Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Complex, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
de Oliveira Vieira A, De Dea Lindner J, Palmieri AF, Farias CFS, Dutra SAP, De Marco I, Owatari MS, Laterça Martins M, Mouriño JLP. Assembly of a synthetic microbial community to ferment rice (Oryza sativa) bran for aquaculture feedstuff. Int Microbiol 2025:10.1007/s10123-025-00651-w. [PMID: 40019718 DOI: 10.1007/s10123-025-00651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Raw materials of plant origin, such as rice bran (Oryza sativa; RB), are promising alternatives to fishmeal in aquaculture feeds, offering a low-cost solution. However, due to antinutritional factors and reduced digestibility, direct use of RB is limited. Fermentation is an effective, cost-effective, and environmentally friendly technique that improves the nutritional quality of RB, enhancing nutrient availability and digestibility and reducing harmful compounds. Fermented RB improved growth, feed utilization, immune competence, and gut health, contributing to more sustainable aquaculture practices. The study aimed to evaluate the solid-state fermentation influence of a synthetic microbial community (SynCom) on RB (RBMC). The fermentation by the microbial consortium showed significant changes in RB physical-chemical composition and crude fiber and protein. Significant reductions were observed for ether extract, mineral matter, phosphate, phosphorus, and potassium compared with the naturally fermented RB (RBNF). Sodium, calcium, and iron contents increased by 43.03, 60.77, and 74.58%, respectively, compared to RBNF. A significant increase was observed in the fermented RBMC for essential and non-essential amino acids. Scanning electron microscopy revealed changes in the microstructure of the RB, in addition to the presence of microbial aggregates morphologically similar to the individuals used as inoculum. The RB fermentation using SynCom significantly improved the quality of the RB by-product feedstuff. The use of fermented RB in diet formulations for aquatic organisms is desirable because it enables the reuse of this industrial co-product, which is rich in nutrients and biological value.
Collapse
Affiliation(s)
- Antonio de Oliveira Vieira
- Aquatic Organism Health Laboratory (AQUOS), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, UFSC, Florianópolis, SC, Brazil.
| | - Adriano Faria Palmieri
- Aquatic Organism Health Laboratory (AQUOS), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | - Ivan De Marco
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, UFSC, Florianópolis, SC, Brazil
| | | | - Maurício Laterça Martins
- Aquatic Organism Health Laboratory (AQUOS), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - José Luiz Pedreira Mouriño
- Aquatic Organism Health Laboratory (AQUOS), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Aregbe AY, Mubeen B, Xiong Y, Ma Y. Fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 improves nutritional quality and volatile profile of sea buckthorn-based cereal beverage. Food Res Int 2025; 201:115547. [PMID: 39849701 DOI: 10.1016/j.foodres.2024.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/15/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Recently, there has been a growing demand for plant-based beverages that meet nutritional and health needs and have an appealing taste. This study investigated the impact of fermentation with Lactobacillus strains, Acetobacter pasteurianus, and Torulaspora delbrueckii D1-3 on the nutritional quality and aroma compound profile of a sea buckthorn-based cereal beverage. The mixed starter fermented samples, specifically S-APTD (SBCB inoculated with A. pasteurianus, and T. delbrueckii D1-3), showed significant increases in protein and free amino acid (FAA) content, recording values of 9.02 ± 0.01 mg/g and 5468.33 ± 20.31 µg/g, respectively. Proanthocyanidin and β-carotene contents were significantly higher in the mixed SBCB compared to the control, particularly in samples containing A. pasteurianus. Interestingly, the fermentation process also resulted in the reduction and absence of butanoic acid, which was higher in the control, and the complete degradation of phthalates present in the control. Phenylethyl alcohol emerged as the dominant alcohol in SBCB, particularly in the mixed starter fermented samples, while lactic acid was the most prevalent acid in the mixed starter samples except S-APLA (SBCB inoculated with A. pasteurianus and Lactobacillus acidophilus). Ultimately, a functional beverage with enhanced nutritional value and an improved aroma profile can be developed through fermentation with these strains.
Collapse
Affiliation(s)
- Afusat Yinka Aregbe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bismillah Mubeen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - YuQing Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Liu K, Li J, Hao W, Li J, Khan I, Liang Y, Wang H, Li X, Zhang C. Lactiplantibacillus plantarum LZU-J-Q21 enhanced the functional metabolic profile and bioactivity of Cistanche deserticola. Food Chem X 2024; 24:101941. [PMID: 39568517 PMCID: PMC11577131 DOI: 10.1016/j.fochx.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Microbial fermentation is an effective method to enhance the bioavailability of herbs. This study utilized Lactiplantibacillus plantarum LZU-J-Q21 to ferment Cistanche deserticola and evaluated its metabolic properties and biological activity. Results showed that the contents of total acid and flavone, and the clearance rates of DPPH, ABTS and OH- in fermented Cistanche deserticola (FCD) were increased by 142.74 %, 56.45 %, 58.1 %, 62.3 %,51.2 %, compared with non-fermented Cistanche deserticola (NFCD). The metabolic profile of FCD had remarkable changes, especially elevated glucose and adenosine (97.31 % and 59.18 %). Further, FCD increased the weight-bearing swimming time of mice by 88.57 %, reduced fatigue markers BUN, BLA, and MDA (18.47 %, 12.92 %, and 15.16 %), and enhanced liver/muscle glycogen and SOD (28.99 %, 28.57 %, and 14.47 %). The investigation into its anti-fatigue mechanism suggested that FCD enhanced GS protein expression by activating PI3K/AKT/GSK3β signaling. These findings suggest that FCD enhances anti-fatigue effects by modifying its metabolic properties and biological activity.
Collapse
Affiliation(s)
- Kangkang Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, PR China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | - Wenting Hao
- Center for Pharmacovigilance of Gansu Province, Lanzhou 730070, PR China
| | - Jingjing Li
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, PR China
| | - Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | - Yibo Liang
- Gansu Institute for Drug Control, Lanzhou 730030, PR China
| | - Haijuan Wang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, PR China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
5
|
Rastogi M, Singh V, Shaida B, Siddiqui S, Bangar SP, Phimolsiripol Y. Biofortification, metabolomic profiling and quantitative analysis of vitamin B 12 enrichment in guava juice via lactic acid fermentation using Levilactobacillus brevis strain KU15152. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9191-9201. [PMID: 39011860 DOI: 10.1002/jsfa.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Chemical fortification and dose supplementation of vitamin B12 are widely implemented to combat deficiency symptoms. However, in situ, fortification of vitamin B12 in food matrixes can be a promising alternative to chemical fortification. The present study aimed to produce vitamin B12-rich, probiotic guava juice fermented with Levilactobacillus brevis strain KU15152. Pasteurized fresh guava juice was inoculated with 7.2 log CFU mL-1 L. brevis strain KU15152 and incubated for 72 h at 37 °C anaerobically. The antioxidants, total phenolic compounds, vitamin B12 production, sugars, organic acids, pH and viable count were analyzed at 24, 48 and 72 h of incubation. The fermented juice was stored at 4 °C, and the changes in its functional properties were analyzed at 7-day intervals up to 28 days of storage. RESULTS During fermentation, the bacteria cell count was increased from 7.01 ± 0.06 to 9.76 ± 0.42 log CFU mL-1 after 72 h of fermentation and was decreased to 6.94 ± 0.34 CFU mL-1 during storage at 4 °C after 28 days. The pH, total soluble solids, crude fiber, citric acid and total sugars decreased, while titratable acidity, total protein, antioxidants, phenolic compounds and lactic acid contents increased during fermentation. The fermented guava juice exhibited higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)) radical scavenging activities (85.97% and 75.97%, respectively) at 48 h of fermentation. The concentration of active vitamin B12 in the sample reached 109.5 μg L-1 at 72 h of fermentation. However, this concentration gradually decreased to 70.2 μg L-1 during the storage period. During storage for 28 days at 4 °C, both the fermented and control guava juices exhibited a decline in antioxidant and phenolic compound concentrations. Furthermore, the addition of 20% honey and guava flavor enhanced the organoleptic properties and acceptability of fermented guava juice. CONCLUSION The value-added fermented guava juice could be a novel functional food product to combat vitamin B12 deficiency. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayuri Rastogi
- Nutrition and Dietetics Department, Sharda Schools of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Vandana Singh
- Department of Microbiology, Sharda Schools of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Bushra Shaida
- Department of Nutrition, Jamia Hamdard University, New Delhi, India
| | - Saleem Siddiqui
- Department of Food Science and Technology, Sharda School of Basic Sciences, Sharda University, Greater Noida, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
6
|
Yumnam H, Hazarika P, Sharma I. Metagenomic insights into traditional fermentation of rice-based beverages among ethnic tribes in southern Assam, Northeast India. Front Microbiol 2024; 15:1410098. [PMID: 39380672 PMCID: PMC11459095 DOI: 10.3389/fmicb.2024.1410098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/05/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Traditional fermented foods have long been recognized for their numerous health benefits along with their potential to aid in the treatment of gastrointestinal disorders. These fermented foods have been shown to promote gut health and contribute to a longer, healthier life. Methods The high-throughput sequencing using the Illumina MiSeq platform was employed to investigate the microbiome communities of rice-based fermented beverages consumed by ethnic tribes in Southern Assam, namely Zeme Naga, Dimasa Kachari, Hmar, Karbi and Tea tribes. Results The fermented rice-based beverages were highly predominated by Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria exhibiting the highest relative abundance across all tribes. At genus level, significant abundance of pediococcus, lactobacillus, bacillus, leuconostoc, acetobacter, staphylococcus, delftia, erwinia, klebsiella and chrysebacterium were found amongst these ethnic tribes. Discussion Understanding the fermented food microbiome will help to know the relationships between microbial communities and their effect on health of humans amongst the tribes. Furthermore, the use of these fermented products could provide enhanced health benefits to southern Assam region of India.
Collapse
Affiliation(s)
- Hanna Yumnam
- Department of Microbiology, Faculty of Science, Assam University, Silchar, India
| | - Parijat Hazarika
- Programme of Microbiology, Faculty of Science, Assam down town University, Guwahati, India
| | - Indu Sharma
- Department of Microbiology, Faculty of Science, Assam University, Silchar, India
| |
Collapse
|
7
|
Doo H, Kwak J, Keum GB, Ryu S, Choi Y, Kang J, Kim H, Chae Y, Kim S, Kim HB, Lee JH. Lactic acid bacteria in Asian fermented foods and their beneficial roles in human health. Food Sci Biotechnol 2024; 33:2021-2033. [PMID: 39130665 PMCID: PMC11315863 DOI: 10.1007/s10068-024-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 08/13/2024] Open
Abstract
Fermented foods have been a staple in human diets for thousands of years, garnering attention for their health and medicinal benefits. Rich in lactic acid bacteria (LAB) with probiotic properties, these foods play a crucial role in positively impacting the host's gut microbiome composition and overall health. With a long history of safe consumption, fermented foods effectively deliver LAB to humans. Intake of LAB from fermented foods offers three main benefits: (1) enhancing digestive function and managing chronic gastrointestinal conditions, (2) modulating the immune system and offering anti-inflammatory effects to prevent immune-related diseases, and (3) synthesizing vitamins and various bioactive compounds to improve human health. In this review, we highlighted the diverse LAB present in Asian fermented foods and emphasized LAB-rich fermented foods as a natural and effective solution for health enhancement and disease prevention.
Collapse
Affiliation(s)
- Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Haram Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Yeongjae Chae
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Ju-Hoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
8
|
Kumari V. B. C, Huligere S, M. K. J, Goh KW, Desai SM, H. L. K, Ramu R. Characterization of Lactobacillus spp. as Probiotic and Antidiabetic Potential Isolated from Boza, Traditional Fermented Beverage in Turkey. Int J Microbiol 2024; 2024:2148676. [PMID: 38962395 PMCID: PMC11221989 DOI: 10.1155/2024/2148676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/16/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Boza, a cereal-based beverage popular in southeast Europe, is fortified with probiotics and is believed to positively impact the composition of the gut microflora. This investigation focused on fermented cereal-based beverage boza to identify strains of probiotic Lactobacillus spp. capable of inhibiting carbohydrate-hydrolysing enzymes α-glucosidase (AG) and α-amylase (AA). The isolated bacterial strains underwent a comprehensive assessment, including biochemical, molecular, and probiotic trait analyses such as tolerance survivability, adhesion, safety, and health-promoting attributes. We evaluated the inhibitory potential of the supernatant, cell lysate, and intact cells of Lactobacillus spp. Molecular analysis has revealed that isolates RAMULAB30 and RAMULAB29 exhibit a significant genetic similarity (>97%) to Lacticaseibacillus paracasei and Limosilactobacillus fermentum, respectively. These findings are documented in the NCBI database. They exhibited significant resistance to gastrointestinal and intestinal fluids, also indicating their potential for adhesion. Additionally, the isolates showed a significant antibacterial activity, particularly against Micrococcus luteus. They showed resistance to vancomycin and methicillin antibiotics but were more susceptible to streptomycin and ampicillin. Furthermore, the strains demonstrated antioxidant properties. To ensure their safety, a haemolytic assay was conducted despite their general recognition as safe (GRAS) status. The study primarily aimed to evaluate the inhibitory effects of the extract on enzymes AG and AA. Bacterial isolates demonstrated a significant inhibitory activity against both enzyme AG (32%-67% inhibition) and enzyme AA (18%-46% inhibition) in different forms, including supernatant (CS), lysed extract (CE), and intact cell (IC). These findings underscore the potential of bacterial isolates to inhibit the enzyme activity effectively. Furthermore, the L. fermentum RAMULAB29 and L. paracasei RAMULAB30 strains exhibit remarkable antidiabetic potential. Food products incorporating these strains have promising prospects as nutraceuticals, providing improved health benefits.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Sujay Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Kalabharthi H. L.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India
| |
Collapse
|
9
|
Huidrom S, Mukherjee PK, Devi SI. Antimicrobial and Probiotic Potential of Lactobacilli Associated with Traditional Fermented Beverages. Curr Microbiol 2024; 81:137. [PMID: 38597994 DOI: 10.1007/s00284-024-03656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024]
Abstract
Fermented foods have been recognized as a source of probiotic bacteria which can have a positive effect when administered to humans and animals. Discovering new probiotics in fermented food products poses a global economic and health importance. In this study, we investigated the antimicrobial and probiotic potential of lactobacilli isolated from fermented beverages produced traditionally by ethnic groups in Northeast India. Out of thirty Lactobacilli, fifteen exhibited strong antimicrobial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes with significant anti-biofilm and anti-quorum sensing activity. These isolates also showed characteristics associated with probiotic properties, such as tolerance to low pH and bile salts, survival in the gastric tract, auto-aggregation, and hydrophobicity without exhibiting hemolysis formation or resistance to certain antibiotics. The isolates were identified using gram staining, biochemical tests, and 16S rDNA sequencing. They exhibited probiotic potential, broad-spectrum of antibacterial activity, promising anti-biofilm, anti-quorum sensing activity, non-hemolytic, and tolerance to acidic pH and bile salts. Overall, four specific Lactobacillus isolates, Lactiplantibacillus plantarum BRD3A and Lacticaseibacillus paracasei RB10OW from fermented rice-based beverage, and Lactiplantibacillus plantarum RB30Y and Lacticaseibacillus paracasei MP11A from traditional local curd demonstrated potent antimicrobial and probiotic properties. These findings suggest that these lactobacilli isolates from fermented beverages have the potential to be used as probiotics with therapeutic benefits, highlighting the importance of traditional fermented foods for promoting gut health and infectious disease management.
Collapse
Affiliation(s)
- Surmani Huidrom
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, Manipur, 795001, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Pulok K Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, Manipur, 795001, India
| | - Sarangthem Indira Devi
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, Manipur, 795001, India.
| |
Collapse
|
10
|
Ran J, Tang Y, Mao W, Meng X, Jiao L, Li Y, Zhao R, Zhou H. Optimization of the fermentation process and antioxidant activity of mixed lactic acid bacteria for honeysuckle beverage. Front Microbiol 2024; 15:1364448. [PMID: 38633692 PMCID: PMC11023714 DOI: 10.3389/fmicb.2024.1364448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
The aim of the research was to obtain a high healthcare honeysuckle beverage with strong antioxidant activity. Honeysuckle (Lonicera japonica Thunb) was used as the raw material in this experiment. The effects of fermentation temperature, fermentation time, lactic acid bacteria inoculation amount, and sugar addition amount on the sensory quality of honeysuckle beverage were investigated by single factor test and orthogonal test, and the best process was obtained. The physicochemical indexes and antioxidant activity of honeysuckle beverages fermented with lactic acid bacteria were studied. The results showed that the fermentation temperature of the beverage was 37 °C, the fermentation time was 24 h, the inoculation amount of Lactiplantibacillus plantarum and Lactobacillus acidophilus mixed starter (1:1) was 3%, and 8% white granulated sugar was added. The highest sensory score was 87.30 ± 0.17, which was the optimal process. The honeysuckle liquid mixed inoculation with Lactiplantibacillus plantarum and Lactobacillus acidophilus was fermented for 24 h. The number of viable bacteria reached 9.84 ± 0.02 lg cfu/mL, the pH value was 3.10 ± 0.01, and the total polyphenol content was 7.53 ± 0.03 mg GAE/g. The number of lactic acid bacteria, pH, total polyphenol content, and free radical scavenging rate were significantly increased (p < 0.05) compared with the non-inoculated and single-inoculated lactic acid bacteria. To sum up, it was concluded that a better quality beverage could be obtained by fermenting a solution of honeysuckle with Lactiplantibacillus plantarum and Lactobacillus acidophilus mixed fermentation agent, providing a new approach and new ideas for the development of deep processing and fermented beverages using honeysuckle.
Collapse
Affiliation(s)
- Junjian Ran
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Yuhan Tang
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Weize Mao
- School of Food Engineering, Xinxiang Institute of Engineering, Xinxiang, China
| | - Xia Meng
- College of Pharmacy, Xinxiang University, Xinxiang, China
| | - Lingxia Jiao
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Yongchao Li
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Ruixiang Zhao
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| | - Haoyu Zhou
- School of Food Science, School of Life Sciences, Henan Institute of Science and Technology, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xinxiang, China
| |
Collapse
|
11
|
Huidrom S, Ngashangva N, Khumlianlal J, Sharma KC, Mukherjee PK, Devi SI. Genomic insights from Lactiplantibacillus plantarum BRD3A isolated from Atingba, a traditional fermented rice-based beverage and analysis of its potential for probiotic and antimicrobial activity against Methicillin-resistant Staphylococcus aureus. Front Microbiol 2024; 15:1357818. [PMID: 38628861 PMCID: PMC11019378 DOI: 10.3389/fmicb.2024.1357818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Lactiplantibacillus plantarum BRD3A was isolated from Atingba, a traditional fermented rice-based beverage of Manipur. Its genomic sequence has 13 contigs and its genome size is 3,320,817 bp with a guanine-cytosine (GC) ratio of 44.6%. It comprises 3185 genes including 3112 coding sequences (CDSs), 73 RNAs (including 66 tRNAs and others), and one clustered regularly interspaced short palindromic repeat (CRISPR) array. A comparative and phylogenetic analysis with the Lp. plantarum genome shows that this strain has close similarity with other Lp. plantarum strains and about 99% average nucleotide identity. Functional annotation using evolutionary genealogy of genes-non-supervised orthologous groups (EggNOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals genes associated with various biological processes such as metabolism, genetic information processing, and transport functions. Furthermore, the strain harbors bacteriocins like plantaricin E, Plantaricin F, and Enterocin X categorized under class IIb by the BAGEL4 database, indicating its potential antimicrobial properties. Additionally, AntiSMASH web server predicted four secondary regions-T3PKS, terpene, cyclic lactone inducer, and ribosomally synthesized and post-translationally modified peptide (RiPP)-suggesting an even higher antimicrobial potential. We validated the antimicrobial activity of Lp. plantarum BRD3A through in vitro experiments in which it exhibited promising bactericidal effects on methicillin-resistant Staphylococcus aureus, inhibiting their biofilm growth. These findings indicate the potential of Lp. plantarum BRD3A to be used as an alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Surmani Huidrom
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Ng Ngashangva
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| | - Joshua Khumlianlal
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | | | - Pulok Kumar Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| | - Sarangthem Indira Devi
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Imphal, Manipur, India
| |
Collapse
|
12
|
Maiti S, Banik A. Strategies to fortify the nutritional values of polished rice by implanting selective traits from brown rice: A nutrigenomics-based approach. Food Res Int 2023; 173:113271. [PMID: 37803581 DOI: 10.1016/j.foodres.2023.113271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Whole-grain cereals are important components of a healthy diet. It reduces the risk of many deadly diseases like cardiovascular diseases, diabetes, cancer, etc. Brown rice is an example of whole grain food, which is highly nutritious due to the presence of various bioactive compounds (flavonoids, phenolics, vitamins, phytosterols, oils, etc.) associated with the rice bran layer of brown rice. White rice is devoid of the nutritious rice bran layer and thus lacks the bioactive compounds which are the major attractants of brown rice. Therefore, to confer health benefits to the public at large, the nutrigenomic potential of white rice may be improved by integrating the phytochemicals associated with the rice bran layer of brown rice into it via biofortification processes like conventional breeding, agronomic practices, metabolic engineering, CRISPR/Cas9 technology, and RNAi techniques. Thus, this review article focuses on improving the nutritional qualities of white/polished rice through biofortification processes, utilizing new breeding technologies (NBTs).
Collapse
Affiliation(s)
- Somdatta Maiti
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
13
|
Ajibola OO, Thomas R, Bakare BF. Selected fermented indigenous vegetables and fruits from Malaysia as potential sources of natural probiotics for improving gut health. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Dahiya D, Nigam PS. Nutraceutical Combinational Therapy for Diarrhoea Control with Probiotic Beverages from Fermented Fruits, Vegetables and Cereals to Regain Lost Hydration, Nutrition and Gut Microbiota. Microorganisms 2023; 11:2190. [PMID: 37764034 PMCID: PMC10537194 DOI: 10.3390/microorganisms11092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
This article deals with the condition of irregular bowel movements known as diarrhoea, its pathology, symptoms and aetiology. The information has been presented on causes of diarrhoea that include gut infections, food intolerances and allergies to certain ingredients, problems in the gastrointestinal tract like irritable bowel syndrome, inflammatory bowel disease and, the condition of dysbiosis which occurs due to long-term use of antibiotics, or other medicines, etc. Most cases of diarrhoea can be resolved without needing medical treatment; however, it is still important to avoid dehydration of the body and use some supplements to get necessary nutrients which are lost with frequent bowel movements before they can get absorbed and assimilated in the gastrointestinal tract. Probiotic products are reported as natural therapeutic agents, which can reduce the risk of diarrhoea in both adults and children. The intake of dietary fluid supplements in the form of fermented beverages containing probiotic strains could help in diarrhoea control. The patient would achieve benefits with the consumption of these functional beverages in three ways-by regaining lost fluids to the body, supplementing beneficial gut bacteria to restore diversity in gut microbiota, which was disturbed in the condition of diarrhoea as well as regaining a source of quick nutrition to recoup energy.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
15
|
Dahiya D, Nigam PS. Nutraceuticals Prepared with Specific Strains of Probiotics for Supplementing Gut Microbiota in Hosts Allergic to Certain Foods or Their Additives. Nutrients 2023; 15:2979. [PMID: 37447306 DOI: 10.3390/nu15132979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Certain nutrients cause discomfort, sensitivity reaction, and an intolerance for certain foods or their ingredients when ingested by some consumers. Food reactions and gut inflammation-related problems are increasing worldwide. The primary form of management would be the avoidance of such foods, followed by treatment of their symptoms. Adopting a nutritional-therapeutic approach and establishing practices for the inclusion of functional foods and nutraceuticals in the diet could improve the ecology of gut microbiota and alleviate inflammation in the GIT. For this purpose, specific species of microorganisms characterized as probiotic strains have been studied to produce functional food and fermented beverage products. Commercially sold, such items are labelled as probiotic products, displaying the name/s of strain/s and the viable numbers of them contained in the portion size of the products. The importance of the growth of probiotic functional foods is that they can be consumed as a source of nutrition and their intake helps in the subsistence and recuperation of friendly gut bacteria. Probiotics have been reported for their role in ameliorating the risk of food reactions. Probiotic administration has been implemented for its role as an auxiliary improvement and for the prevention of food sensitivities common among pediatric patients. Probiotic products based on non-dairy substrates have potential as nutraceuticals for lactose intolerant consumers who are allergic to dairy milk products. Therefore, the aim of this article is to review GRAS microbial species characterized as probiotics up to the level of their specific strain's name and/or number. These have been used to produce nutraceuticals that are sources of beneficial bacteria for easing discomfort and allergic reactions by maintaining an inflammation-free gut.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
16
|
Prakash V, Madhavan A, Veedu AP, Babu P, Jothish A, Nair SS, Suhail A, Prabhakar M, Sain T, Rajan R, Somanathan P, Abhinand K, Nair BG, Pal S. Harnessing the probiotic properties and immunomodulatory effects of fermented food-derived Limosilactobacillus fermentum strains: implications for environmental enteropathy. Front Nutr 2023; 10:1200926. [PMID: 37342549 PMCID: PMC10277634 DOI: 10.3389/fnut.2023.1200926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Environmental enteropathy (EE), a chronic small intestine disease characterized by gut inflammation, is widely prevalent in low-income countries and is hypothesized to be caused by continuous exposure to fecal contamination. Targeted nutritional interventions using potential probiotic strains from fermented foods can be an effective strategy to inhibit enteric pathogens and prevent chronic gut inflammation. Methods We isolated potential strains from fermented rice water and lemon pickle and investigated their cell surface properties, antagonistic properties, adhesion to HT-29 cells, and inhibition of pathogen adherence to HT-29 cells. Bacteriocin-like inhibitory substances (BLIS) were purified, and in vivo, survival studies in Caenorhabditis elegans infected with Salmonella enterica MW116733 were performed. We further checked the expression pattern of pro and anti-inflammatory cytokines (IL-6, IL8, and IL-10) in HT-29 cells supplemented with strains. Results The strains isolated from rice water (RS) and lemon pickle (T1) were identified as Limosilactobacillus fermentum MN410703 and MN410702, respectively. Strains showed probiotic properties like tolerance to low pH (pH 3.0), bile salts up to 0.5%, simulated gastric juice at low pH, and binding to extracellular matrix molecules. Auto-aggregation of T1 was in the range of 85% and significantly co-aggregated with Klebsiella pneumoniae, S. enterica, and Escherichia coli at 48, 79, and 65%, respectively. Both strains had a higher binding affinity to gelatin and heparin compared to Bacillus clausii. Susceptibility to most aminoglycoside, cephalosporin, and macrolide classes of antibiotics was also observed. RS showed BLIS activity against K. pneumoniae, S. aureus, and S. enterica at 60, 48, and 30%, respectively, and the protective effects of BLIS from RS in the C. elegans infection model demonstrated a 70% survival rate of the worms infected with S. enterica. RS and T1 demonstrated binding efficiency to HT-29 cell lines in the 38-46% range, and both strains inhibited the adhesion of E. coli MDR and S. enterica. Upregulation of IL-6 and IL-10 and the downregulation of IL-8 were observed when HT-29 cells were treated with RS, indicating the immunomodulatory effects of the strain. Discussion The potential strains identified could effectively inhibit enteric pathogens and prevent environmental enteropathy.
Collapse
|
17
|
Vitali M, Gandía M, Garcia-Llatas G, Tamayo-Ramos JA, Cilla A, Gamero A. Exploring the Potential of Rice, Tiger Nut and Carob for the Development of Fermented Beverages in Spain: A Comprehensive Review on the Production Methodologies Worldwide. BEVERAGES 2023; 9:47. [DOI: 10.3390/beverages9020047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rice, tiger nut and carob are Mediterranean products suitable for developing new foods, such as fermented beverages, due to their nutritional properties. These crops have a high carbohydrate content, are gluten and lactose-free and have a low allergenicity index. The development of fermented beverages from these crops can contribute to the Sustainable Development Goals by promoting human health and sustainable production and consumption. A narrative review of the nutritional value and potential functional activity of fermented beverages made from these crops was carried out. This literature review of existing studies on fermented and non-fermented beverages highlights their composition, production methodology, and health benefits. Fermented beverages made from these crops are high in fiber, essential fatty acids, vitamins (group B), and minerals. Fermentation increases the bioaccessibility of these nutrients while decreasing possible anti-nutritional factors. These fermented beverages offer several health benefits due to their antioxidant effects, modulating the intestinal microbiota and reducing the incidence of chronic degenerative diseases such as metabolic syndrome. Therefore, fermented rice, tiger nut and carob beverages can improve the Spanish diet by offering improved nutritional value and beneficial health effects. Additionally, these local crops promote sustainability, making them an appropriate choice for developing new fermented beverages.
Collapse
Affiliation(s)
- Matteo Vitali
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Mónica Gandía
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Guadalupe Garcia-Llatas
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Juan Antonio Tamayo-Ramos
- Biotechnology Management, Instituto Tecnológico del Embalaje, Transporte y Logística (ITENE), Carrer d’Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - Antonio Cilla
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Amparo Gamero
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Legal Medicine, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
18
|
Functional Characterization of Lactobacillus plantarum Isolated from Cow Milk and the Development of Fermented Coconut and Carrot Juice Mixed Beverage. Curr Microbiol 2023; 80:139. [PMID: 36920622 DOI: 10.1007/s00284-023-03258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Screening probiotics are crucial for assessing their safety, security, and further production of functional foods for human health. The present study aimed to isolate and identify bacteria from raw cow's milk samples that exhibit health benefits upon consumption. We characterized the probiotic properties of Lactobacillus plantarum (also called Lactiplantibacillus plantarum) strains CMGC2 and CMJC7 isolated from cow milk by in vitro study. The strains exhibited tolerance to simulated gastric conditions and were further identified by 16S rRNA sequencing as Lactobacillus plantarum (L. plantarum) CMGC2 and CMJC7. Both isolates were evaluated in vitro for their probiotic attributes, viz. hydrophobicity, autoaggregation, co-aggregation, lysozyme tolerance, antibacterial activity, antibiotic susceptibility, hemolytic activity, and phenol tolerance. The isolates CMGC2 and CMJC7 showed excellent probiotic attributes; hence, both strains were selected to produce coconut and carrot juice mixed beverages (CCMB). The CCMB was evaluated for the pH, acid-production rate, and total viable bacterial counts. The results showed that the CCMB was an excellent medium for the growth of CMGC2 and CMJC7 as it supported adequate growth of organisms (8.93 CFU/mL and 8.68 CFU/mL, respectively) even after 48 h of incubation. In conclusion, CMGC2 and CMJC7 can be used to develop different beverages possessing nutritive and probiotic values, and these beverages can be used for producing unique products.
Collapse
|
19
|
Koyum KA, Foo HL, Ramli N, Loh TC. Biotransformation of gluten-free composite flour mediated by probiotics via solid-state fermentation process conducted under different moisture contents. Front Nutr 2023; 10:910537. [PMID: 36875851 PMCID: PMC9975957 DOI: 10.3389/fnut.2023.910537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/11/2023] [Indexed: 02/17/2023] Open
Abstract
Staple foods produced from composite flour are considered feasible to alleviate protein-energy malnutrition (PEM). However, one of the major limitations of composite flour is poor protein digestibility. The biotransformation process mediated by probiotics via solid-state fermentation (SSF) holds a promising potential to address the poor protein digestibility in composite flour. Yet, there is no report established in this regard to the best of our knowledge. Therefore, 4 strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus UP2 isolated from Malaysian foods that were previously reported to produce versatile extracellular hydrolytic enzymes were employed to biotransform gluten-free composite flour derived from rice, sorghum, and soybean. The SSF process was performed under 30-60% (v/w) moisture content for 7 days, where samples were withdrawn at 24 h intervals for various analyses such as pH, total titratable acidity (TTA), extracellular protease activity, soluble protein concentration, crude protein content, and in vitro protein digestibility. The pH of the biotransformed composite flour showed a significant reduction from the initial range of pH 5.98-6.67 to the final pH of 4.36-3.65, corresponding to the increase in the percentage of TTA in the range of 0.28-0.47% to 1.07-1.65% from days 0 to 4 and remained stable till day 7 of the SSF process. The probiotics strains exhibited high extracellular proteolytic activity (0.63-1.35 U/mg to 4.21-5.13 U/mg) from days 0 to 7. In addition, the treated composite flour soluble protein increased significantly (p ≤ 0.05) (0.58-0.60 mg/mL to 0.72-0.79 mg/mL) from days 0 to 7, crude protein content (12.00-12.18% to 13.04-14.39%) and protein digestibility (70.05-70.72% to 78.46-79.95%) from days 0 to 4 of SSF. The results of biotransformation of 50% (v/w) moisture content were mostly comparable to 60% (v/w) moisture content, implying 50% (v/w) moisture content was the most suitable moisture content for the effective biotransformation of gluten-free composite flour mediated by probiotics via SSF since flour quality is better at lower moisture content. As for the overall performance, L. plantarum RS5 was ranked the best strain, attributed to the general improvement in the physicochemical properties of composite flour.
Collapse
Affiliation(s)
- Kareem Adebayo Koyum
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Research Laboratory of Probiotics and Cancer Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
20
|
Chestnuts in Fermented Rice Beverages Increase Metabolite Diversity and Antioxidant Activity While Reducing Cellular Oxidative Damage. Foods 2022; 12:foods12010164. [PMID: 36613380 PMCID: PMC9818290 DOI: 10.3390/foods12010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Foods containing chestnuts (Castanea mollissima Blume) are relatively uncommon, despite the high nutrient and starch contents and purported health benefits. In this study, we examine the flavor-related metabolites, volatile compounds, and amino acids in a traditional glutinous rice fermented beverage supplemented with chestnuts as a fermentation substrate for lactic acid bacteria (LAB). Changes in antioxidant activity towards free radicals and effects on cellular oxidative stress are compared between beverages with or without chestnuts. The fermented chestnut-rice beverage (FCRB) has higher sensory scores and a wider range of volatiles and flavor-related compounds (74 vs. 38 species compounds), but lower amino acid contents, than the traditional fermented glutinous rice beverage (TFRB). In free radical scavenging assays, the FCRB exhibits higher activity than the TFRB in vitro. Furthermore, while neither beverage induces cytotoxity in Caco-2 cells at concentrations up to 2 mg/mL, pretreatment with the FCRB results in lower rates of apoptosis and necrosis and higher overall viability in cells with H2O2-induced oxidative stress compared to pretreatment with the TFRB. The enhanced reactive oxygen species neutralization in vitro and protection against oxidative damage in cells, coupled with increased diversity of volatiles and flavor-related metabolites of LAB, support the addition of chestnuts to enhance flavor profile and antioxidant properties of fermented functional foods.
Collapse
|
21
|
Traditional rice-based fermented products: Insight into their probiotic diversity and probable health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity.
Collapse
|
23
|
Valorization of Parmentiera aculeata juice in growth of probiotics in submerged culture and their postbiotic production: a first approach to healthy foods. Arch Microbiol 2022; 204:679. [DOI: 10.1007/s00203-022-03295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
24
|
Oba S, Yildirim T, Karataş ŞM. Probiotics Safety Aspect of Functional Foods. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sirin Oba
- Department of Food Processing, Suluova Vocational School, Amasya University, Amasya, Turkey
| | - Tugce Yildirim
- Department of Biotechnology, Institution of Science, Amasya University, Amasya, Turkey
| | | |
Collapse
|
25
|
Dahiya D, Nigam PS. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022; 11:2760. [PMID: 36140888 PMCID: PMC9497984 DOI: 10.3390/foods11182760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Pure viable strains of microorganisms identified and characterised as probiotic cultures are used in the fermentation process to prepare functional beverages. The fermented probiotic products can be consumed as a source of nutrition and also for the maintenance of healthy gut microbiota. The functional beverages contain the substrates used for the preparation of product with a specific culture or a mixture of known strains used to perform the fermentation, hence these drinks can be considered as a healthy formulation of synbiotic products. If a beverage is prepared using agriculturally sourced materials, the fermented substrates with their oligosaccharides and fiber content act as prebiotics. Both the components (probiotic strain/s and prebiotic substrate) exist in a synergistic relationship in the product and contribute to several benefits for nutrition and gut health. The preparation of such probiotic beverages has been studied using non-dairy-based materials, including fruits, vegetables, nuts, grains, and cassava, a staple diet source in many regions. The consumption of beverages prepared with the use of probiotics, which contain active microbial cells and their metabolites, contributes to the functional properties of beverages. In addition, the non-dairy probiotic products can be used by consumers of all groups and food cultures, including vegans and vegetarians, and particularly consumers with allergies to dairy-based products. The aim of this article is to present a review of published research highlighting specific probiotic strains, which have the potential to enhance sustainability of healthy GIT microbiota, used in the fermentation process for the preparation of non-dairy beverages.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
26
|
Shobuz M, Sabur K, Khan MR, Julkifal I, Uttam Kumar S, Hasan GMMA, Ahmed M. Viability and stability of microencapsulated probiotic bacteria by freeze‐drying under in vitro gastrointestinal conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mahmud Shobuz
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - khan Sabur
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Mahbubur Rahman Khan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Islam Julkifal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Sarker Uttam Kumar
- Department of Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - G. M. M. Anwarul Hasan
- Institute of Food Science &Technology (IFST) Bangladesh Council of Scientific &Industrial Research (BCSIR), Dr Qudrat‐I‐ Khuda Road, Dhaka‐1205 Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| |
Collapse
|
27
|
Amini E, Salimi F, Imanparast S, Mansour FN. Isolation and characterization of exopolysaccharide derived from Lacticaseibacillus paracasei AS20(1) with probiotic potential and evaluation of its antibacterial activity. Lett Appl Microbiol 2022; 75:967-981. [PMID: 35716384 DOI: 10.1111/lam.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
This study was done to find exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) against foodborne pathogens. Isolated LAB were screened to find the ones with the ability to produce antibacterial EPS against foodborne pathogens. Among tested EPSs, EPS of AS20(1) isolate showed inhibitory effects on the growth of Listeria monocytogenes (MIC = 0·935 mg ml-1 , MBC = 0·935 mg ml-1 ), Yersinia enterocolitica (MIC = 12·5 mg ml-1 , MBC = 50 mg ml-1 ) and Bacillus cereus (MIC = 6·25 mg ml-1 , MBC = 12·5 mg ml-1 ). According to 16S rRNA sequencing, AS20(1) showed the closest similarity to Lacticaseibacillus paracasei (100%). This antibacterial EPS showed negligible toxicity (4·4%-5·2%) against red blood cells. Lacticaseibacillus paracasei AS20(1) showed probiotic properties, including high acid resistance, hydrophobicity (47·5%), autoaggregation and coaggregation with foodborne pathogens. Also, L. paracasei AS20(1) showed no haemolysis activity and antibiotic resistance. Characterization of antibacterial EPS revealed that it is a heteropolysaccharide with various functional groups, amorphous structure, and smooth surface, sheet and compact structure, which can be suitable for food packaging. L. paracasei AS20(1) and its antimicrobial EPS can be used to make functional food.
Collapse
Affiliation(s)
- E Amini
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - F Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - S Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - F N Mansour
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Potential Probiotic Acceptability of a Novel Strain of Paenibacillus konkukensis SK 3146 and Its Dietary Effects on Growth Performance, Intestinal Microbiota, and Meat Quality in Broilers. Animals (Basel) 2022; 12:ani12111471. [PMID: 35681935 PMCID: PMC9179277 DOI: 10.3390/ani12111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
This study evaluates the in vitro probiotic characteristics of P. konkukensis sp. nov. SK-3146, which was isolated from animal feed, and its dietary effects on growth performance, intestinal characteristics, intestinal microbiota, and meat quality in broilers. In vitro experiments revealed that P. konkukensis was non-hemolytic with variable antibiotic susceptibility, and acid as well as bile tolerance. To assess the effect of P. konkukensis on broilers, a total of four hundred eighty 1-day-old Ross 308 broiler chicks were allocated to 3 treatment groups with 4 replicates of 40 birds each; the negative control group was fed a basal diet without any feed additives (NC), the positive control group was fed a basal diet containing 0.01% enramycin (PC), and the experimental group was fed a basal diet containing P. konkukensis bacterial culture (PK) at 104 CFU/g of the diet based on bacterial count. The experiment lasted for 35 days. Results indicated that there were no significant differences in any growth performance parameters among the dietary treatments (p > 0.05). In addition, the inclusion of P. konkukensis in the broilers’ diet did not affect meat cooking loss, color, and pH but increased the relative weight of breast meat (p < 0.05). The PK group showed heavier intestinal weight and shorter intestinal length than the NC group (p < 0.05). The ratio of the intestinal weight to length of jejunum was the highest in the PK group (p < 0.05). The PK group showed increased counts of Streptococcus thermophilus (p < 0.05) with no adverse effects of P. konkukensis on other intestinal microbiota in the jejunum. This study implies that P. konkukensis might have the potential to be applied as a probiotic feed additive in poultry.
Collapse
|
29
|
Spatiotemporal bio-shielding of bacteria through consolidated geometrical structuring. NPJ Biofilms Microbiomes 2022; 8:37. [PMID: 35534500 PMCID: PMC9085766 DOI: 10.1038/s41522-022-00302-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
The probiotic bacterium Lactobacillus plantarum is often reckoned as a ‘generalist’ for its ability to adapt and survive in diverse ecological niches. The genomic signatures of L. plantarum have shown its intricate evolutionary ancestry and dynamic lifestyles. Here, we report on a unique geometrical arrangement of the multicellular population of L. plantarum cells. Prominently, a phenomenon of the cone-shaped colony formation and V-shaped cell chaining are discovered in response to the acidic-pH environment. Moreover, subsequent cold stress response triggers an unusual cellular arrangement of consolidated bundles, which appeared to be independently governed by a small heat shock protein (HSP 1). We further report that the V-shaped L. plantarum chaining demonstrates potent antagonistic activity against Candida albicans, a pathogenic yeast, both in vitro and in a Caenorhabditis elegans co-infection model. Finally, we deduce that the multifaceted traits manifested by this probiotic bacterium is an outcome of its dynamic flexibility and cellular heterogeneity.
Collapse
|
30
|
Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Alemneh ST, Emire SA, Hitzmann B. Teff-Based Probiotic Functional Beverage Fermented with Lactobacillus rhamnosus and Lactobacillus plantarum. Foods 2021; 10:2333. [PMID: 34681382 PMCID: PMC8534921 DOI: 10.3390/foods10102333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/19/2021] [Accepted: 09/28/2021] [Indexed: 01/29/2023] Open
Abstract
Consumers are demanding healthier foods, and the increasing drawbacks associated with dairy-based products have driven efforts to find plant-based probiotic alternatives. Consequently, this study aimed to evaluate the suitability of a teff-based substrate for delivering the potential probiotics, Lactobacillus rhamnosus GG (LGG) and Lactobacillus plantarum A6 (LA6) with a view to developing probiotic functional beverages. Single-strain and mixed-strain fermentations were performed without any pH control. In single-strain fermentation, LA6 grew to 8.157-8.349 log cfu/mL. Titratable acidity (TA) and pH were measured between 0.513-1.360 g/L and 4.25-3.91, respectively. The explored optimum variables were fermentation time (15 h) and inoculum (6 log cfu/mL). As a result of fermentation, maltose and glucose decreased, but lactic and acetic acids increased. In mixed-strain fermentation, LGG and LA6 were able to grow to 8.247 and 8.416 log cfu/mL, respectively. The pH, TA, lactic, and acetic acids varied between 6.31-3.92, 0.329-1.501 g/L, 0-1672 mg/L, and 20-231.5 mg/L, respectively. In both fermentations, microbial growth reached the stationary phase close to a pH of 4.21-4.82 while sugars were not consumed completely. Less than 5% ethanol was detected, which indicated a non-alcoholic beverage. A combination of the two evaluated lactobacilli strains reduced fermentation time. In conclusion, a substrate made of whole grain teff flour without any supplement could be used as a substrate to produce functional probiotic beverages.
Collapse
Affiliation(s)
- Sendeku Takele Alemneh
- Food Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St, Addis Ababa 1000, Ethiopia;
| | - Shimelis Admassu Emire
- Food Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St, Addis Ababa 1000, Ethiopia;
| | - Bernd Hitzmann
- Process Analytics and Cereal Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70559 Stuttgart, Germany;
| |
Collapse
|
32
|
Jo YM, Kim GY, Kim SA, Cheon SW, Kang CH, Han NS. Limosilactobacillus fermentum MG7011: An Amylase and Phytase Producing Starter for the Preparation of Rice-Based Probiotic Beverages. Front Microbiol 2021; 12:745952. [PMID: 34659181 PMCID: PMC8511794 DOI: 10.3389/fmicb.2021.745952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The goal of this study was to develop a starter strain of Limosilactobacillus fermentum which is beneficial for human health and suitable for rice fermentation. To achieve the goal, the characteristics of 25 strains of L. fermentum were compared in terms of health promoting potentials and rice fermenting abilities. L. fermentum MG7011 was selected as a superior strain to meet the required properties. First, as probiotic traits, the strain had tolerance to gastrointestinal conditions and ability to adhere to Caco-2 and HT-29 cells. The strain showed the antioxidative activity, anti-inflammatory activity, and a protective effect on the epithelial barrier. Next, as starter traits for rice fermentation, MG7011 exhibited proper fermentation profiles in rice solution, such as fast growth rate, pH and metabolite changes, amylase and phytase activities, and optimal viscosity changes for beverage. In conclusion, L. fermentum MG7011 has excellent probiotic activities and proper starter traits in rice, thereby it can be used as a suitable probiotic starter for rice fermentation.
Collapse
Affiliation(s)
- Yu Mi Jo
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | | | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
33
|
Effects of Dietary Lactiplantibacillus plantarum subsp. plantarum L7, Alone or in Combination with Limosilactobacillus reuteri P16, on Growth, Mucosal Immune Responses, and Disease Resistance of Cyprinus carpio. Probiotics Antimicrob Proteins 2021; 13:1747-1758. [PMID: 34365579 DOI: 10.1007/s12602-021-09820-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Skin mucosal lymphoid tissues of fish are the first line of defence against pathogen invasion. We investigated the effects of Lactiplantibacillus plantarum subsp. plantarum L7, singularly or in combination with Limosilactobacillus reuteri P16, on mucosal immunity and diseases resistance of carp Cyprinus carpio. C. carpio (average weight: 26.28 ± 1.02 g) were divided into five experimental groups. Fish in each group were fed with one of the following potential probiotic-supplemented diets: control (0 - basal diet), D1 (107 CFU/g L7), D2 (108 CFU/g L7), D3 (109 CFU/g L7), and D4 (108 CFU/g L7 + 108 CFU/g P16). Eight weeks post-feeding, growth performance was higher in D4, with a final weight gain of 67.18 ± 1.47 g. Results showed a significantly higher skin mucosal lysozyme, alkaline phosphatase, mucus protein level, superoxide dismutase, and catalase activities in D2 and D4 compared to the control. However, potential probiotics had no significant effect on skin mucosal immunoglobulin level. Skin mucus of D4 exhibited stronger inhibition zones against pathogenic bacterial strains. Moreover, digestive enzyme activities (protease, lipase) were highest in D4. Intesinal lactic acid bacterial counts of fish fed combind probiotics (i.e. D4) was significantly higher than the control. Further, supplementation of potential probiotics altered the expression of IL-1β, TNF-α, and IL-10 cytokines. Fish from D4 exhibited significantly higher relative post-challenge survival (69.7%) against Aeromonas hydrophila, followed by D2 (66.67%). Therefore, the inclusion of L. plantarum subsp. plantarum L7 at 108 CFU/g or in combination with L. reuteri P16 could enhance the growth performance, mucosal immune responses, and disease resistance of C. carpio.
Collapse
|
34
|
Zhao CM, Du T, Li P, Du XJ, Wang S. Production and Characterization of a Novel Low-Sugar Beverage from Red Jujube Fruits and Bamboo Shoots Fermented with Selected Lactiplantibacillus plantarum. Foods 2021; 10:foods10071439. [PMID: 34206242 PMCID: PMC8303220 DOI: 10.3390/foods10071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Red jujube fruits and bamboo shoots are rich in many nutrients and have the advantage of high yield in China. However, the storage of fresh fruits is difficult, and there are no fermented products using both as raw materials. In order to develop the two raw materials into novel products and improve their nutritional value, this study reports the production and characterization of a beverage via fermentation of red jujube fruits and bamboo shoots with Lactiplantibacillus plantarum. L. plantarum TUST-232 was selected as the starter from several different strains by comparing pH value and the number of viable cells, which reached 8.91 log CFU/mL in the beverage fermented for 14 h at 37 °C with 0.3% inoculation. After fermentation, the beverage showed improvement in the contents of several nutrients and antioxidant indices, with a decrease of 44.10% in sucrose content, along with increases of 11.09%, 12.30%, and 59.80% in total phenolic content, total antioxidant capacity, and superoxide anion scavenging ability, respectively. These results indicate that L. plantarum fermentation of red jujube fruits and bamboo shoots could be an effective way to develop a new beverage with high nutritional value, high antioxidant capacity, and high dietary fiber content. This research provided experimental support for the development of new fermentation products with the functions of improving health and body functions.
Collapse
Affiliation(s)
- Chu-Min Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (C.-M.Z.); (T.D.); (P.L.)
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (C.-M.Z.); (T.D.); (P.L.)
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (C.-M.Z.); (T.D.); (P.L.)
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (C.-M.Z.); (T.D.); (P.L.)
- Correspondence: (X.-J.D.); (S.W.); Tel.: +86-22-60912484 (X.-J.D. & S.W.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (C.-M.Z.); (T.D.); (P.L.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence: (X.-J.D.); (S.W.); Tel.: +86-22-60912484 (X.-J.D. & S.W.)
| |
Collapse
|
35
|
Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020063] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plant-based foods are rich sources of vitamins and essential micronutrients. For the proper functioning of the human body and their crucial role, trace minerals (iron, zinc, magnesium, manganese, etc.) are required in appropriate amounts. Cereals and pulses are the chief sources of these trace minerals. Despite these minerals, adequate consumption of plant foods cannot fulfill the human body’s total nutrient requirement. Plant foods also contain ample amounts of anti-nutritional factors such as phytate, tannins, phenols, oxalates, etc. These factors can compromise the bioavailability of several essential micronutrients in plant foods. However, literature reports show that fermentation and related processing methods can improve nutrient and mineral bioavailability of plant foods. In this review, studies related to fermentation methods that can be used to improve micronutrient bioavailability in plant foods are discussed.
Collapse
|
36
|
Can we control microbiota in spontaneous food fermentation? – Chinese liquor as a case example. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Abstract
Nowadays, there is a growing consumer demand for non-dairy functional foods due to several health issues related to milk and dairy consumption and increasing vegetarianism. Following that trend, in the present study emmer-based beverages were developed after flour gelatinization, fortification with fruit juices (blueberry, aronia, and grape) and fermentation with the potential probiotic strain Lactiplantibacillus plantarum 2035. The produced beverages were subjected to a 4-week storage at 4 °C. The addition of juices significantly affected the physicochemical characteristics of the beverages, while resulting in increased red color. Total phenolic content (22.3–31.9 mg gallic acid equivalents 100 g−1) and antioxidant activity (94–136 μmol Trolox equivalents 100 g−1) were significantly higher in the case of aronia juice followed by blueberry and grape juice. All beverages showed high values of apparent viscosity and water-holding capacity. Lactiplantibacillus plantarum 2035 retained high viable counts during storage especially in beverages with fruit juices (>108 cells g−1 up to 21st day) revealing a positive effect of the juices. The obtained results show that emmer-based beverages fortified with fruit juices (aronia, blueberry, and grape) have a great potential as carriers of probiotics, prebiotics and other functional compounds and may be served as an ideal alternative to dairy products.
Collapse
|
38
|
Zeng H, Shuai Y, Zeng X, Xin B, Huang M, Li B, Qiao J, Wang Y, Qiu X, Wang C. Evaluation of health‐related composition and bioactivity of five fruit juices following
Lactobacillus plantarum
fermentation and simulated digestion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huawei Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing100048China
- Department of Bioengineering College of Life Science Huaibei Normal University Huaibei Anhui235000China
| | - Yuying Shuai
- College of pharmaceutical science Zhejiang Chinese Medical University Hangzhou Zhejiang310053China
| | - Xin Zeng
- Department of Bioengineering College of Life Science Huaibei Normal University Huaibei Anhui235000China
| | - Bingyue Xin
- Department of Bioengineering College of Life Science Huaibei Normal University Huaibei Anhui235000China
| | - Mingqua Huang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University Beijing100048China
| | - Bin Li
- Anhui Xintian Biotechnology Co., Ltd Fuyang Anhui236600China
| | - Jie Qiao
- Department of Bioengineering College of Life Science Huaibei Normal University Huaibei Anhui235000China
| | - Yijia Wang
- Department of Bioengineering College of Life Science Huaibei Normal University Huaibei Anhui235000China
| | - Xiaoli Qiu
- Department of Bioengineering College of Life Science Huaibei Normal University Huaibei Anhui235000China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
| |
Collapse
|
39
|
Probiotic properties of lactic acid bacteria isolated from traditionally prepared dry starters of the Eastern Himalayas. World J Microbiol Biotechnol 2021; 37:7. [PMID: 33392833 DOI: 10.1007/s11274-020-02975-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
The Himalayan people prepare dry and oval to round-shaped starter cultures to ferment cereals into mild-alcoholic beverages, which contain lactic acid bacteria (LAB) as one of the essential microbiota. There is no report on probiotic characters of LAB isolated from dry starters. Hence, we screened the probiotic and some functional properties of 37 LAB strains isolated from dry starters of the Eastern Himalayas viz. marcha, phab, paa, pee and phut. About 38% of the LAB strains showed high survival rate (> 50%) at pH 3 and 0.3% bile salts. Enterococcus durans BPB21 and SMB7 showed the highest hydrophobicity percentage of 98%. E. durans DMB4 and SMB7 showed maximum cholesterol assimilation activity. About 65% of the LAB strains showed the ability to produce β galactosidase. Majority of the strains showed phytase activity, whereas none of the strain showed amylase activity. About 86% of LAB strains showed an optimum tolerance of 10% ethanol concentration. Genetic screening of some probiotic and functional marker genes have also been analysed. The occurrence of clp L gene, agu A gene (survival of gastrointestinal tract conditions), apf, mub1 and map A gene (adhesion genes) was higher compared to other genes. The occurrence of bsh gene (bile salt tolerance) was detected in Pediococcus pentosaceus SMB13-1 and Enterococcus faecium BPB11. Gene ped B for pediocin with amplicon size of 375 bp was detected in E. durans DMB13 and Pediococcus acidilactici AKB3. Detection of nutritional marker gene rib A and fol P in some strains showed the potential ability to synthesize riboflavin and folic acid. LAB with probiotic and functional properties may be explored for food industry in future.
Collapse
|
40
|
Chen C, Wang L, Yu H, Tian H. The local transcriptional regulators SacR1 and SacR2 act as repressors of fructooligosaccharides metabolism in Lactobacillus plantarum. Microb Cell Fact 2020; 19:161. [PMID: 32778113 PMCID: PMC7419226 DOI: 10.1186/s12934-020-01403-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background In Lactobacillus plantarum, fructooligosaccharides (FOS) metabolism is controlled by both global and local regulatory mechanisms. Although catabolite control protein A has been identified as a global regulator of FOS metabolism, the functions of local regulators remain unclear. This study aimed to elucidate the roles of two local regulators, SacR1 and SacR2, in the regulation of FOS metabolism in L. plantarum both in vitro and in vivo. Results The inactivation of sacR1 and sacR2 affected the growth and production of metabolites for strains grown on FOS or glucose, respectively. A reverse transcription-quantitative PCR analysis of one wild-type and two mutant strains (ΔsacR1 and ΔsacR2) of L. plantarum identified SacR1 and SacR2 as repressors of genes relevant to FOS metabolism in the absence of FOS, and these genes could be induced or derepressed by the addition of FOS. The analysis predicted four potential transcription factor binding sites (TFBSs) in the putative promoter regions of two FOS-related clusters. The binding of SacR1 and SacR2 to these TFBSs both in vitro and in vivo was verified using electrophoretic mobility shift assays and chromatin immunoprecipitation, respectively. A consensus sequence of WNNNNNAACGNNTTNNNNNW was deduced for the TFBSs of SacR1 and SacR2. Conclusion Our results identified SacR1 and SacR2 as local repressors for FOS metabolism in L. plantarum. The regulation is achieved by the binding of SacR1 and SacR2 to TFBSs in the promoter regions of FOS-related clusters. The results provide new insights into the complex network regulating oligosaccharide metabolism by lactic acid bacteria. ![]()
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Linlin Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
41
|
Valero-Cases E, Cerdá-Bernad D, Pastor JJ, Frutos MJ. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020; 12:E1666. [PMID: 32503276 PMCID: PMC7352914 DOI: 10.3390/nu12061666] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
In alignment with Hippocrates' aphorisms "Let food be your medicine and medicine be your food" and "All diseases begin in the gut", recent studies have suggested that healthy diets should include fermented foods to temporally enhance live microorganisms in our gut. As a result, consumers are now demanding this type of food and fermented food has gained popularity. However, certain sectors of population, such as those allergic to milk proteins, lactose intolerant and strict vegetarians, cannot consume dairy products. Therefore, a need has arisen in order to offer consumers an alternative to fermented dairy products by exploring new non-dairy matrices as probiotics carriers. Accordingly, this review aims to explore the benefits of different fermented non-dairy beverages (legume, cereal, pseudocereal, fruit and vegetable), as potential carriers of bioactive compounds (generated during the fermentation process), prebiotics and different probiotic bacteria, providing protection to ensure that their viability is in the range of 106-107 CFU/mL at the consumption time, in order that they reach the intestine in high amounts and improve human health through modulation of the gut microbiome.
Collapse
Affiliation(s)
- Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | - Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | | | - María-José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| |
Collapse
|
42
|
Optimization for bio-processing of elephant foot yam (Amorphophallus paeoniifolius) into Lacto-pickle using Taguchi statistical approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: conceptualization from a new approach. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Sci Rep 2020; 10:1926. [PMID: 32024895 PMCID: PMC7002416 DOI: 10.1038/s41598-020-58676-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/30/2019] [Indexed: 01/07/2023] Open
Abstract
The nutritional challenge faced by the monogastric animals due to the chelation effects of phytic acid, fuel the research on bioprospecting of probiotics for phytase production. Pediococcus acidilactici SMVDUDB2 isolated from Kalarei, exhibited extracellular phytase activity of 5.583 U/mL after statistical optimization of fermentation conditions viz. peptone (1.27%); temperature (37 °C); pH (6.26) and maltose (1.43%). The phytase enzyme possessed optimum pH and temperature of 5.5 and 37 °C, respectively and was thermostable at 60 °C. The enzyme was purified 6.42 fold with a specific activity of 245.12 U/mg with hydrophobic interaction chromatography. The purified enzyme had Km and Vmax values of 0.385 mM and 4.965 μmol/min respectively, with sodium phytate as substrate. The strain depicted more than 80% survival rate at low pH (pH 2.0, 3.0), high bile salt concentration (0.3 and 0.5%), after gastrointestinal transit, highest hydrophobicity affinity with ethyl acetate (33.33 ± 0%), autoaggregation (77.68 ± 0.68%) as well as coaggregation (73.57 ± 0.47%) with Staphylococcus aureus (MTCC 3160). The strain exhibited antimicrobial activity against Bacillus subtilis (MTCC 121), Mycobacterium smegmatis (MTCC 994), Staphylococcus aureus (MTCC 3160), Proteus vulgaris (MTCC 426), Escherichia coli (MTCC 1652) and Lactobacillus rhamnosus (MTCC 1408). The amount of exopolysaccharide produced by the strain was 2 g/L. This strain having the capability of phytate degradation and possessing probiotic traits could find application in food and feed sectors.
Collapse
|
45
|
Sharma N, Angural S, Rana M, Puri N, Kondepudi KK, Gupta N. Phytase producing lactic acid bacteria: Cell factories for enhancing micronutrient bioavailability of phytate rich foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Cozzolino A, Vergalito F, Tremonte P, Iorizzo M, Lombardi SJ, Sorrentino E, Luongo D, Coppola R, Di Marco R, Succi M. Preliminary Evaluation of the Safety and Probiotic Potential of Akkermansia muciniphila DSM 22959 in Comparison with Lactobacillus rhamnosus GG. Microorganisms 2020; 8:E189. [PMID: 32019075 PMCID: PMC7074805 DOI: 10.3390/microorganisms8020189] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, for the first time, we examined some of the physico-chemical properties of the cell surface of Akkermansiamuciniphila DSM 22959, comparing it with those of Lactobacillusrhamnosus GG-one of the most extensively studied probiotic microorganisms. In particular, hydrophobicity, auto-aggregation, co-aggregation, and biofilm formation were investigated. In addition, antibiotic susceptibility, co-culture, and antimicrobial activity of the two strains were compared. Hydrophobicity was evaluated using xylene and toluene, showing that A. muciniphila DSM 22959 possessed moderate hydrophobicity. A. muciniphila showed a faster and higher auto-aggregation ability than Lb. rhamnosus GG, but a lower aptitude in biofilm formation. In the co-aggregation test, the best performance was obtained by Lb. rhamnosus GG. Regarding the susceptibility to antibiotics, the differences between the two strains were remarkable, with A. muciniphila DSM 22959 showing resistance to half of the antibiotic tested. Interesting results were also obtained with regard to the stimulating effect of Lb. rhamnosus GG on the growth of A. muciniphila when co-cultured.
Collapse
Affiliation(s)
- Autilia Cozzolino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Silvia J. Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Delia Luongo
- Institute of Biostructure and Bioimaging of the National Research Council (IBB-CNR), Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (A.C.); (F.V.); (P.T.); (M.I.); (S.J.L.); (R.C.); (M.S.)
| |
Collapse
|
47
|
Mohd Yusof H, Mohamad R, Zaidan UH, Rahman NA. Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Fact 2020; 19:10. [PMID: 31941498 PMCID: PMC6964013 DOI: 10.1186/s12934-020-1279-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of microorganisms in the biosynthesis of zinc oxide nanoparticles (ZnO NPs) has recently emerged as an alternative to chemical and physical methods due to its low-cost and eco-friendly method. Several lactic acid bacteria (LAB) have developed mechanisms in tolerating Zn2+ through prevention against their toxicity and the production of ZnO NPs. The LAB's main resistance mechanism to Zn2+ is highly depended on the microorganisms' ability to interact with Zn2+ either through biosorption or bioaccumulation processes. Besides the inadequate studies conducted on biosynthesis with the use of zinc-tolerant probiotics, the understanding regarding the mechanism involved in this process is not clear. Therefore, this study determines the features of probiotic LAB strain TA4 related to its resistance to Zn2+. It also attempts to illustrate its potential in creating a sustainable microbial cell nanofactory of ZnO NPs. RESULTS A zinc-tolerant probiotic strain TA4, which was isolated from local fermented food, was selected based on the principal component analysis (PCA) with the highest score of probiotic attributes. Based on the 16S rRNA gene analysis, this strain was identified as Lactobacillus plantarum strain TA4, indicating its high resistance to Zn2+ at a maximum tolerable concentration (MTC) value of 500 mM and its capability of producing ZnO NPs. The UV-visible spectroscopy analysis proved the formations of ZnO NPs through the notable absorption peak at 380 nm. It was also found from the dynamic light scattering (DLS) analysis that the Z-average particle size amounted to 124.2 nm with monodisperse ZnO NPs. Studies on scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) revealed that the main mechanisms in ZnO NPs biosynthesis were facilitated by the Zn2+ biosorption ability through the functional groups present on the cell surface of strain TA4. CONCLUSIONS The strong ability of zinc-tolerant probiotic of L. plantarum strain TA4 to tolerate high Zn2+ concentration and to produce ZnO NPs highlights the unique properties of these bacteria as a natural microbial cell nanofactory for a more sustainable and eco-friendly practice of ZnO NPs biosynthesis.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
48
|
Chen C, Wang L, Lu Y, Yu H, Tian H. Comparative Transcriptional Analysis of Lactobacillus plantarum and Its ccpA-Knockout Mutant Under Galactooligosaccharides and Glucose Conditions. Front Microbiol 2019; 10:1584. [PMID: 31338086 PMCID: PMC6629832 DOI: 10.3389/fmicb.2019.01584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
Galactooligosaccharides (GOS) are documented prebiotic compounds, but knowledge of the metabolic and regulatory mechanisms of GOS utilization by lactic acid bacteria is still limited. Here we used transcriptome and physiological analyses to investigate the differences in the logarithmic growth phase of Lactobacillus plantarum and L. plantarum ΔccpA metabolizing GOS or glucose as the sole source of carbohydrate. In total, 489 genes (16%) were differentially transcribed in the wild-type L. plantarum grown on glucose and GOS and the value is decreased to 7% due to the loss of ccpA. Only 6% genes were differentially expressed when the wild-type and the ccpA mutant were compared on GOS. Transcriptome data revealed that the carbon sources significantly affected the expression of several genes, and some of the genes were mediated by CcpA. In particular, lac and gal gene clusters resembled the corresponding clusters in L. acidophilus NCFM that are involved in GOS metabolism, indicating that these clusters may be participating in GOS utilization. Moreover, reverse transcription-PCR analysis showed that GOS-related gene clusters were organized in five independent polycistronic units. In addition, many commonalities were found between fructooligosaccharides and GOS metabolism in L. plantarum, including differentially expressed genes involved in oligosaccharide metabolism, conversion of metabolites, and changes in fatty acid biosynthesis. Overall, our findings provide new information on gene transcription and the metabolic mechanism associated with GOS utilization, and confirm that CcpA plays an important role in carbon metabolism regulation in L. plantarum.
Collapse
Affiliation(s)
- Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Linlin Wang
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yanqing Lu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huanxiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
49
|
Li J, Tian S, Sun Z. Merits of probiotic biocatalysis immobilized on wheat bran for the production of functional foods. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Xu X, Luo D, Bao Y, Liao X, Wu J. Characterization of Diversity and Probiotic Efficiency of the Autochthonous Lactic Acid Bacteria in the Fermentation of Selected Raw Fruit and Vegetable Juices. Front Microbiol 2018; 9:2539. [PMID: 30405588 PMCID: PMC6205992 DOI: 10.3389/fmicb.2018.02539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
The diversity of indigenous lactic acid bacteria (LAB) in fermented broccoli, cherry, ginger, white radish, and white-fleshed pitaya juices was analyzed using culture-independent and -dependent approaches. The major properties of selected probiotic strains, including dynamic variations in pH, viable cell counts, antibiotic resistance, bacterial adhesion to hydrophobic compounds, and survivability during simulated gastrointestinal transit, were investigated using broccoli as the fermentation substrate. In broccoli and ginger juices, the genus Lactobacillus occupied the dominant position (abundances of 79.0 and 30.3%, respectively); in cherry and radish juices, Weissella occupied the dominant position (abundances of 78.3 and 83.2%, respectively); and in pitaya juice, Streptococcus and Lactococcus occupied the dominant positions (52.2 and 37.0%, respectively). Leuconostoc mesenteroides, Weissella cibaria/soli/confusa, Enterococcus gallinarum/durans/hirae, Pediococcus pentosaceus, Bacillus coagulans, and Lactococcus garvieae/lactis subspecies were identified by partial 16S rRNA gene sequencing. In general, the selected autochthonous LAB isolates displayed no significant differences in comparison with commercial strains with regard to growth rates or acidification in fermented broccoli juice. Among all the isolates, L. mesenteroides B4-25 exhibited the highest antibiotic resistance profile (equal to that of L. plantarum CICC20265), and suitable adhesion properties (adhesion of 13.4 ± 5.2% ∼ 36.4 ± 3.2% and 21.6 ± 1.4% ∼ 69.6 ± 2.3% to ethyl acetate and xylene, respectively). Furthermore, P. pentosaceus Ca-4 and L. mesenteroides B-25 featured the highest survival rates (22.4 ± 2.6 and 21.2 ± 1.4%, respectively), after simulated gastrointestinal transit. These results indicated a high level of diversity among the autochthonous bacterial community in fermented fruit and vegetable juices, and demonstrated the potential of these candidate probiotics for applications in fermentation.
Collapse
Affiliation(s)
- Xinxing Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Dongsheng Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Yejun Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Jihong Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| |
Collapse
|