451
|
Shang C, Wang W, Liao Y, Chen Y, Liu T, Du Q, Huang J, Liang Y, Liu J, Zhao Y, Guo L, Hu Z, Yao S. LNMICC Promotes Nodal Metastasis of Cervical Cancer by Reprogramming Fatty Acid Metabolism. Cancer Res 2017; 78:877-890. [PMID: 29229603 DOI: 10.1158/0008-5472.can-17-2356] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/16/2017] [Accepted: 12/05/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Chunliang Shang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yunhe Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Luyan Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.
| |
Collapse
|
452
|
Rahimi E, Ahmadi A, Boroumand MA, Mohammad Soltani B, Behmanesh M. Association of ANRIL Expression with Coronary Artery Disease in Type 2 Diabetic Patients. CELL JOURNAL 2017; 20:41-45. [PMID: 29308617 PMCID: PMC5759679 DOI: 10.22074/cellj.2018.4821] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/18/2017] [Indexed: 12/18/2022]
Abstract
Objective ANRIL is an important antisense noncoding RNA gene in the INK4 locus (9p21.3), a hot spot region associated
with multiple disorders including coronary artery disease (CAD), type 2 diabetes mellitus (T2DM) and many different types
of cancer. It has been shown that its expression is dysregulated in a variety of immune-mediated diseases. CAD is a major
problem in T2DM patients and the cause of almost 60% of deaths in these patients worldwide. The aim of the present study
was to compare the expression level of ANRIL between T2DM patients with and without CAD.
Materials and Methods In this case-control study, we examined ANRIL expression in peripheral blood mononuclear
cell samples by quantitative reverse transcriptionpolymerase chain reaction (RT-qPCR) in 64 T2DM patients with and
without CAD (33 CAD+ and 31 CADpatients respectively, established by coronary angiography).
Results Expression analysis revealed that ANRIL was up regulated (2.34-Fold, P=0.012) in CAD+ versus CAD
diabetic patients. Data from receiver operating characteristic (ROC) curve analysis has shown that ANRIL could act as
a potential biomarker for detecting CAD in diabetic patients.
Conclusion The expression level of ANRIL is associated with presence of CAD in diabetic patients and could be
considered as a potential peripheral biomarker.
Collapse
Affiliation(s)
- Esmaeil Rahimi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Ahmadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Boroumand
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
453
|
Wang X, Xu Y, Wang X, Jiang C, Han S, Dong K, Shen M, Xu D. LincRNA-p21 suppresses development of human prostate cancer through inhibition of PKM2. Cell Prolif 2017; 50:e12395. [PMID: 28994148 PMCID: PMC6529145 DOI: 10.1111/cpr.12395] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Previously, we found that long intergenic non-coding RNA-p21 (lincRNA-p21) inhibited the development of human prostate cancer. However, the underlying molecular mechanisms are poorly understood. Here, we attempted to investigate the downstream targets of lincRNA-p21 in prostate cancer. MATERIALS AND METHODS Expression of lincRNA-p21 and PKM2 was determined by qRT-PCR and Western blot. Lentivirus expressing shPKM2 or shCtrl was used to explore the role of PKM2 on the enhanced cell proliferation and glycolysis of lincRNA-p21-silenced prostate cancer cells. A xenograft mouse model was performed to investigate the effect of PKM2 suppression, glycolytic or mammalian target of rapamycin (mTOR) inhibitor on the tumorigenic capacity of lincRNA-p21-silenced prostate cancer cells. RESULTS We revealed that lincRNA-p21 silencing in DU145 and LNCaP cells induced up-regulation of PKM2 and activation of glycolysis, which could be reversed by PKM2 knockdown or rapamycin treatment. We also found that the proliferation and tumorigenesis of lincRNA-p21-silenced prostate cancer cells were significantly inhibited after knocking down PKM2. 3-bromopyruvate (3-Brpa) or rapamycin treatment largely decreased the tumour burden. Importantly, PKM2 expression was inversely correlated with the lincRNA-p21 level and the survival of prostate cancer patients. CONCLUSIONS We demonstrated that lincRNA-p21 blunted the prostate cancer cell proliferation and tumorigenic capacity through down-regulation of PKM2. Therefore, targeting PKM2 or glycolysis might be a therapeutic strategy in prostate cancer patients with lowly expressed lincRNA-p21.
Collapse
Affiliation(s)
- Xiaohai Wang
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| | - Yongzhi Xu
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| | - Xingjie Wang
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| | - Chenyi Jiang
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| | - Sha Han
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| | - Kai Dong
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| | - Mengjun Shen
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| | - Dongliang Xu
- Department of UrologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200080China
| |
Collapse
|
454
|
Xie Z, Xia W, Hou M. Long intergenic non‑coding RNA‑p21 mediates cardiac senescence via the Wnt/β‑catenin signaling pathway in doxorubicin-induced cardiotoxicity. Mol Med Rep 2017; 17:2695-2704. [PMID: 29207090 DOI: 10.3892/mmr.2017.8169] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/06/2017] [Indexed: 11/06/2022] Open
Abstract
Doxorubicin (Dox)-induced cardiotoxicity has been a well‑known phenomenon to clinicians and scientists for decades. It has been confirmed that Dox‑dependent cardiotoxicity is accompanied by cardiac cellular senescence. However, the molecular mechanisms underlying Dox cardiotoxicity remains to be fully elucidated. Long non‑coding (lnc) RNAs regulate gene transcription and the fate of post‑transcriptional mRNA, which affects a broad range of age‑associated physiological and pathological conditions, including cardiovascular disease and cellular senescence. However, the functional role of lncRNAs in Dox‑induced cardiac cellular senescence remains largely unknown. Using the reverse transcription‑quantitative polymerase chain reaction method, the present study indicated that long intergenic non‑coding (linc) RNA‑p21 was highly expressed in Dox‑treated HL‑1 murine cardiomyocytes. Dox‑induced cardiac senescence was accompanied by decreased cellular proliferation and viability, increased expression of p53 and p16, and decreased telomere length and telomerase activity, while these effects were relieved by silencing endogenous lincRNA‑p21. We found that lincRNA‑p21 interacted with β‑catenin and that silencing β‑catenin abolished the anti‑senescent effect of lincRNA‑p21 silencing. It was observed that modulating lincRNA‑p21 to exert an anti‑senescent effect was dependent on decreasing oxidant stress. To conclude, the present findings suggest that lincRNA‑p21 may be involved in Dox‑associated cardiac cellular senescence and that silencing lincRNA‑p21 effectively protects against Dox cardiotoxicity by regulating the Wnt/β‑catenin signaling pathway and decreasing oxidant stress. Furthermore, modulating lincRNA‑p21 may have cardioprotective potential in patients with cancer receiving Dox treatment.
Collapse
Affiliation(s)
- Zhongdong Xie
- Department of General Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
455
|
When Long Noncoding RNAs Meet Genome Editing in Pluripotent Stem Cells. Stem Cells Int 2017; 2017:3250624. [PMID: 29333164 PMCID: PMC5733163 DOI: 10.1155/2017/3250624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Most of the human genome can be transcribed into RNAs, but only a minority of these regions produce protein-coding mRNAs whereas the remaining regions are transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) were known for their influential regulatory roles in multiple biological processes such as imprinting, dosage compensation, transcriptional regulation, and splicing. The physiological functions of protein-coding genes have been extensively characterized through genome editing in pluripotent stem cells (PSCs) in the past 30 years; however, the study of lncRNAs with genome editing technologies only came into attentions in recent years. Here, we summarize recent advancements in dissecting the roles of lncRNAs with genome editing technologies in PSCs and highlight potential genome editing tools useful for examining the functions of lncRNAs in PSCs.
Collapse
|
456
|
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2017; 19:143-157. [PMID: 29138516 DOI: 10.1038/nrm.2017.104] [Citation(s) in RCA: 965] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.
Collapse
Affiliation(s)
- Julia D Ransohoff
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Yuning Wei
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA
| |
Collapse
|
457
|
Lee HC, Jung SH, Hwang HJ, Kang D, De S, Dudekula DB, Martindale JL, Park B, Park SK, Lee EK, Lee JH, Jeong S, Han K, Park HJ, Ko YG, Gorospe M, Lee JS. WIG1 is crucial for AGO2-mediated ACOT7 mRNA silencing via miRNA-dependent and -independent mechanisms. Nucleic Acids Res 2017; 45:6894-6910. [PMID: 28472401 PMCID: PMC5499809 DOI: 10.1093/nar/gkx307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA-binding proteins (RBPs) are involved in mRNA splicing, maturation, transport, translation, storage and turnover. Here, we identified ACOT7 mRNA as a novel target of human WIG1. ACOT7 mRNA decay was triggered by the microRNA miR-9 in a WIG1-dependent manner via classic recruitment of Argonaute 2 (AGO2). Interestingly, AGO2 was also recruited to ACOT7 mRNA in a WIG1-dependent manner in the absence of miR-9, which indicates an alternative model whereby WIG1 controls AGO2-mediated gene silencing. The WIG1–AGO2 complex attenuated translation initiation via an interaction with translation initiation factor 5B (eIF5B). These results were confirmed using a WIG1 tethering system based on the MS2 bacteriophage coat protein and a reporter construct containing an MS2-binding site, and by immunoprecipitation of WIG1 and detection of WIG1-associated proteins using liquid chromatography-tandem mass spectrometry. We also identified WIG1-binding motifs using photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation analyses. Altogether, our data indicate that WIG1 governs the miRNA-dependent and the miRNA-independent recruitment of AGO2 to lower the stability of and suppress the translation of ACOT7 mRNA.
Collapse
Affiliation(s)
- Hyung Chul Lee
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Hyun Jung Hwang
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Donghee Kang
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Byungkyu Park
- Department of Computer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Seung Kuk Park
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sunjoo Jeong
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Kyungsook Han
- Department of Computer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Heon Joo Park
- Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon 22212, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jae-Seon Lee
- Department of Molecular Medicine, Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea.,Medical Research Center, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
458
|
Lin C, Zhang S, Wang Y, Wang Y, Nice E, Guo C, Zhang E, Yu L, Li M, Liu C, Hu L, Hao J, Qi W, Xu H. Functional Role of a Novel Long Noncoding RNA TTN-AS1 in Esophageal Squamous Cell Carcinoma Progression and Metastasis. Clin Cancer Res 2017; 24:486-498. [PMID: 29101304 DOI: 10.1158/1078-0432.ccr-17-1851] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/04/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Emerging studies demonstrate that long noncoding RNAs (lncRNA) participate in the regulation of various cancers. In the current study, a novel lncRNA-TTN-AS1 has been identified and explored in esophageal squamous cell carcinoma (ESCC).Experimental Design: To discover a new regulatory circuitry in which RNAs crosstalk with each other, the transcriptome of lncRNA-miRNA-mRNA from ESCC and adjacent nonmalignant specimens were analyzed using multiple microarrays and diverse bioinformatics platforms. The functional role and mechanism of a novel lncRNA-TTN-AS1 were further investigated by gain-of-function and loss-of-function assays in vivo and in vitro An ESCC biomarker panel, consisting of lncRNA-TTN-AS1, miR-133b, and FSCN1, was validated by qRT-PCR and in situ hybridization using samples from 148 patients.Results:lncRNA-TTN-AS1 as an oncogene is highly expressed in ESCC tissues and cell lines, and promotes ESCC cell proliferation and metastasis. Mechanistically, lncRNA-TTN-AS1 promotes expression of transcription factor Snail1 by competitively binding miR-133b, resulting in the epithelial-mesenchymal transition (EMT) cascade. Moreover, lncRNA-TTN-AS1 also induces FSCN1 expression by sponging miR-133b and upregulation of mRNA-stabilizing protein HuR, which further promotes ESCC invasion cascades. We also discovered and validated a clinically applicable ESCC biomarker panel, consisting of lncRNA-TTN-AS1, miR-133b, and FSCN1, that is significantly associated with overall survival and provides additional prognostic evidence for ESCC patients.Conclusions: As a novel regulator, lncRNA-TTN-AS1 plays an important role in ESCC cell proliferation and metastasis. The lncRNA-TTN-AS1/miR133b/FSCN1 regulatory axis provides bona fide targets for anti-ESCC therapies. Clin Cancer Res; 24(2); 486-98. ©2017 AACR.
Collapse
Affiliation(s)
- Chenyu Lin
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Shengnan Zhang
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Ying Wang
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanshu Wang
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Changying Guo
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Erhao Zhang
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Liting Yu
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Mengwei Li
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Chen Liu
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Lirong Hu
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Jingchao Hao
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China.,School of Pharmacy and The Yunnan Provincial Key Laboratory of Natural Drug and Pharmacology, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Weiyan Qi
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China.,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Hanmei Xu
- Department of Engineering Research Center of Peptide Drug Discovery and Development, Nanjing, P.R. China. .,Department of State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
459
|
Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity. Oncotarget 2017; 8:102783-102800. [PMID: 29262524 PMCID: PMC5732690 DOI: 10.18632/oncotarget.22245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
We have previously identified the long non-coding RNA LINC01021 as a direct p53 target (Hünten et al. Mol Cell Proteomics. 2015; 14:2609-2629). Here, we show that LINC01021 is up-regulated in colorectal cancer (CRC) cell lines upon various p53-activating treatments. The LINC01021 promoter and the p53 binding site lie within a MER61C LTR, which originated from insertion of endogenous retrovirus 1 (ERV1) sequences. Deletion of this MER61C element by a CRISPR/Cas9 approach, as well as siRNA-mediated knockdown of LINC01021 RNA significantly enhanced the sensitivity of the CRC cell line HCT116 towards the chemotherapeutic drugs doxorubicin and 5-FU, suggesting that LINC01021 is an integral part of the p53-mediated response to DNA damage. Inactivation of LINC01021 and also its ectopic expression did not affect p53 protein expression and transcriptional activity, implying that LINC01021 does not feedback to p53. Furthermore, in CRC patient samples LINC01021 expression positively correlated with a wild-type p53-associated gene expression signature. LINC01021 expression was increased in primary colorectal tumors and displayed a bimodal distribution that was particularly pronounced in the mesenchymal CMS4 consensus molecular subtype of CRCs. CMS4 tumors with low LINC01021 expression were associated with poor patient survival. Our results suggest that the genomic redistribution of ERV1-derived p53 response elements and generation of novel p53-inducible lncRNA-encoding genes was selected for during primate evolution as integral part of the cellular response to various forms of genotoxic stress.
Collapse
|
460
|
Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 2017; 114:E10018-E10027. [PMID: 29087317 PMCID: PMC5699049 DOI: 10.1073/pnas.1708433114] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Noncoding RNAs are an underexplored reservoir of regulatory molecules in eukaryotes. We analyzed the environmental response of roots to phosphorus (Pi) nutrition to understand how a change in availability of an essential element is managed. Pi availability influenced translational regulation mediated by small upstream ORFs on protein-coding mRNAs. Discovery, classification, and evaluation of long noncoding RNAs (lncRNAs) associated with translating ribosomes uncovered diverse new examples of translational regulation. These included Pi-regulated small peptide synthesis, ribosome-coupled phased small interfering RNA production, and the translational regulation of natural antisense RNAs and other regulatory RNAs. This study demonstrates that translational control contributes to the stability and activity of regulatory RNAs, providing an avenue for manipulation of traits. Eukaryotic transcriptomes contain a major non–protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA (tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.
Collapse
|
461
|
Tang Y, Zhou T, Yu X, Xue Z, Shen N. The role of long non-coding RNAs in rheumatic diseases. Nat Rev Rheumatol 2017; 13:657-669. [PMID: 28978995 DOI: 10.1038/nrrheum.2017.162] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key epigenetic regulators that govern gene expression and influence multiple biological processes. Accumulating evidence demonstrates that lncRNAs have critical roles in immune cell development and function. In this Review, the molecular mechanisms of gene expression regulation by lncRNAs are described and current knowledge of the role of lncRNAs in immune regulation and inflammation are presented, highlighting strategies for defining the roles of lncRNAs in the pathogenesis of multiple rheumatic diseases. Finally, research progress in understanding the role of lncRNAs in rheumatic diseases is discussed.
Collapse
Affiliation(s)
- Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China
| | - Tian Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Xiang Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Zhixin Xue
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 145 Shan Dong Road (c), Shanghai 200001, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, 2200 Lane 25 Xietu Road, Shanghai, China.,Collaborative Innovation Centre for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio, USA
| |
Collapse
|
462
|
A New Long Noncoding RNA ALB Regulates Autophagy by Enhancing the Transformation of LC3BI to LC3BII during Human Lens Development. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:207-217. [PMID: 29246299 PMCID: PMC5650653 DOI: 10.1016/j.omtn.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Autophagy is essential in lens organelle degradation. This study aimed to seek potential autophagy-associated long noncoding RNAs (lncRNAs) and their relative mechanisms in human lens development using the “fried egg” lentoid body (LB) generation system. The expression pattern of LC3B in differentiating LBs was similar to that in developing a mouse lens in vivo. Among the massive lncRNAs expressed with a significant difference between induced pluripotent stem cells (iPSCs) and LBs, lncRNA affecting LC3B (ALB), which was predicted to have a co-relationship with the autophagy marker LC3B, was highly expressed in differentiating lens fibers in LBs. This result was consistent with its high expression in human embryonic lenses compared to those in embryonic stem cells (ESCs). Furthermore, lncRNA ALB knockdown resulted in the downregulation of LC3BII at the protein level, therefore inhibiting the autophagy process in human lens epithelial cells (HLECs). Our results identify lncRNA ALB, a potential autophagy regulator in organelle degradation during human lens development, highlighting the importance of lncRNAs in lens development.
Collapse
|
463
|
Min KW, Jo MH, Shin S, Davila S, Zealy RW, Kang SI, Lloyd LT, Hohng S, Yoon JH. AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res 2017; 45:6064-6073. [PMID: 28334781 PMCID: PMC5449627 DOI: 10.1093/nar/gkx149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 02/21/2017] [Indexed: 01/02/2023] Open
Abstract
Eukaryotic mRNA decay is tightly modulated by RNA-binding proteins (RBPs) and microRNAs (miRNAs). RBP AU-binding factor 1 (AUF1) has four isoforms resulting from alternative splicing and is critical for miRNA-mediated gene silencing with a distinct preference of target miRNAs. Previously, we have shown that AUF1 facilitates miRNA loading to Argonaute 2 (AGO2), the catalytic component of the RNA-induced silencing complex. Here, we further demonstrate that depletion of AUF1 abolishes the global interaction of miRNAs and AGO2. Single-molecule analysis revealed that AUF1 slowed down assembly of AGO2-let-7b-mRNA complex unexpectedly. However, target mRNAs recognized by both miRNA and AUF1 are less abundant upon AUF1 overexpression implying that AUF1 is a decay-promoting factor influencing multiple steps in AGO2-miRNA-mediated mRNA decay. Our findings indicate that AUF1 functions in promoting miRNA-mediated mRNA decay globally.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Myung Hyun Jo
- Department of Physics and Astronomy, Institute of Applied Physics, National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Sylvia Davila
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Richard W Zealy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Soo Im Kang
- Department of Plastic Surgery, Seoul National University Bundang Hospital, Seongnam 13605, Korea
| | - Lawson T Lloyd
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
464
|
Barriocanal M, Fortes P. Long Non-coding RNAs in Hepatitis C Virus-Infected Cells. Front Microbiol 2017; 8:1833. [PMID: 29033906 PMCID: PMC5625025 DOI: 10.3389/fmicb.2017.01833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) often leads to a chronic infection in the liver that may progress to steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several viral and cellular factors are required for a productive infection and for the development of liver disease. Some of these are long non-coding RNAs (lncRNAs) deregulated in infected cells. After HCV infection, the sequence and the structure of the viral RNA genome are sensed to activate interferon (IFN) synthesis and signaling pathways. These antiviral pathways regulate transcription of several cellular lncRNAs. Some of these are also deregulated in response to viral replication. Certain viral proteins and/or viral replication can activate transcription factors such as MYC, SP1, NRF2, or HIF1α that modulate the expression of additional cellular lncRNAs. Interestingly, several lncRNAs deregulated in HCV-infected cells described so far play proviral or antiviral functions by acting as positive or negative regulators of the IFN system, while others help in the development of liver cirrhosis and HCC. The study of the structure and mechanism of action of these lncRNAs may aid in the development of novel strategies to treat infectious and immune pathologies and liver diseases such as cirrhosis and HCC.
Collapse
Affiliation(s)
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| |
Collapse
|
465
|
Cagirici HB, Biyiklioglu S, Budak H. Assembly and Annotation of Transcriptome Provided Evidence of miRNA Mobility between Wheat and Wheat Stem Sawfly. FRONTIERS IN PLANT SCIENCE 2017; 8:1653. [PMID: 29038661 PMCID: PMC5630980 DOI: 10.3389/fpls.2017.01653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 05/23/2023]
Abstract
Wheat Stem Sawfly (WSS), Cephus Cinctus Norton (Hymenoptera: Cephidae), is one of the most important pests, causing yield and economic losses in wheat and barley. The lack of information about molecular mechanisms of WSS for defeating plant's resistance prevents application of effective pest control strategies therefore, it is essential to identify the genes and their regulators behind WSS infestations. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are recognized with their regulatory functions on gene expression, tuning protein production by controlling transcriptional and post-transcriptional activities. A transcriptome-guided approach was followed in order to identify miRNAs, lncRNAs, and mRNA of WSS, and their interaction networks. A total of 1,893 were presented here as differentially expressed between larva and adult WSS insects. There were 11 miRNA families detected in WSS transcriptome. Together with the annotation of 1,251 novel mRNAs, the amount of genetic information available for WSS was expanded. The network between WSS miRNAs, lncRNAs, and mRNAs suggested miRNA-mediated regulatory roles of lncRNAs as competing endogenous RNAs. In the light of the previous evidence that small RNA molecules of a pathogen could suppress the immune response of host plant, we analyzed the putative interactions between larvae and wheat at the miRNA level. Overall, this study provides a profile of larva and adult WSS life stages in terms of coding and non-coding elements. These findings also emphasize the potential roles of wheat and larval miRNAs in wheat resistance to infestation and in the suppression of resistance which is critical for the development of effective pest control strategies.
Collapse
Affiliation(s)
- Halise B. Cagirici
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sezgi Biyiklioglu
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
466
|
Molecular Crosstalking among Noncoding RNAs: A New Network Layer of Genome Regulation in Cancer. Int J Genomics 2017; 2017:4723193. [PMID: 29147648 PMCID: PMC5632862 DOI: 10.1155/2017/4723193] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past few years, noncoding RNAs (ncRNAs) have been extensively studied because of the significant biological roles that they play in regulation of cellular mechanisms. ncRNAs are associated to higher eukaryotes complexity; accordingly, their dysfunction results in pathological phenotypes, including cancer. To date, most research efforts have been mainly focused on how ncRNAs could modulate the expression of protein-coding genes in pathological phenotypes. However, recent evidence has shown the existence of an unexpected interplay among ncRNAs that strongly influences cancer development and progression. ncRNAs can interact with and regulate each other through various molecular mechanisms generating a complex network including different species of RNAs (e.g., mRNAs, miRNAs, lncRNAs, and circRNAs). Such a hidden network of RNA-RNA competitive interactions pervades and modulates the physiological functioning of canonical protein-coding pathways involved in proliferation, differentiation, and metastasis in cancer. Moreover, the pivotal role of ncRNAs as keystones of network structural integrity makes them very attractive and promising targets for innovative RNA-based therapeutics. In this review we will discuss: (1) the current knowledge on complex crosstalk among ncRNAs, with a special focus on cancer; and (2) the main issues and criticisms concerning ncRNAs targeting in therapeutics.
Collapse
|
467
|
Bunch H. Gene regulation of mammalian long non-coding RNA. Mol Genet Genomics 2017; 293:1-15. [PMID: 28894972 DOI: 10.1007/s00438-017-1370-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (Pol II) transcribes two classes of RNAs, protein-coding and non-protein-coding (ncRNA) genes. ncRNAs are also synthesized by RNA polymerases I and III (Pol I and III). In humans, the number of ncRNA genes exceeds more than twice that of protein-coding genes. However, the history of studying Pol II-synthesized ncRNA is relatively short. Since early 2000s, important biological and pathological functions of these ncRNA genes have begun to be discovered and intensively studied. And transcription mechanisms of long non-coding RNA (lncRNA) have been recently reported. Transcription of lncRNAs utilizes some transcription factors and mechanisms shared in that of protein-coding genes. In addition, tissue specificity in lncRNA gene expression has been shown. LncRNAs play essential roles in regulating the expression of neighboring or distal genes through different mechanisms. This leads to the implication of lncRNAs in a wide variety of biological pathways and pathological development. In this review, the newly discovered transcription mechanisms, characteristics, and functions of lncRNA are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Agriculture & Life Sciences Building 1, Room 207, 80 Dae-Hak Ro, Daegu, Republic of Korea.
| |
Collapse
|
468
|
Xia W, Zhuang L, Deng X, Hou M. Long noncoding RNA‑p21 modulates cellular senescence via the Wnt/β‑catenin signaling pathway in mesenchymal stem cells. Mol Med Rep 2017; 16:7039-7047. [PMID: 28901439 DOI: 10.3892/mmr.2017.7430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 02/15/2017] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cell (MSC)‑based therapies have demonstrated efficacy in animal models of cardiovascular diseases. However, MSCs decrease in quantity and quality with age, which reduces their capacity for damage repair. Long noncoding (lnc) RNAs regulate gene transcription and the fate of post‑transcriptional mRNA, affecting a broad range of age‑associated physiological and pathological conditions, including cardiovascular disease and cancer cell senescence. However, the functional role of lncRNAs in stem cell senescence remains largely unknown. The present study isolated bone marrow‑derived MSCs from young (8‑week‑old) and aged (18‑month‑old) male C57BL/6 mice. Cell proliferation was measured using a Cell Counting kit‑8 assay, and the secretion of vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and insulin‑like growth factor was measured by ELISA. Western blotting was performed to investigate β‑catenin protein expression. Oxidative stress was evaluated by detecting reactive oxygen species, and the activity of superoxide dismutase and malondialdehyde. MSCs isolated from aged mice demonstrated reduced proliferation and paracrine signaling, and increased oxidative stress and expression of lincRNA‑p21compared with MSCs from younger mice. Silencing lincRNA‑p21 in aged MSCs using small interfering RNA (siRNA) enhanced cell growth and paracrine function, and decreased oxidative stress. These results were reversed when β‑catenin expression was silenced using siRNA. In conclusion, lincRNA‑p21 may serve a role in MSC senescence, and silencing lincRNA‑p21 may rejuvenate MSCs by interacting with the Wnt/β‑catenin signaling pathway. Targeting lincRNA‑p21 may therefore have important therapeutic implications for restoring endogenous MSCs in aged individuals.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Zhuang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xia Deng
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
469
|
Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH. Roles of Long Noncoding RNAs in Recurrence and Metastasis of Radiotherapy-Resistant Cancer Stem Cells. Int J Mol Sci 2017; 18:1903. [PMID: 28872613 PMCID: PMC5618552 DOI: 10.3390/ijms18091903] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is a well-established therapeutic regimen applied to treat at least half of all cancer patients worldwide. Radioresistance of cancers or failure to treat certain tumor types with radiation is associated with enhanced local invasion, metastasis and poor prognosis. Elucidation of the biological characteristics underlying radioresistance is therefore critical to ensure the development of effective strategies to resolve this issue, which remains an urgent medical problem. Cancer stem cells (CSCs) comprise a small population of tumor cells that constitute the origin of most cancer cell types. CSCs are virtually resistant to radiotherapy, and consequently contribute to recurrence and disease progression. Metastasis is an increasing problem in resistance to cancer radiotherapy and closely associated with the morbidity and mortality rates of several cancer types. Accumulating evidence has demonstrated that radiation induces epithelial-mesenchymal transition (EMT) accompanied by increased cancer recurrence, metastasis and CSC generation. CSCs are believed to serve as the basis of metastasis. Previous studies indicate that CSCs contribute to the generation of metastasis, either in a direct or indirect manner. Moreover, the heterogeneity of CSCs may be responsible for organ specificity and considerable complexity of metastases. Long noncoding RNAs (lncRNAs) are a class of noncoding molecules over 200 nucleotides in length involved in the initiation and progression of several cancer types. Recently, lncRNAs have attracted considerable attention as novel critical regulators of cancer progression and metastasis. In the current review, we have discussed lncRNA-mediated regulation of CSCs following radiotherapy, their association with tumor metastasis and significance in radioresistance of cancer.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan.
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan.
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
470
|
Huang GW, Zhang YL, Liao LD, Li EM, Xu LY. Natural antisense transcript TPM1-AS regulates the alternative splicing of tropomyosin I through an interaction with RNA-binding motif protein 4. Int J Biochem Cell Biol 2017; 90:59-67. [PMID: 28754317 DOI: 10.1016/j.biocel.2017.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 02/05/2023]
Abstract
LncRNAs play a vital role in alternative splicing of target genes. However, the mechanisms underlying lncRNAs involvement in splicing are poorly understood. In the present study, we identified a previously uncharacterized lncRNA, which is denoted as TPM1-AS, is reverse-transcribed from the fourth intronic region of the tropomyosin I (TPM1). In situ hybridization and RNA immunoprecipitation assays demonstrated that TPM1-AS was located in the nucleus and interacted with RNA-binding motif protein 4 (RBM4) in human esophageal cancer cells. TPM1-AS overexpression or RBM4 knockdown decreased endogenous exon 2a expression of TPM1, resulting in specifically down-regulation of TPM1variant V2 and V7 in human esophageal cancer cells. Mechanismly, the interaction of TPM1-AS with RBM4 hindered binding of RBM4 to TPM1 pre-mRNA and inhibited RBM4 to promote endogenous exon 2a inclusion of TPM1. Importantly, overexpression of TPM1-AS inhibited migration and filopodium formation, whereas TPM1variant V2 and V7 promoted these behaviors of human esophageal cancer cells. Taken together, the results suggest that a natural antisense TPM1-AS regulates the alternative splicing of TPM1 through an interaction with RBM4 and involves in TPM1-mediated filopodium formation and migration of cancer cells.
Collapse
Affiliation(s)
- Guo-Wei Huang
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China
| | - Ying-Li Zhang
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, 515041, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China.
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, 515041, PR China.
| |
Collapse
|
471
|
Long intergenic non-coding RNA GALMD3 in chicken Marek's disease. Sci Rep 2017; 7:10294. [PMID: 28860661 PMCID: PMC5579197 DOI: 10.1038/s41598-017-10900-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcribed from non-coding DNA sequences. Studies have revealed that aberrant expressions of lincRNAs are associated with various types of cancers and neurological disorders. Marek's disease (MD) is a highly contagious T-cell lymphoid neoplasia of chicken induced by Marek's disease virus (MDV). In this study, we first identified and validated linc-GALMD3 highly expressed in MDV-infected CD4+ T cells by RNA-Seq and qRT-PCR. By RNA-Seq analysis in MDCC-MSB1 cells after loss of function of linc-GALMD3 by shRNA, we found that linc-GALMD3 could positively cis-regulate its downstream gga-miR-223 gene expression. In contrast, it could trans-regulate the 748 differentially expressed genes (FDR < 0.01) that were mainly enriched into mitochondrial structure and cell cycle processes using GO analysis. Of these, the most significantly expressed gene EPYC might cause iris lesion in MD. The other eight genes, NDUFA4, NDUFB6, NDUFV1, NDUFS8, SDHB, UQCRC1, UQCRC2, and COX7A2, actively participated in oxidative phosphorylation in mitochondrial dysfunction and cell death. Most importantly, we found that the MDV replication was repressed when linc-GALMD3 was knocked down in CEF cells. Our results suggested that linc-GALMD3 might be a critical regulator in chicken MD and could be used as a candidate-promising mark for MD prevention, diagnosis, and treatment.
Collapse
|
472
|
Anantharaman A, Tripathi V, Khan A, Yoon JH, Singh DK, Gholamalamdari O, Guang S, Ohlson J, Wahlstedt H, Öhman M, Jantsch MF, Conrad NK, Ma J, Gorospe M, Prasanth SG, Prasanth KV. ADAR2 regulates RNA stability by modifying access of decay-promoting RNA-binding proteins. Nucleic Acids Res 2017; 45:4189-4201. [PMID: 28053121 PMCID: PMC5397167 DOI: 10.1093/nar/gkw1304] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the editing of adenosine residues to inosine (A-to-I) within RNA sequences, mostly in the introns and UTRs (un-translated regions). The significance of editing within non-coding regions of RNA is poorly understood. Here, we demonstrate that association of ADAR2 with RNA stabilizes a subset of transcripts. ADAR2 interacts with and edits the 3΄UTR of nuclear-retained Cat2 transcribed nuclear RNA (Ctn RNA). In absence of ADAR2, the abundance and half-life of Ctn RNA are significantly reduced. Furthermore, ADAR2-mediated stabilization of Ctn RNA occurred in an editing-independent manner. Unedited Ctn RNA shows enhanced interaction with the RNA-binding proteins HuR and PARN [Poly(A) specific ribonuclease deadenylase]. HuR and PARN destabilize Ctn RNA in absence of ADAR2, indicating that ADAR2 stabilizes Ctn RNA by antagonizing its degradation by PARN and HuR. Transcriptomic analysis identified other RNAs that are regulated by a similar mechanism. In summary, we identify a regulatory mechanism whereby ADAR2 enhances target RNA stability by limiting the interaction of RNA-destabilizing proteins with their cognate substrates.
Collapse
Affiliation(s)
- Aparna Anantharaman
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Abid Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Shuomeng Guang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Johan Ohlson
- Department of Molecular Biosciences, the WennerGren Institute, Stockholm University, SE-10691, Svante Arrheniusväg 20C, Stockholm, Sweden
| | - Helene Wahlstedt
- Department of Molecular Biosciences, the WennerGren Institute, Stockholm University, SE-10691, Svante Arrheniusväg 20C, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, the WennerGren Institute, Stockholm University, SE-10691, Svante Arrheniusväg 20C, Stockholm, Sweden
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology and Department for Medical Biochemistry, Medical University of Vienna, A-1090, Vienna, Austria
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Ma
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
473
|
Yan P, Luo S, Lu JY, Shen X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr Opin Genet Dev 2017; 46:170-178. [PMID: 28843809 DOI: 10.1016/j.gde.2017.07.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Pervasive transcription in mammalian genomes produces thousands of long noncoding RNA (lncRNA) transcripts. Although they have been implicated in diverse biological processes, the functional relevance of most lncRNAs remains unknown. Recent studies reveal the prevalence of lncRNA-mediated cis regulation on nearby transcription. In this review, we summarize cis- and trans-acting lncRNAs involved in stem cell pluripotency and reprogramming, highlighting the role of regulatory lncRNAs in providing an additional layer of complexity to the regulation of genes that govern cell fate during development.
Collapse
Affiliation(s)
- Pixi Yan
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Luo
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
474
|
Binder S, Hösler N, Riedel D, Zipfel I, Buschmann T, Kämpf C, Reiche K, Burger R, Gramatzki M, Hackermüller J, Stadler PF, Horn F. STAT3-induced long noncoding RNAs in multiple myeloma cells display different properties in cancer. Sci Rep 2017; 7:7976. [PMID: 28801664 PMCID: PMC5554185 DOI: 10.1038/s41598-017-08348-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin-6 (IL-6)-activated Signal Transducer and Activator of Transcription 3 (STAT3) facilitates survival in the multiple myeloma cell line INA-6 and therefore represents an oncogenic key player. However, the biological mechanisms are still not fully understood. In previous studies we identified microRNA-21 as a STAT3 target gene with strong anti-apoptotic potential, suggesting that noncoding RNAs have an impact on the pathogenesis of human multiple myeloma. Here, we describe five long noncoding RNAs (lncRNAs) induced by IL-6-activated STAT3, which we named STAiRs. While STAiRs 1, 2 and 6 remain unprocessed in the nucleus and show myeloma-specific expression, STAiRs 15 and 18 are spliced and broadly expressed. Especially STAiR2 and STAiR18 are promising candidates. STAiR2 originates from the first intron of a tumor suppressor gene. Our data support a mutually exclusive expression of either STAiR2 or the functional tumor suppressor in INA-6 cells and thus a contribution of STAiR2 to tumorigenesis. Furthermore, STAiR18 was shown to be overexpressed in every tested tumor entity, indicating its global role in tumor pathogenesis. Taken together, our study reveals a number of STAT3-induced lncRNAs suggesting that the interplay between the coding and noncoding worlds represents a fundamental principle of STAT3-driven cancer development in multiple myeloma and beyond.
Collapse
Affiliation(s)
- Stefanie Binder
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany.
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.
| | - Nadine Hösler
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Diana Riedel
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
| | - Ivonne Zipfel
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
| | - Tilo Buschmann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
- The RIBOLUTION Consortium, Leipzig, Germany
| | - Christoph Kämpf
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
- Young Investigators Group Bioinformatics and Transcriptomics, Department Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kristin Reiche
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
- The RIBOLUTION Consortium, Leipzig, Germany
- Young Investigators Group Bioinformatics and Transcriptomics, Department Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine 2, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine 2, Christian-Albrechts-University, Kiel, Germany
| | - Jörg Hackermüller
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
- Young Investigators Group Bioinformatics and Transcriptomics, Department Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research - iDiv, Halle-Jena-Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Center for RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Santa Fe Institute, Santa Fe, USA
| | - Friedemann Horn
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Diagnostics, Leipzig, Germany
- The RIBOLUTION Consortium, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
475
|
Ma X, Yu L, Wang P, Yang X. Discovering DNA methylation patterns for long non-coding RNAs associated with cancer subtypes. Comput Biol Chem 2017; 69:164-170. [PMID: 28501295 DOI: 10.1016/j.compbiolchem.2017.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 02/01/2023]
Abstract
Despite growing evidence demonstrates that the long non-coding ribonucleic acids (lncRNAs) are critical modulators for cancers, the knowledge about the DNA methylation patterns of lncRNAs is quite limited. We develop a systematic analysis pipeline to discover DNA methylation patterns for lncRNAs across multiple cancer subtypes from probe, gene and network levels. By using The Cancer Genome Atlas (TCGA) breast cancer methylation data, the pipeline discovers various DNA methylation patterns for lncRNAs across four major subtypes such as luminal A, luminal B, her2-enriched as well as basal-like. On the probe and gene level, we find that both differentially methylated probes and lncRNAs are subtype specific, while the lncRNAs are not as specific as probes. On the network level, the pipeline constructs differential co-methylation lncRNA network for each subtype. Then, it identifies both subtype specific and common lncRNA modules by simultaneously analyzing multiple networks. We show that the lncRNAs in subtype specific and common modules differ greatly in terms of topological structure, sequence conservation as well as expression. Furthermore, the subtype specific lncRNA modules serve as biomarkers to improve significantly the accuracy of breast cancer subtypes prediction. Finally, the common lncRNA modules associate with survival time of patients, which is critical for cancer therapy.
Collapse
Affiliation(s)
- Xiaoke Ma
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, Shaanxi, China; Xidian-Ningbo Information Technology Institute, Xidian University, No. 777 Zhongguanxi Road, Ningbo City, China.
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, Shaanxi, China
| | - Peizhuo Wang
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, Shaanxi, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Xidian University, No.2 South Taibai Road, Xi'an, Shaanxi, China
| |
Collapse
|
476
|
Lindblad KA, Bracht JR, Williams AE, Landweber LF. Thousands of RNA-cached copies of whole chromosomes are present in the ciliate Oxytricha during development. RNA (NEW YORK, N.Y.) 2017; 23:1200-1208. [PMID: 28450531 PMCID: PMC5513065 DOI: 10.1261/rna.058511.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
The ciliate Oxytricha trifallax maintains two genomes: a germline genome that is active only during sexual conjugation and a transcriptionally active, somatic genome that derives from the germline via extensive sequence reduction and rearrangement. Previously, we found that long noncoding (lnc) RNA "templates"-telomere-containing, RNA-cached copies of mature chromosomes-provide the information to program the rearrangement process. Here we used a modified RNA-seq approach to conduct the first genome-wide search for endogenous, telomere-to-telomere RNA transcripts. We find that during development, Oxytricha produces long noncoding RNA copies for over 10,000 of its 16,000 somatic chromosomes, consistent with a model in which Oxytricha transmits an RNA-cached copy of its somatic genome to the sexual progeny. Both the primary sequence and expression profile of a somatic chromosome influence the temporal distribution and abundance of individual template RNAs. This suggests that Oxytricha may undergo multiple rounds of DNA rearrangement during development. These observations implicate a complex set of thousands of long RNA molecules in the wiring and maintenance of a highly elaborate somatic genome architecture.
Collapse
Affiliation(s)
- Kelsi A Lindblad
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - John R Bracht
- Department of Biology, American University, Washington, DC 20016, USA
| | - April E Williams
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Psychiatry, University of California, San Diego, California, La Jolla 92093, USA
| | - Laura F Landweber
- Department of Biochemistry and Molecular Biophysics
- Department of Biological Sciences, Columbia University, New York, New York 10032, USA
| |
Collapse
|
477
|
Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 2017; 36:6446-6461. [PMID: 28759043 PMCID: PMC5701091 DOI: 10.1038/onc.2017.246] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
The majority of long noncoding RNAs (lncRNAs) is still poorly characterized with respect to function, interactions with protein-coding genes, and mechanisms that regulate their expression. As for protein-coding RNAs, epigenetic deregulation of lncRNA expression by alterations in DNA methylation might contribute to carcinogenesis. To provide genome-wide information on lncRNAs aberrantly methylated in breast cancer we profiled tumors of the C3(1) SV40TAg mouse model by MCIp-seq (Methylated CpG Immunoprecipitation followed by sequencing). This approach detected 69 lncRNAs differentially methylated between tumor tissue and normal mammary glands, with 26 located in antisense orientation of a protein-coding gene. One of the hypomethylated lncRNAs, 1810019D21Rik (now called Esrp2-antisense (as)) was identified in proximity to the epithelial splicing regulatory protein 2 (Esrp2) that is significantly elevated in C3(1) tumors. ESRPs were shown previously to have a dual role in carcinogenesis. Both gain and loss have been associated with poor prognosis in human cancers, but the mechanisms regulating expression are not known. In-depth analyses indicate that coordinate overexpression of Esrp2 and Esrp2-as inversely correlates with DNA methylation. Luciferase reporter gene assays support co-expression of Esrp2 and the major short Esrp2-as variant from a bidirectional promoter, and transcriptional regulation by methylation of a proximal enhancer. Ultimately, this enhancer-based regulatory mechanism provides a novel explanation for tissue-specific expression differences and upregulation of Esrp2 during carcinogenesis. Knockdown of Esrp2-as reduced Esrp2 protein levels without affecting mRNA expression and resulted in an altered transcriptional profile associated with extracellular matrix (ECM), cell motility and reduced proliferation, whereas overexpression enhanced proliferation. Our findings not only hold true for the murine tumor model, but led to the identification of an unannotated human homolog of Esrp2-as which is significantly upregulated in human breast cancer and associated with poor prognosis.
Collapse
|
478
|
Sethuraman S, Gay LA, Jain V, Haecker I, Renne R. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathog 2017; 13:e1006508. [PMID: 28715488 PMCID: PMC5531683 DOI: 10.1371/journal.ppat.1006508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/27/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells. KS is the most prevalent cancer associated with AIDS in sub-Saharan Africa, and is also common in males not affected by AIDS. KSHV manipulates human cells by targeting protein-coding genes and cell signaling. Here we show that KSHV alters the expression of hundreds of human lncRNAs, a broad class of regulatory molecules involved in a variety of cellular pathways including cell cycle and apoptosis. KSHV uses both latency proteins and miRNAs to target lncRNAs. miRNA-mediated targeting of lncRNAs is a novel regulatory mechanism of gene expression. Given that most herpesviruses encode miRNAs, this mechanism might be a common theme during herpesvirus infections. Understanding lncRNA deregulation by KSHV will help decipher the important molecular mechanisms underlying viral pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Appleby Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Irina Haecker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
479
|
Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching. Sci Rep 2017; 7:5333. [PMID: 28706206 PMCID: PMC5509713 DOI: 10.1038/s41598-017-02561-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/13/2017] [Indexed: 01/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play regulatory roles in a diverse range of biological processes and are associated with the outcomes of various diseases. The majority of studies about lncRNAs focus on model organisms, with lessened investigation in non-model organisms to date. Herein, we have undertaken an investigation on lncRNA in two zoanthids (cnidarian): Protolpalythoa varibilis and Palythoa caribaeorum. A total of 11,206 and 13,240 lncRNAs were detected in P. variabilis and P. caribaeorum transcriptome, respectively. Comparison using NONCODE database indicated that the majority of these lncRNAs is taxonomically species-restricted with no identifiable orthologs. Even so, we found cases in which short regions of P. caribaeorum’s lncRNAs were similar to vertebrate species’ lncRNAs, and could be associated with lncRNA conserved regulatory functions. Consequently, some high-confidence lncRNA-mRNA interactions were predicted based on such conserved regions, therefore revealing possible involvement of lncRNAs in posttranscriptional processing and regulation in anthozoans. Moreover, investigation of differentially expressed lncRNAs, in healthy colonies and colonial individuals undergoing natural bleaching, indicated that some up-regulated lncRNAs in P. caribaeorum could posttranscriptionally regulate the mRNAs encoding proteins of Ras-mediated signal transduction pathway and components of innate immune-system, which could contribute to the molecular response of coral bleaching.
Collapse
|
480
|
Schmitt AM, Chang HY. Long Noncoding RNAs: At the Intersection of Cancer and Chromatin Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026492. [PMID: 28193769 DOI: 10.1101/cshperspect.a026492] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although only 2% of the genome encodes protein, RNA is transcribed from the majority of the genetic sequence, suggesting a massive degree of cellular functionality is programmed in the noncoding genome. The mammalian genome contains tens of thousands of long noncoding RNAs (lncRNAs), many of which occur at disease-associated loci or are specifically expressed in cancer. Although the vast majority of lncRNAs have no known function, recurring molecular mechanisms for lncRNAs are now being observed in chromatin regulation and cancer pathways and emerging technologies are now providing tools to interrogate lncRNA molecular interactions and determine function of these abundant cellular macromolecules.
Collapse
Affiliation(s)
- Adam M Schmitt
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
481
|
Functions of long non-coding RNAs in human disease and their conservation in Drosophila development. Biochem Soc Trans 2017; 45:895-904. [PMID: 28673935 DOI: 10.1042/bst20160428] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
Genomic analysis has found that the transcriptome in both humans and Drosophila melanogaster features large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs regulates gene expression in diverse ways and has been involved in a large variety of important biological functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human diseases, including cancer. Comparative analyses of their functions among these organisms suggest that some of their modes of action appear to be conserved. This highlights the importance of model organisms such as Drosophila, which shares many gene regulatory networks with humans, in understanding lncRNA function and its possible impact in human health. This review discusses some known functions and mechanisms of action of lncRNAs and their implication in human diseases, together with their functional conservation and relevance in Drosophila development.
Collapse
|
482
|
Yu F, Zhou G, Huang K, Fan X, Li G, Chen B, Dong P, Zheng J. Serum lincRNA-p21 as a potential biomarker of liver fibrosis in chronic hepatitis B patients. J Viral Hepat 2017; 24:580-588. [PMID: 28107589 DOI: 10.1111/jvh.12680] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Serum long non-coding RNAs (lncRNAs) are emerging as promising biomarkers for various human diseases. The aim of this study was to investigate the feasibility of using serum long intergenic non-coding RNA-p21 (lincRNA-p21) as a biomarker for chronic hepatitis B patients. Serum lincRNA-p21 levels were quantified using real-time PCR in 417 CHB patients and 363 healthy controls. The promoter methylation level of lincRNA-p21 was detected using bisulphite-sequencing analysis in primary hepatic stellate cells (HSCs). Sera from hepatitis B-infected patients contained lower levels of lincRNA-p21 than sera from healthy controls. Serum lincRNA-p21 levels negatively correlated with stages of liver fibrosis in infected patients. Receiver operating characteristic (ROC) curve analyses suggested that serum lincRNA-p21 had a significant diagnostic value for liver fibrosis in these patients. It yielded an area under the curve of ROC of 0.854 with 100% sensitivity and 70% specificity in discriminating liver fibrosis from healthy controls. There was additionally a negative correlation between serum lincRNA-p21 level and the markers of liver fibrosis including α-SMA and Col1A1. However, there was no correlation of serum lincRNA-p21 level with the markers of viral replication, liver inflammatory activity, and liver function. Notably, during primary HSCs culture, loss of lincRNA-p21 expression was associated with promoter methylation. Serum lincRNA-p21 could serve as a potential biomarker of liver fibrosis in CHB patients. Down-regulation of lincRNA-p21 in liver fibrosis may be associated with promoter methylation.
Collapse
Affiliation(s)
- Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangyao Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - XuFei Fan
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guojun Li
- Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, Zhejiang, China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
483
|
Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R, Johnson R. LncATLAS database for subcellular localization of long noncoding RNAs. RNA (NEW YORK, N.Y.) 2017; 23:1080-1087. [PMID: 28386015 PMCID: PMC5473142 DOI: 10.1261/rna.060814.117] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/31/2017] [Indexed: 05/04/2023]
Abstract
The subcellular localization of long noncoding RNAs (lncRNAs) holds valuable clues to their molecular function. However, measuring localization of newly discovered lncRNAs involves time-consuming and costly experimental methods. We have created "lncATLAS," a comprehensive resource of lncRNA localization in human cells based on RNA-sequencing data sets. Altogether, 6768 GENCODE-annotated lncRNAs are represented across various compartments of 15 cell lines. We introduce relative concentration index (RCI) as a useful measure of localization derived from ensemble RNA-seq measurements. LncATLAS is accessible through an intuitive and informative webserver, from which lncRNAs of interest are accessed using identifiers or names. Localization is presented across cell types and organelles, and may be compared to the distribution of all other genes. Publication-quality figures and raw data tables are automatically generated with each query, and the entire data set is also available to download. LncATLAS makes lncRNA subcellular localization data available to the widest possible number of researchers. It is available at lncatlas.crg.eu.
Collapse
Affiliation(s)
- David Mas-Ponte
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Joana Carlevaro-Fita
- Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Toni Hermoso Pulido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Catalonia, Spain
| | - Rory Johnson
- Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
484
|
Ding G, Peng Z, Shang J, Kang Y, Ning H, Mao C. LincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through miR-9/E-cadherin cascade signaling pathway molecular mechanism. Onco Targets Ther 2017; 10:3241-3247. [PMID: 28721075 PMCID: PMC5501625 DOI: 10.2147/ott.s134910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the previous study, it was found that long intergenic noncoding RNA-p21 (lincRNA-p21) was downregulated in hepatocellular carcinoma (HCC) and lincRNA-p21 overexpression inhibited tumor invasion through inducing epithelial–mesenchymal transition. However, the underlying mechanism was not fully elaborated. In this study, lincRNA-p21 expression was measured in 12 paired HCC and nontumor adjacent normal tissues by quantitative real-time polymerase chain reaction. The effects of lincRNA-p21 on HCC cells were studied using lentivirus expressing lincRNA-p21 vector in vitro. The association between lincRNA-p21 level and miR-9 level was tested with the Spearman rank correlation. The effects of miR-9 on HCC cells were studied by using miR-9 inhibitor in vitro. Luciferase assay was used to validate the target of miR-9. The results showed that lincRNA-p21 was downregulated in human HCC tissues and cell lines. LincRNA-p21 overexpression significantly inhibited HCC cell migration and invasion in vitro. Besides, lincRNA-p21 negatively regulated miR-9 expression level, and miR-9 was upregulated in human HCC tissues and cells. MiR-9 knockdown inhibited HCC cell migration and invasion in vitro. Finally, the luciferase assay results showed that E-cadherin was a direct target of miR-9. The expression level of E-cadherin was found to be regulated by lincRNA-p21 and miR-9. Altogether, the results suggested that lincRNA-p21 inhibits migration and invasion of HCC cells through regulating miR-9-mediated E-cadherin cascade signaling pathway.
Collapse
Affiliation(s)
- Gangqiang Ding
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhen Peng
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jia Shang
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yi Kang
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huibin Ning
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chongshan Mao
- Department of Infectious Diseases, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
485
|
Mrhl Long Noncoding RNA Mediates Meiotic Commitment of Mouse Spermatogonial Cells by Regulating Sox8 Expression. Mol Cell Biol 2017; 37:MCB.00632-16. [PMID: 28461394 DOI: 10.1128/mcb.00632-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of various biological processes, including spermatogenesis. Our previous studies have revealed the regulatory loop of mrhl RNA and Wnt signaling, where mrhl RNA negatively regulates Wnt signaling and gets downregulated upon Wnt signaling activation. This downregulation of mrhl RNA is important for the meiotic progression of spermatogonial cells. In our present study, we identified the transcription factor Sox8 as the regulatory link between mrhl RNA expression, Wnt signaling activation, and meiotic progression. In contrast to reports from other groups, we report the expression of Sox8 in germ cells and describe the molecular mechanism of Sox8 regulation by mrhl RNA during differentiation of spermatogonial cells. Binding of mrhl RNA to the Sox8 promoter is accompanied by the assembly of other regulatory factors involving Myc-Max-Mad transcription factors, corepressor Sin3a, and coactivator Pcaf. In the context of Wnt signaling, Sox8 directly regulates the expression of premeiotic and meiotic markers. Prolonged Wnt signaling activation in spermatogonial cells leads to changes in global chromatin architecture and a decrease in levels of stem cell markers.
Collapse
|
486
|
Coelho-Lima J, Spyridopoulos I. Non-coding RNA regulation of T cell biology: Implications for age-associated cardiovascular diseases. Exp Gerontol 2017; 109:38-46. [PMID: 28652179 DOI: 10.1016/j.exger.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/26/2023]
Abstract
Prevalence of age-associated cardiovascular diseases (CVD) has dramatically increased as a result of improvements in life expectancy. Chronic inflammation is a shared pathophysiological feature of age-associated CVDs, indicating a role for the immune system in the onset and development of CVDs. Indeed, ageing elicits profound changes in both the cardiovascular and immune system, especially in the T cell compartment. Although such changes have been well described at the cellular level, the molecular mechanisms underlying immune-mediated cardiovascular ageing remain largely unexplored. Non-coding RNAs (ncRNAs) comprise a heterogeneous family of RNA transcripts that regulate gene expression at the epigenetic, transcriptional, post-transcriptional, and post-translational levels. Non-coding RNAs have recently emerged as master modulators of T cell immunity. In this review, the state-of-the-art knowledge on ncRNA regulatory effects over T cell differentiation, function, and ageing in the context of age-associated CVDs, such as atherosclerosis, acute coronary syndromes, and heart failure, is discussed.
Collapse
Affiliation(s)
- Jose Coelho-Lima
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom; Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom.
| |
Collapse
|
487
|
Chen H, Du G, Song X, Li L. Non-coding Transcripts from Enhancers: New Insights into Enhancer Activity and Gene Expression Regulation. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:201-207. [PMID: 28599852 PMCID: PMC5487526 DOI: 10.1016/j.gpb.2017.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 02/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) have gained widespread interest in the past decade owing to their enormous amount and surprising functions implicated in a variety of biological processes. Some lncRNAs exert function as enhancers, i.e., activating gene transcription by serving as the cis-regulatory molecules. Furthermore, recent studies have demonstrated that many enhancer elements can be transcribed and produce RNA molecules, which are termed as enhancer RNAs (eRNAs). The eRNAs are not merely the by-product of the enhancer transcription. In fact, many of them directly exert or regulate enhancer activity in gene activation through diverse mechanisms. Here, we provide an overview of enhancer activity, transcription of enhancer itself, characteristics of eRNAs, as well as their roles in regulating enhancer activity and gene expression.
Collapse
Affiliation(s)
- Hongjun Chen
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Guangshi Du
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
488
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
489
|
LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017; 36:5661-5667. [PMID: 28604750 PMCID: PMC6450570 DOI: 10.1038/onc.2017.184] [Citation(s) in RCA: 1252] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
To date, a large number of long non-coding RNAs (lncRNAs) have been recently discovered through functional genomics studies. Importantly, lncRNAs have been shown, in many cases, to function as master regulators for gene expression and thus, they can play a critical role in various biological functions and disease processes including cancer. Although the lncRNA-mediated gene expression involves various mechanisms, such as regulation of transcription, translation, protein modification, and the formation of RNA-protein or protein-protein complexes, in this review we discuss the latest developments primarily in important cell signaling pathways regulated by lncRNAs in cancer.
Collapse
|
490
|
Li LJ, Zhao W, Tao SS, Li J, Xu SZ, Wang JB, Leng RX, Fan YG, Pan HF, Ye DQ. Comprehensive long non-coding RNA expression profiling reveals their potential roles in systemic lupus erythematosus. Cell Immunol 2017. [PMID: 28622785 DOI: 10.1016/j.cellimm.2017.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs can regulate gene transcription, modulate protein function, and act as competing endogenous RNA. Yet, their roles in systemic lupus erythematosus remain to be elucidated. We determined the expression profiles of lncRNAs in T cells of SLE patients and healthy controls using microarrays. Up to 1935 lncRNAs and 1977 mRNAs were differentially expressed. QRT-PCR showed downregulated uc001ykl.1 and ENST00000448942 in SLE patients. Expression of uc001ykl.1 correlated with erythrocyte sedimentation rate (ESR) and C-reactive protein, whereas ENST00000448942 level correlated with ESR and anti-Sm antibodies. Short time-series expression miner analysis revealed some lncRNAs whose expressions might correlate with disease activity of SLE patients. Coding-non-coding gene coexpression analyses showed differential lncRNAs might operate via modulating expressions of their correlated, relevant mRNAs in SLE. Differential lncRNAs might also function through their ceRNAs. Our study established that the aberrant expression profiles of lncRNAs may play a role in SLE and thus warrant further investigation.
Collapse
Affiliation(s)
- Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Wei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Jie-Bing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China.
| |
Collapse
|
491
|
Tu X, Zhang Y, Zheng X, Deng J, Li H, Kang Z, Cao Z, Huang Z, Ding Z, Dong L, Chen J, Zang Y, Zhang J. TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice. Sci Rep 2017; 7:2957. [PMID: 28592847 PMCID: PMC5462818 DOI: 10.1038/s41598-017-03175-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte death, as well as the following inflammatory and fibrogenic signaling cascades, is the key trigger of liver fibrosis. Here, we isolated hepatocytes from CCl4-induced fibrotic liver and found that hepatocyte lincRNA-p21 significantly increased during liver fibrosis. The increase of hepatocyte lincRNA-p21 was associated with the loss of miR-30, which can inhibit TGF-β signaling by targeting KLF11. We revealed that lincRNA-p21 modulated miR-30 availability by acting as a competing endogenous RNA (ceRNA). The physiological significance of this interaction is highlighted by the feedback loop, in which lincRNA-p21 works as a downstream effector of the TGF-β signaling to strengthen TGF-β signaling and mediate its role in promoting liver fibrosis by interacting with miR-30. In vivo results showed that knockdown of hepatocyte lincRNA-p21 greatly reduced CCl4-induced liver fibrosis and inflammation, whereas ectopic expression of miR-30 in hepatocyte exhibited the similar results. Mechanistic studies further revealed that inhibition of miR-30 impaired the effects of lincRNA-p21 on liver fibrosis. Additionally, lincRNA-p21 promoted hepatocyte apoptosis in vitro and in vivo, whereas the proliferation rate of hepatocyte was suppressed by lincRNA-p21. The pleiotropic roles of hepatocyte lincRNA-p21 suggest that it may represent an unknown paradigm in liver fibrosis and serve as a potential target for therapy.
Collapse
Affiliation(s)
- Xiaolong Tu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Yuanyuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Xiuxiu Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Jia Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Huanan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhiqian Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhipeng Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China.
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210093, P.R. China. .,Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, 210093, P.R. China.
| |
Collapse
|
492
|
Urbánek P, Klotz L. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017; 174:1514-1532. [PMID: 26920226 PMCID: PMC5446586 DOI: 10.1111/bph.13471] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
Forkhead box, class O (FOXO) transcription factors are major regulators of diverse cellular processes, including fuel metabolism, oxidative stress response and redox signalling, cell cycle progression and apoptosis. Their activities are controlled by multiple posttranslational modifications and nuclear-cytoplasmic shuttling. Recently, post-transcriptional regulation of FOXO synthesis has emerged as a new regulatory level of their functions. Accumulating evidence suggests that this post-transcriptional mode of regulation of FOXO activity operates in response to stressful stimuli, including oxidative stress. Here, we give a brief overview on post-transcriptional regulation of FOXO synthesis by microRNAs (miRNAs) and by RNA-binding regulatory proteins, human antigen R (HuR) and quaking (QKI). Aberrant post-transcriptional regulation of FOXOs is frequently connected with various disease states. We therefore discuss characteristic examples of FOXO regulation at the post-transcriptional level under various physiological and pathophysiological conditions, including oxidative stress and cancer. The picture emerging from this summary points to a diversity of interactions between miRNAs/miRNA-induced silencing complexes and RNA-binding regulatory proteins. Better insight into these complexities of post-transcriptional regulatory interactions will add to our understanding of the mechanisms of pathological processes and the role of FOXO proteins. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- P Urbánek
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| | - L‐O Klotz
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|
493
|
Jiang Z, Slater CM, Zhou Y, Devarajan K, Ruth KJ, Li Y, Cai KQ, Daly M, Chen X. LincIN, a novel NF90-binding long non-coding RNA, is overexpressed in advanced breast tumors and involved in metastasis. Breast Cancer Res 2017; 19:62. [PMID: 28558830 PMCID: PMC5450112 DOI: 10.1186/s13058-017-0853-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent genome-wide profiling by sequencing and distinctive chromatin signatures has identified thousands of long non-coding RNA (lncRNA) species (>200 nt). LncRNAs have emerged as important regulators of gene expression, involving in both developmental and pathological processes. While altered expression of lncRNAs has been observed in breast cancer development, their roles in breast cancer progression and metastasis are still poorly understood. METHODS To identify novel breast cancer-associated lncRNA candidates, we employed a high-density SNP array-based approach to uncover intergenic lncRNA genes that are aberrantly expressed in breast cancer. We first evaluated the potential value as a breast cancer prognostic biomarker for one breast cancer-associated lncRNA, LincIN, using a breast cancer cohort retrieved from The Cancer Genome Atlas (TCGA) Data Portal. Then we characterized the role of LincIN in breast cancer progression and metastasis by in vitro invasion assay and a mouse tail vein injection metastasis model. To study the action of LincIN, we identified LincIN-interacting protein partner(s) by RNA pull-down experiments followed with protein identification by mass spectrometry. RESULTS High levels of LincIN expression are frequently observed in tumors compared to adjacent normal tissues, and are strongly associated with aggressive breast cancer. Importantly, analysis of TCGA data further suggest that high expression of LincIN is associated with poor overall survival in patients with breast cancer (P = 0.044 and P = 0.011 after adjustment for age). The functional experiments demonstrate that knockdown of LincIN inhibits tumor cell migration and invasion in vitro, which is supported by the results of transcriptome analysis in the LincIN-knockdown cells. Furthermore, knockdown of LincIN diminishes lung metastasis in a mouse tail vein injection model. We also identified a LincIN-binding protein, NF90, through which overexpression of LincIN may repress p21 protein expression by inhibiting its translation, and upregulation of p21 by LincIN knockdown may be associated with less aggressive metastasis phenotypes. CONCLUSIONS Our studies provide clear evidence to support LincIN as a new regulator of tumor progression-metastasis at both transcriptional and translational levels and as a promising prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present Address: Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY, 10032, USA
| | - Carolyn M Slater
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Karen J Ruth
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yueran Li
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present Address: The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Mary Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Xiaowei Chen
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
494
|
Yuan JH, Liu XN, Wang TT, Pan W, Tao QF, Zhou WP, Wang F, Sun SH. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nat Cell Biol 2017; 19:820-832. [PMID: 28553938 DOI: 10.1038/ncb3538] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
Understanding the roles of splicing factors and splicing events during tumorigenesis would open new avenues for targeted therapies. Here we identify an oncofetal splicing factor, MBNL3, which promotes tumorigenesis and indicates poor prognosis of hepatocellular carcinoma patients. MBNL3 knockdown almost completely abolishes hepatocellular carcinoma tumorigenesis. Transcriptomic analysis revealed that MBNL3 induces lncRNA-PXN-AS1 exon 4 inclusion. The transcript lacking exon 4 binds to coding sequences of PXN mRNA, causes dissociation of translation elongation factors from PXN mRNA, and thereby inhibits PXN mRNA translation. In contrast, the transcript containing exon 4 preferentially binds to the 3' untranslated region of PXN mRNA, protects PXN mRNA from microRNA-24-AGO2 complex-induced degradation, and thereby increases PXN expression. Through inducing exon 4 inclusion, MBNL3 upregulates PXN, which mediates the pro-tumorigenic roles of MBNL3. Collectively, these data demonstrate detailed mechanistic links between an oncofetal splicing factor, a splicing event and tumorigenesis, and establish splicing factors and splicing events as potential therapeutic targets.
Collapse
Affiliation(s)
- Ji-Hang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Ning Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Tian-Tian Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Wei Pan
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Qi-Fei Tao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| | - Shu-Han Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
495
|
Liu YY, Chen ZH, Peng JJ, Wu JL, Yuan YJ, Zhai ET, Cai SR, He YL, Song W. Up-regulation of long non-coding RNA XLOC_010235 regulates epithelial-to-mesenchymal transition to promote metastasis by associating with Snail1 in gastric cancer. Sci Rep 2017; 7:2461. [PMID: 28550287 PMCID: PMC5446413 DOI: 10.1038/s41598-017-02254-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
We previously performed long non-coding RNA (lncRNA) expression microarray analyses to identify novel indicators for gastric cancer (GC) metastasis and prognosis in which we identified lncRNA XLOC_010235 (XLOC) as a candidate RNA. However, XLOC_010235 molecular mechanism of action remains unclear. Gain and loss of function approaches were used to investigate the biological role of XLOC in vitro. The effects of XLOC on cell viability were assessed by CCK-8 proliferation assays. Real-time PCR, western-blot and immunofluorescence were used to evaluate the mRNA and protein expression of Snail and multiple EMT related molecules. The positive XLOC/Snail1 interaction was identified and verified by immunohistochemistry assay and bivariate correlation analysis. Ectopic expression of XLOC facilitate cell viability, migration and invasion, leading to the acceleration of metastasis, while depletion of XLOC expression hindered cell migration and invasion. Moreover, over-expression of XLOC was found to play a important role in epithelial-to-mesenchymal transition (EMT) through the regulation of E-cadherin, N-cadherin and Vimentin expression, in which transcriptional factor Snail1 was involved. These results advance our understanding of the role of lncRNA XLOC_010235 as a active regulator of EMT by associating with Snail1, which may help in the development of new therapeutics.
Collapse
Affiliation(s)
- Yu-Yi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China
| | - Ze-Hong Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China
| | - Jian-Jun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China
| | - Jia-Lin Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China
| | - Yu-Jie Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China
| | - Er-Tao Zhai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China
| | - Shi-Rong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China
| | - Yu-Long He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China.
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Second Road 58, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
496
|
Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:177-186. [PMID: 28529100 PMCID: PMC5487525 DOI: 10.1016/j.gpb.2016.12.005] [Citation(s) in RCA: 635] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/08/2016] [Accepted: 12/25/2016] [Indexed: 02/08/2023]
Abstract
Advances in genomics technology over recent years have led to the surprising discovery that the genome is far more pervasively transcribed than was previously appreciated. Much of the newly-discovered transcriptome appears to represent long non-coding RNA (lncRNA), a heterogeneous group of largely uncharacterised transcripts. Understanding the biological function of these molecules represents a major challenge and in this review we discuss some of the progress made to date. One major theme of lncRNA biology seems to be the existence of a network of interactions with microRNA (miRNA) pathways. lncRNA has been shown to act as both a source and an inhibitory regulator of miRNA. At the transcriptional level, a model is emerging whereby lncRNA bridges DNA and protein by binding to chromatin and serving as a scaffold for modifying protein complexes. Such a mechanism can bridge promoters to enhancers or enhancer-like non-coding genes by regulating chromatin looping, as well as conferring specificity on histone modifying complexes by directing them to specific loci.
Collapse
|
497
|
Hu G, Gupta SK, Troska TP, Nair A, Gupta M. Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex. Oncotarget 2017; 8:80223-80234. [PMID: 29113297 PMCID: PMC5655192 DOI: 10.18632/oncotarget.17956] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/03/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by rapid disease progression. The needs for new therapeutic strategies for MCL patients call for further understanding on the molecular mechanisms of pathogenesis of MCL. Recently, long noncoding RNAs (lncRNAs) have been recognized as key regulators of gene expression and disease development, however, the role of lncRNAs in non-Hodgkin lymphoma and specifically in MCL is still unknown. Next generation RNA-sequencing was carried out on MCL patient samples along with normal controls and data was analyzed. As a result, several novel lncRNAs were found significantly overexpressed in the MCL samples with lncRNA ROR1-AS1 the most significant one. We cloned the ROR1-AS1 lncRNA in expression vector and ectopically transfected in MCL cell lines. Results showed that overexpression of ROR1-AS1 lncRNA promoted growth of MCL cells while decreased sensitivity to the treatment with drugs ibrutinib and dexamethasone. ROR-AS1 overexpression also decreased the mRNA expression of P16 (P = 0.21), and SOX11 (p = 0.017), without much effect on P53, ATM and P14 mRNA. RNA-immunoprecipitation assays demonstrated high affinity binding of lncRNA ROR1-AS1 with EZH2 and SUZ12 proteins of the polycomb repressive complex-2 (PRC2). Suppressing EZH2 activity with pharmacological inhibitor GSK343 abolished binding of ROR1-AS1 with EZH2. Taken together, this study identified a functional lncRNA ROR-AS1 involved with regulation of gene transcription via associating with PRC2 complex, and may serve as a novel biomarker in MCL patients.
Collapse
Affiliation(s)
- Guangzhen Hu
- Division of Hematology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Tammy P Troska
- Division of Hematology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Asha Nair
- Division of Biomedical Statistics and Informatics, Mayo Clinic Rochester, Rochester, MN, USA
| | - Mamta Gupta
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, GW Cancer Center, Washington, DC, USA
| |
Collapse
|
498
|
Identification of Long Noncoding RNAs Deregulated in Papillary Thyroid Cancer and Correlated with BRAF V600E Mutation by Bioinformatics Integrative Analysis. Sci Rep 2017; 7:1662. [PMID: 28490781 PMCID: PMC5431778 DOI: 10.1038/s41598-017-01957-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
Papillary Thyroid Cancer (PTC) is an endocrine malignancy in which BRAFV600E oncogenic mutation induces the most aggressive phenotype. In this way, considering that lncRNAs are arising as key players in oncogenesis, it is of high interest the identification of BRAFV600E-associated long noncoding RNAs, which can provide possible candidates for secondary mechanisms of BRAF-induced malignancy in PTC. In this study, we identified differentially expressed lncRNAs correlated with BRAFV600E in PTC and, also, extended the cohort of paired normal and PTC samples to more accurately identify differentially expressed lncRNAs between these conditions. Indirectly validated targets of the differentially expressed lncRNAs in PTC compared to matched normal samples demonstrated an involvement in surface receptors responsible for signal transduction and cell adhesion, as well as, regulation of cell death, proliferation and apoptosis. Targets of BRAFV600E-correlated lncRNAs are mainly involved in calcium signaling pathway, ECM-receptor interaction and MAPK pathway. In summary, our study provides candidate lncRNAs that can be either used for future studies related to diagnosis/prognosis or as targets for PTC management.
Collapse
|
499
|
Min KW, Davila S, Zealy RW, Lloyd LT, Lee IY, Lee R, Roh KH, Jung A, Jemielity J, Choi EJ, Chang JH, Yoon JH. eIF4E phosphorylation by MST1 reduces translation of a subset of mRNAs, but increases lncRNA translation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:761-772. [PMID: 28487214 DOI: 10.1016/j.bbagrm.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Post-transcriptional gene regulation is an important step in eukaryotic gene expression. The last step to govern production of nascent peptides is during the process of mRNA translation. mRNA translation is controlled by many translation initiation factors that are susceptible to post-translational modifications. Here we report that one of the translation initiation factors, eIF4E, is phosphorylated by Mammalian Ste20-like kinase (MST1). Upon phosphorylation, eIF4E weakly interacts with the 5' CAP to inhibit mRNA translation. Simultaneously, active polyribosome is more associated with long noncoding RNAs (lncRNAs). Moreover, the linc00689-derived micropeptide, STORM (Stress- and TNF-α-activated ORF Micropeptide), is triggered by TNF-α-induced and MST1-mediated eIF4E phosphorylation, which exhibits molecular mimicry of SRP19 and, thus, competes for 7SL RNA. Our findings have uncovered a novel function of MST1 in mRNA and lncRNA translation by direct phosphorylation of eIF4E. This novel signaling pathway will provide new platforms for regulation of mRNA translation via post-translational protein modification.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Davila
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Richard W Zealy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lawson T Lloyd
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - In Young Lee
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Rumi Lee
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyung Hye Roh
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ahjin Jung
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Eui-Ju Choi
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
500
|
Elia L, Quintavalle M. Epigenetics and Vascular Diseases: Influence of Non-coding RNAs and Their Clinical Implications. Front Cardiovasc Med 2017; 4:26. [PMID: 28497038 PMCID: PMC5406412 DOI: 10.3389/fcvm.2017.00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/12/2017] [Indexed: 01/25/2023] Open
Abstract
Epigenetics refers to heritable mechanisms able to modulate gene expression that do not involve alteration of the genomic DNA sequence. Classically, mechanisms such as DNA methylation and histone modifications were part of this classification. Today, this field of study has been expanded and includes also the large class of non-coding RNAs (ncRNAs). Indeed, with the extraordinary possibilities introduced by the next-generation sequencing approaches, our knowledge of the mammalian transcriptome has greatly improved. Today, we have identifying thousands of ncRNAs, and unsurprisingly, a direct association between ncRNA dysregulation and development of cardiovascular pathologies has been identified. This class of gene modulators is further divided into short-ncRNAs and long-non-coding RNAs (lncRNAs). Among the short-ncRNA sub-group, the best-characterized players are represented by highly conserved RNAs named microRNAs (miRNAs). miRNAs principally inhibit gene expression, and their involvement in cardiovascular diseases has been largely studied. On the other hand, due to the different roles played by lncRNAs, their involvement in cardiovascular pathology development is still limited, and further studies are needed. For instance, in order to define their roles in the cellular processes associated with the development of diseases, we need to better characterize the details of their mechanisms of action; only then might we be able to develop innovative therapeutic strategies. In this review, we would like to give an overview of the current knowledge on the function of ncRNAs and their involvement in the development of vascular diseases.
Collapse
Affiliation(s)
- Leonardo Elia
- Humanitas Clinical and Research Center, Milan, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|