451
|
Falowski SM, Sharan A, Reyes BAS, Sikkema C, Szot P, Van Bockstaele EJ. An evaluation of neuroplasticity and behavior after deep brain stimulation of the nucleus accumbens in an animal model of depression. Neurosurgery 2012; 69:1281-90. [PMID: 21566538 DOI: 10.1227/neu.0b013e3182237346] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent interest has demonstrated the nucleus accumbens (NAcc) as a potential target for the treatment of depression with deep brain stimulation (DBS). OBJECTIVE To demonstrate that DBS of the NAcc is an effective treatment modality for depression and that chemical and structural changes associated with these behavioral changes are markers of neuroplasticity. METHODS A deep brain stimulator was placed in the NAcc of male Wistar-Kyoto rats. Groups were divided into sham (no stimulation), intermittent (3 h/d for 2 weeks), or continuous (constant stimulation for 2 weeks). Exploratory and anxietylike behaviors were evaluated with the open-field test before and after stimulation. Tissue samples of the prefrontal cortex (PFC) were processed with Western blot analysis of markers of noradrenergic activity that included the noradrenergic synthesizing enzyme tyrosine hydroxylase. Analysis of tissue levels for catecholamines was achieved with high-performance liquid chromatography. Morphological properties of cortical pyramidal neurons were assessed with Golgi-Cox staining. RESULTS Subjects undergoing intermittent and continuous stimulation of the NAcc exhibited an increase in exploratory behavior and reduced anxietylike behaviors. Tyrosine hydroxylase expression levels were decreased in the PFC after intermittent and continuous DBS, and dopamine and norepinephrine levels were decreased after continuous stimulation. Golgi-Cox staining indicated that DBS increased the length of apical and basilar dendrites in pyramidal neurons of the PFC. CONCLUSION Deep brain stimulation induces behavioral improvement in and neurochemical and morphological alterations of the PFC that demonstrate changes within the circuitry of the brain different from the target area of stimulation. This observed dendritic plasticity may underlie the therapeutic efficacy of this treatment.
Collapse
Affiliation(s)
- Steven M Falowski
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
452
|
Pandurangi AK, Fernicola-Bledowski C, Bledowski J. Brain stimulation therapies for psychiatric disorders: The first decade of the new millennium--A review. Asian J Psychiatr 2012; 5:3-10. [PMID: 26878940 DOI: 10.1016/j.ajp.2011.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/14/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
Three new brain stimulation therapies have emerged in the last decade for clinical use in psychiatric disorders. Combined with electroconvulsive therapy (ECT), these therapies offer much hope to patients with medication refractory depression, obsessive-compulsive disorder and auditory hallucinations of schizophrenia. In this article we briefly review the history, development and evidence for each of the four stimulation therapies and describe the current state-of-the-art. Neuromodulation is considered as a possible common mechanism mediating the effects of these therapies. Finally, empirical guidelines are suggested for the practicing psychiatrist for the optimal utilization of stimulation therapies. It is concluded that with increasing technological sophistication, research on optimal protocols and emergence of newer modalities of stimulation, the future holds much promise for neuromodulatory therapies in psychiatric disorders.
Collapse
|
453
|
Stephen JH, Halpern CH, Barrios CJ, Balmuri U, Pisapia JM, Wolf JA, Kampman KM, Baltuch GH, Caplan AL, Stein SC. Deep brain stimulation compared with methadone maintenance for the treatment of heroin dependence: a threshold and cost-effectiveness analysis. Addiction 2012; 107:624-34. [PMID: 21919988 DOI: 10.1111/j.1360-0443.2011.03656.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To determine the success threshold at which a theoretical course of deep brain stimulation (DBS) would provide the same quality of life (QoL) and cost-effectiveness for heroin dependence as methadone maintenance treatment (MMT). DESIGN We constructed a decision analysis model to calculate QoL after 6 months of MMT and compared it to a theoretical course of DBS. We also performed a cost-effectiveness analysis using societal costs of heroin dependence, MMT and DBS. SETTING Systematic literature review and meta-analysis. PARTICIPANTS Patients (n = 1191) from 15 trials administering 6 months of MMT and patients (n = 2937) from 45 trials of DBS for movement disorders. MEASUREMENTS Data on QoL before and after MMT, retention in MMT at 6 months, as well as complications of DBS and their impact on QoL in movement disorders. FINDINGS We found a QoL of 0.633 (perfect health = 1) in heroin addicts initiating MMT. Sixty-six per cent of patients completed MMT, but only 47% of them had opiate-free urine samples, resulting in an average QoL of 0.7148 (0.3574 quality-adjusted life years (QALYs) over 6 months). A trial of DBS is less expensive ($81,000) than untreated (or relapsed) heroin dependence ($100,000), but more expensive than MMT ($58,000). A theoretical course of DBS would need a success rate of 36.5% to match MMT, but a success rate of 49% to be cost-effective. CONCLUSIONS The success rate, defined as the percentage of patients remaining heroin-free after 6 months of treatment, at which deep brain stimulation would be similarly cost-effective in treating opiate addiction to methadone maintenance treatment, is estimated at 49%.
Collapse
Affiliation(s)
- James H Stephen
- Department of Neurosurgery, Centers for Functional and Restorative Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
454
|
Christopher PP, Leykin Y, Appelbaum PS, Holtzheimer PE, Mayberg HS, Dunn LB. Enrolling in deep brain stimulation research for depression: influences on potential subjects' decision making. Depress Anxiety 2012; 29:139-46. [PMID: 22095837 DOI: 10.1002/da.20916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/22/2011] [Accepted: 11/20/2011] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ethical concerns regarding early-phase clinical trials of DBS for treatment-resistant depression (TRD) include the possibility that participants' decisions to enroll might be motivated by unrealistic expectations of personal benefit or minimization of risks. METHODS Thematic analyses were conducted on a sample of 26 adults considering participation in two DBS trials. Influences on the decision making of these potential DBS trial participants were derived from responses to questions posed in the MacArthur Competence Assessment Tool for Clinical Research (MacCAT-CR), a semi-structured interview designed to evaluate decisional capacity to consent to research. RESULTS Participants cited numerous factors as influential in their enrollment decisions, including perceived lack of other treatment options, desire to take initiative, beliefs about DBS as a novel treatment, possibility of DBS efficacy, hoped-for improvements, potential risks and disadvantages of DBS or clinical trial participation, and altruism. No individual expressed a set of motivations or influencing factors that suggested compromised decision-making capacity or diminished voluntariness of decision making. CONCLUSIONS These results suggest that individuals make the decision to enroll in early-phase trials of DBS for TRD based on a number of complex and sometimes idiosyncratic considerations, and that the trials that were studied utilized sufficiently robust informed consent processes. These findings offer evidence that the emerging research area of DBS can be advanced in an ethically sound manner, provided that safeguards and processes for discussing trials with participants are carefully and proactively enacted.
Collapse
Affiliation(s)
- Paul P Christopher
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
455
|
Deep brain stimulation of the subcallosal cingulate gyrus: further evidence in treatment-resistant major depression. Int J Neuropsychopharmacol 2012; 15:121-33. [PMID: 21777510 DOI: 10.1017/s1461145711001088] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Deep brain stimulation (DBS) is currently tested as an experimental therapy for patients with treatment-resistant depression (TRD). Here we report on the short- and long-term (1 yr) clinical outcomes and tolerance of DBS in eight TRD patients. Electrodes were implanted bilaterally in the subgenual cingulate gyrus (SCG; Broadman areas 24-25), and stimulated at 135 Hz (90-μs pulsewidth). Voltage and active electrode contacts were adjusted to maximize short-term responses. Clinical assessments included the 17-item Hamilton Depression Rating Scale (HAMD17; primary measure), the Montgomery-Åsberg Depression Rating Scale (MADRS) and the Clinical Global Impression (CGI) Scale. In the first week after surgery, response and remission (HAMD ⩽7) rates were, respectively 87.5% and 50%. These early responses were followed by an overall worsening, with a response and remission rates of 37.5% (3/8) at 1 month. From then onwards, patients showed a progressive improvement, with response and remission rates of 87.5% and 37.5%, respectively, at 6 months. The corresponding figures at 1 yr were 62.5% and 50%, respectively. Clinical effects were seen in all HAMD subscales without a significant incidence of side-effects. Surgical procedure and post-operative period were well-tolerated for all patients. This is the second independent study on the use of DBS of the SCG to treat chronic depression resistant to current therapeutic strategies. DBS fully remitted 50% of the patients at 1 yr, supporting its validity as a new therapeutic strategy for TRD.
Collapse
|
456
|
Sankar T, Tierney TS, Hamani C. Novel applications of deep brain stimulation. Surg Neurol Int 2012; 3:S26-33. [PMID: 22826807 PMCID: PMC3400483 DOI: 10.4103/2152-7806.91607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/20/2011] [Indexed: 11/11/2022] Open
Abstract
The success of deep brain stimulation (DBS) surgery in treating medically refractory symptoms of some movement disorders has inspired further investigation into a wide variety of other treatment-resistant conditions. These range from disorders of gait, mood, and memory to problems as diverse as obesity, consciousness, and addiction. We review the emerging indications, rationale, and outcomes for some of the most promising new applications of DBS in the treatment of postural instability associated with Parkinson's disease, depression, obsessive–compulsive disorder, obesity, substance abuse, epilepsy, Alzheimer′s-type dementia, and traumatic brain injury. These studies reveal some of the excitement in a field at the edge of a rapidly expanding frontier. Much work still remains to be done on basic mechanism of DBS, optimal target and patient selection, and long-term durability of this technology in treating new indications.
Collapse
Affiliation(s)
- Tejas Sankar
- Department of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
457
|
Corticotropin-releasing factor in the nucleus accumbens shell induces swim depression, anxiety, and anhedonia along with changes in local dopamine/acetylcholine balance. Neuroscience 2012; 206:155-66. [PMID: 22245501 DOI: 10.1016/j.neuroscience.2011.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 01/28/2023]
Abstract
The nucleus accumbens shell (NAcS) has been implicated in controlling stress responses through corticotropin-releasing factor (CRF). In addition to studies indicating that CRF in the NAcS increases appetitive motivation, there is indirect evidence suggesting that NAcS CRF may also cause aversive responses and that these behaviors may be mediated through local dopamine (DA) and acetylcholine (ACh) systems. To provide a direct test of this hypothesis, we used male Sprague-Dawley rats with implanted cannulas aimed at the NAcS. Experiment 1 showed local CRF injection (10 or 50 ng/side) to increase immobility in the forced swim test and a CRF antagonist D-Phe-CRF ((12-41)) to attenuate this depressive-like behavior. In Experiment 2, injection of CRF (250 ng/side) also decreased the rats' preference for sucrose, while in Experiment 3, CRF (50 or 250 ng/side) induced anxiety-like behaviors in an elevated plus maze and open field. These same doses of CRF in Experiment 4 failed to alter the rats' locomotor activity, indicating that these behavioral changes were not caused by deficits in activity. In Experiment 5, results from in vivo microdialysis revealed that CRF in the NAcS markedly increased local extracellular ACh, while also producing a small increase in DA. These results show that NAcS CRF can generate a variety of aversive behaviors, including swim depression, anhedonia, and anxiety, in addition to approach behavior. They suggest that these behaviors may occur, in part, through enhanced activation of ACh and DA in the NAcS, respectively, supporting a role for this brain area in mediating the dual effects of stress.
Collapse
|
458
|
Friedman A, Lax E, Abraham L, Tischler H, Yadid G. Abnormality of VTA local field potential in an animal model of depression was restored by patterned DBS treatment. Eur Neuropsychopharmacol 2012; 22:64-71. [PMID: 21596531 DOI: 10.1016/j.euroneuro.2011.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 11/25/2022]
Abstract
Depressive disorders affect approximately 5% of the population in any given year. Deep brain stimulation (DBS) was previously shown to have a long-lasting normalizing effect on the ventral tegmental area (VTA) firing pattern in Flinders-Sensitive-Line (FSL) rats, an animal model for depression. In the current study, we aimed to find a possible electrophysiological mechanism that underlies this adaptation. Local-field-potential (LFP) time-series were recorded in the VTA of conscious, freely-moving FSL (depressive-like) and control Sprague-Dawley (SD) rats. We found that 42% of recordings both from FSL and SD rats showed clear peaks between 1-8Hz. Within these recordings, SD rats mostly demonstrated a single, uniform peak at frequencies of 1-3Hz. However, FSL rats demonstrated a significantly higher amount of recordings with double or triple peaks, at frequencies of 1-8Hz. In addition to the power spectrum, autocorrelation calculation of LFP recordings also showed significant differences between groups. We examined acute DBS of the VTA as a novel method for ameliorating these electrophysiological aberrations, in addition to attenuation of depressive-like behavior. The pattern of stimulation was fashioned to mimic the firing pattern of VTA neurons in control rats, as shown in previous work. The results suggest that treatment with programmed acute electrical stimulation of the VTA substantially restores VTA LFP in FSL rats to normal activity levels, parallel to alleviation of depressive-like behavior, for an extended period of time.
Collapse
Affiliation(s)
- Alexander Friedman
- Leslie & Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Israel
| | | | | | | | | |
Collapse
|
459
|
Wright JS, Panksepp J. An Evolutionary Framework to Understand Foraging, Wanting, and Desire: The Neuropsychology of the SEEKING System. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/15294145.2012.10773683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
460
|
|
461
|
Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology 2012; 37:102-16. [PMID: 21976043 PMCID: PMC3238088 DOI: 10.1038/npp.2011.225] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 12/22/2022]
Abstract
Somatic treatments for mood disorders represent a class of interventions available either as a stand-alone option, or in combination with psychopharmacology and/or psychotherapy. Here, we review the currently available techniques, including those already in clinical use and those still under research. Techniques are grouped into the following categories: (1) seizure therapies, including electroconvulsive therapy and magnetic seizure therapy, (2) noninvasive techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and cranial electric stimulation, (3) surgical approaches, including vagus nerve stimulation, epidural electrical stimulation, and deep brain stimulation, and (4) technologies on the horizon. Additionally, we discuss novel approaches to the optimization of each treatment, and new techniques that are under active investigation.
Collapse
Affiliation(s)
- Moacyr A Rosa
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
462
|
Brain stimulation therapies for neuropsychiatric disease. NEUROBIOLOGY OF PSYCHIATRIC DISORDERS 2012; 106:681-95. [DOI: 10.1016/b978-0-444-52002-9.00041-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
463
|
Coenen VA, Schlaepfer TE, Allert N, Mädler B. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [PMID: 23206684 DOI: 10.1016/b978-0-12-404706-8.00011-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Division of Stereotaxy and Functional Neurosurgery, Department of Neurosurgery, Bonn University Medical Center, Bonn, Germany.
| | | | | | | |
Collapse
|
464
|
Abstract
Psychiatric disorders are worldwide a common cause of severe and long-term disability and socioeconomic burden. The management of patients with psychiatric disorders consists of drug therapy and/or psychotherapy. However, in some patients, these treatment modalities do not produce sufficient therapeutic effects or induce intolerable side effects. For these patients, neuromodulation has been suggested as a potential treatment modality. Neuromodulation includes deep brain stimulation, vagal nerve stimulation, and transcranial magnetic and electrical stimulation. The rationale for neuromodulation is derived from the research identifying neurobiologically localized substrates for refractory psychiatric symptoms. Here, we review the clinical data on neuromodulation in the major psychiatric disorders. Relevant data from animal models will also be discussed to explain the neurobiological basis of the therapy.
Collapse
|
465
|
Coenen VA, Schlaepfer TE. Panksepp’s SEEKING System Concepts and Their Implications for the Treatment of Depression with Deep-Brain Stimulation. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/15294145.2012.10773685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
466
|
Bhatia KD, Henderson L, Ramsey-Stewart G, May J. Diffusion Tensor Imaging to Aid Subgenual Cingulum Target Selection for Deep Brain Stimulation in Depression. Stereotact Funct Neurosurg 2012; 90:225-32. [DOI: 10.1159/000338083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
|
467
|
Mohr P, Rodriguez M, Slavíčková A, Hanka J. The application of vagus nerve stimulation and deep brain stimulation in depression. Neuropsychobiology 2011; 64:170-81. [PMID: 21811087 DOI: 10.1159/000325225] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/23/2011] [Indexed: 01/24/2023]
Abstract
Despite the progress in the pharmacotherapy of depression, there is a substantial proportion of treatment-resistant patients. Recently, reversible invasive stimulation methods, i.e. vagus nerve stimulation (VNS) and deep brain stimulation (DBS), have been introduced into the management of treatment-resistant depression (TRD). VNS has already received regulatory approval for TRD. This paper reviews the available clinical evidence and neurobiology of VNS and DBS in TRD. The principle of VNS is a stimulation of the left cervical vagus nerve with a programmable neurostimulator. VNS was examined in 4 clinical trials with 355 patients. VNS demonstrated steadily increasing improvement with full benefit after 6-12 months, sustained up to 2 years. Patients who responded best had a low-to-moderate antidepressant resistance. However, the primary results of the only controlled trial were negative. DBS involves stereotactical implantation of electrodes powered by a pulse generator into the specific brain regions. For depression, the targeted areas are the subthalamic nucleus, internal globus pallidus, ventral internal capsule/ventral striatum, the subgenual cingulated region, and the nucleus accumbens. Antidepressant effects of DBS were examined in case series with a total number of 50 TRD patients. Stimulation of different brain regions resulted in a reduction of depressive symptoms. The clinical data on the use of VNS and DBS in TRD are encouraging. The major contribution of the methods is a novel approach that allows for precise targeting of the specific brain areas, nuclei and circuits implicated in the etiopathogenesis of neuropsychiatric disorders. For clinical practice, it is necessary to identify patients who may best benefit from VNS or DBS.
Collapse
Affiliation(s)
- Pavel Mohr
- Prague Psychiatric Center, Charles University Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
468
|
Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011; 5:131. [PMID: 22164129 PMCID: PMC3230140 DOI: 10.3389/fnins.2011.00131] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Since the pioneering discovery of the rapid CNS depressant actions of steroids by the "father of stress," Hans Seyle 70 years ago, brain-derived "neurosteroids" have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABA(A) receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Ninewells Hospital, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
469
|
Halpern CH, Torres N, Hurtig HI, Wolf JA, Stephen J, Oh MY, Williams NN, Dichter MA, Jaggi JL, Caplan AL, Kampman KM, Wadden TA, Whiting DM, Baltuch GH. Expanding applications of deep brain stimulation: a potential therapeutic role in obesity and addiction management. Acta Neurochir (Wien) 2011; 153:2293-306. [PMID: 21976235 DOI: 10.1007/s00701-011-1166-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND The indications for deep brain stimulation (DBS) are expanding, and the feasibility and efficacy of this surgical procedure in various neurologic and neuropsychiatric disorders continue to be tested. This review attempts to provide background and rationale for applying this therapeutic option to obesity and addiction. We review neural targets currently under clinical investigation for DBS—the hypothalamus and nucleus accumbens—in conditions such as cluster headache and obsessive-compulsive disorder. These brain regions have also been strongly implicated in obesity and addiction. These disorders are frequently refractory, with very high rates of weight regain or relapse, respectively, despite the best available treatments. METHODS We performed a structured literature review of the animal studies of DBS, which revealed attenuation of food intake, increased metabolism, or decreased drug seeking. We also review the available radiologic evidence in humans, implicating the hypothalamus and nucleus in obesity and addiction. RESULTS The available evidence of the promise of DBS in these conditions combined with significant medical need, support pursuing pilot studies and clinical trials of DBS in order to decrease the risk of dietary and drug relapse. CONCLUSIONS Well-designed pilot studies and clinical trials enrolling carefully selected patients with obesity or addiction should be initiated.
Collapse
|
470
|
Abstract
OBJECTIVE The aim of this study was to review the current state of development and application of a wide range of brain stimulation approaches in the treatment of psychiatric disorders. METHOD The approaches reviewed include forms of minimally invasive magnetic and electrical stimulation, seizure induction, implanted devices and several highly novel approaches in early development. RESULTS An extensive range of brain stimulation approaches are now being widely used in the treatment of patients with psychiatric disorders, or actively investigated for this use. Both vagal nerve stimulation (VNS) and repetitive transcranial magnetic stimulation (rTMS) have been introduced into clinical practice in some countries. A small body of research suggests that VNS has some potentially long-lasting antidepressant effects in a minority of patients treated. rTMS has now been extensively investigated for over 15 years, with a large body of research now supporting its antidepressant effects. Further rTMS research needs to focus on defining the most appropriate stimulation methods and exploring its longer term use in maintenance protocols. Very early data suggest that magnetic seizure therapy (MST) has promise in the treatment of patients referred for electroconvulsive therapy: MST appears to have fewer side effects and may have similar efficacy. A number of other approaches including surgical and alternative forms of electrical stimulation appear to alter brain activity in a promising manner, but are in need of evaluation in more substantive patient samples. CONCLUSIONS It appears likely that the range of psychiatric treatments available for patients will grow over the coming years to progressively include a number of novel brain stimulation techniques.
Collapse
Affiliation(s)
- Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University School of Psychology and Psychiatry, Melbourne, Victoria, Australia. paul.fi
| |
Collapse
|
471
|
Abstract
Deep brain stimulation (DBS) has virtually replaced ablative neurosurgery for use in medication-refractory movement disorders. DBS is now being studied in severe psychiatric conditions, such as treatment-resistant depression (TRD) and intractable obsessive-compulsive disorder (OCD). Effects of DBS have been reported in ∼100 cases of OCD and ∼50 cases of TRD for seven (five common) anatomic targets. Although these published reports differ with respect to study design and methodology, the overall response rate appears to exceed 50% in OCD for some DBS targets. In TRD, >50% of patients responded during acute and long-term bilateral electrical stimulation in a different target. DBS was generally well tolerated in both OCD and TRD, but some unique, target- and stimulation-specific adverse effects were observed (e.g., hypomania). Further research is needed to test the efficacy and safety of DBS in psychiatric disorders, compare targets, and identify predictors of response.
Collapse
Affiliation(s)
- Wayne K Goodman
- Department of Psychiatry, Friedman Brain Institute of the Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
472
|
Rizvi SJ, Donovan M, Giacobbe P, Placenza F, Rotzinger S, Kennedy SH. Neurostimulation therapies for treatment resistant depression: a focus on vagus nerve stimulation and deep brain stimulation. Int Rev Psychiatry 2011; 23:424-36. [PMID: 22200132 DOI: 10.3109/09540261.2011.630993] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antidepressant treatments, including pharmacotherapy and psychotherapy, do not result in remission for the majority of patients with major depressive disorder. The high prevalence of treatment resistant depression (TRD) poses a significant issue for patients as well as both societal and economic costs. Due to the limited efficacy of existing therapies in this sub-population, alternative somatic treatments are being explored. Both vagus nerve stimulation (VNS) and deep brain stimulation (DBS) are neurostimulation treatments for TRD. While VNS has Food Drug Administration approval as an adjunctive therapy for MDD, DBS is still in the experimental stages. This article will review the evidence supporting the clinical utility of these therapies.
Collapse
Affiliation(s)
- Sakina J Rizvi
- Department of Psychiatry, University Health Network, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
473
|
Grubert C, Hurlemann R, Bewernick BH, Kayser S, Hadrysiewicz B, Axmacher N, Sturm V, Schlaepfer TE. Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation. World J Biol Psychiatry 2011; 12:516-27. [PMID: 21736514 DOI: 10.3109/15622975.2011.583940] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Deep brain stimulation (DBS) to the nucleus accumbens (NAcc-DBS) has antidepressant effects in patients suffering from treatment-resistant depression (TRD). However, limited information exists regarding the impact of NAcc-DBS on cognitive functioning. The aim of this study was to examine whether NAcc-DBS in patients with TRD has any cognitive effects. METHODS A comprehensive neuropsychological battery was administered to 10 patients with TRD before onset of bilateral NAcc-DBS and after 1 year of DBS stimulation. Neuropsychological testing covered the domains of attention, learning and memory, executive functions, visual perception, and language. Performance was analyzed at baseline and after 1 year of continuous DBS. RESULTS No evidence was found for cognitive decline following NAcc-DBS comparing test results after 1 year of NAcc-DBS with baseline. However, significantly improved cognitive performance on tests of attention, learning and memory, executive functions and visual perception was found. In addition, there was a general trend towards cognitive enhancement from below average to average performance. These procognitive effects were independent of the antidepressant effects of NAcc-DBS or changes in NAcc-DBS parameters. CONCLUSIONS These results not only support cognitive safety of NAcc-DBS but also stress its beneficial role in augmenting cognitive performance in patients with TRD.
Collapse
Affiliation(s)
- Christiane Grubert
- Department of Psychiatry and Psychotherapy, University Hospital, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
474
|
Alcaro A, Panksepp J. The SEEKING mind: Primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neurosci Biobehav Rev 2011; 35:1805-20. [DOI: 10.1016/j.neubiorev.2011.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 01/25/2023]
|
475
|
Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: Relevance of animal affective systems to human disorders, with a focus on resilience to adverse events. Neurosci Biobehav Rev 2011; 35:1876-89. [DOI: 10.1016/j.neubiorev.2011.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 12/28/2022]
|
476
|
Neural substrates for the motivational regulation of motor recovery after spinal-cord injury. PLoS One 2011; 6:e24854. [PMID: 21969864 PMCID: PMC3182173 DOI: 10.1371/journal.pone.0024854] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
It is believed that depression impedes and motivation enhances functional recovery after neuronal damage such as spinal-cord injury and stroke. However, the neuronal substrate underlying such psychological effects on functional recovery remains unclear. A longitudinal study of brain activation in the non-human primate model of partial spinal-cord injury using positron emission tomography (PET) revealed a contribution of the primary motor cortex (M1) to the recovery of finger dexterity through the rehabilitative training. Here, we show that activity of the ventral striatum, including the nucleus accumbens (NAc), which plays a critical role in processing of motivation, increased and its functional connectivity with M1 emerged and was progressively strengthened during the recovery. In addition, functional connectivities among M1, the ventral striatum and other structures belonging to neural circuits for processing motivation, such as the orbitofrontal cortex, anterior cingulate cortex and pedunculopontine tegmental nucleus were also strengthened during the recovery. These results give clues to the neuronal substrate for motivational regulation of motor learning required for functional recovery after spinal-cord injury.
Collapse
|
477
|
Panksepp J, Watt D. What is Basic about Basic Emotions? Lasting Lessons from Affective Neuroscience. EMOTION REVIEW 2011. [DOI: 10.1177/1754073911410741] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A cross-species affective neuroscience strategy for understanding the primary-process (basic) emotions is defended. The need for analyzing the brain and mind in terms of evolutionary stratification of functions into at least primary (instinctual), secondary (learned), and tertiary (thought-related) processes is advanced. When viewed in this context, the contentious battles between basic-emotion theorists and dimensional-constructivist approaches can be seen to be largely nonsubstantial differences among investigators working at different levels of analysis.
Collapse
Affiliation(s)
- Jaak Panksepp
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (VCAPP), College of Veterinary Medicine, Washington State University, USA
| | - Douglas Watt
- Cambridge City Hospital, Harvard Medical School, USA
| |
Collapse
|
478
|
Burdick AP, Foote KD. Advancing deep brain stimulation for obsessive-compulsive disorder. Expert Rev Neurother 2011; 11:341-4. [PMID: 21375439 DOI: 10.1586/ern.11.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of: Denys D, Mantione M, Figee M et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch. Gen. Psychiatry 67(10), 1061-1068 (2010). Herein we review a prospective trial of deep brain stimulation (DBS) for the treatment of severely debilitating, medication-refractory obsessive-compulsive disorder (OCD) recently published in Archives of General Psychiatry by Denys et al. This prospective 16-subject study, while having some technical limitations, is an excellent addition to the existing literature supporting the use of DBS in the region of the nucleus accumbens for severe OCD. It provides further evidence of efficacy and safety, sham versus active stimulation evidence that this efficacy is real, and several key observations on how DBS interacts with the brain that can shed light on the neuropathophysiology of OCD itself.
Collapse
Affiliation(s)
- Adam P Burdick
- Department of Neurological Surgery, University of Florida, FL, USA
| | | |
Collapse
|
479
|
Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits. Biol Psychiatry 2011; 70:568-74. [PMID: 21601833 DOI: 10.1016/j.biopsych.2011.03.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Anhedonia and lack of motivation are core symptoms of major depressive disorder (MDD). Neuroimaging studies in MDD patients have shown reductions in reward-related activity in terminal regions of the mesolimbic dopamine (DA) system, such as the ventral striatum. Monoamines have been implicated in both mesolimbic incentive processing and the mechanism of action of antidepressant drugs. However, not much is known about antidepressant effects on mesolimbic incentive processing in humans, which might be related to the effects on anhedonia. METHODS To investigate the short-term effects of antidepressants on reward-related activity in the ventral striatum, we investigated the effect of the combined serotonin-norepinephrine reuptake inhibitor duloxetine. Healthy volunteers underwent functional magnetic resonance imaging in a randomized, double-blind, placebo-controlled, crossover study. After taking duloxetine (60 mg once a day) or placebo for 14 days, participants completed a monetary incentive delay task that activates the ventral striatum during reward anticipation. RESULTS Our results (n = 19) show enhanced ventral striatal responses after duloxetine administration compared with placebo. Moreover, this increase in ventral striatal activity was positively correlated with duloxetine plasma levels. CONCLUSIONS This is the first study to demonstrate that antidepressants augment neural activity in mesolimbic DA incentive processing circuits in healthy volunteers. These effects are likely caused by the increase in monoamine neurotransmission in the ventral striatum. Our findings suggest that antidepressants may alleviate anhedonia by stimulating incentive processing.
Collapse
|
480
|
Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J Neurosci 2011; 31:10392-402. [PMID: 21753016 DOI: 10.1523/jneurosci.0595-11.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The ventral prefrontal cortex (vPFC) is involved in reinforcement-based learning and is associated with depression, obsessive-compulsive disorder, and addiction. Neuroimaging is increasingly used to develop models of vPFC connections, to examine white matter (WM) integrity, and to target surgical interventions, including deep brain stimulation. We used primate (Macaca nemestrina/Macaca fascicularis) tracing studies and 3D reconstructions of WM tracts to delineate the rules vPFC projections follow to reach their targets. vPFC efferent axons travel through the uncinate fasciculus, connecting different vPFC regions and linking different functional regions. The uncinate fasciculus also is a conduit for vPFC fibers to reach other cortical bundles. Fibers in the internal capsule are organized according to destination. Thalamic fibers from each vPFC region travel dorsal to their brainstem fibers. The results show regional differences in the trajectories of fibers from different vPFC areas. Overall, the medial/lateral vPFC position dictates the route that fibers take to enter major WM tracts, as well as the position within specific tracts: axons from medial vPFC regions travel ventral to those from more lateral areas. This arrangement, coupled with dorsal/ventral organization of thalamic/brainstem fibers through the internal capsule, results in a complex mingling of thalamic and brainstem axons from different vPFC areas. Together, these data provide the foundation for dividing vPFC WM bundles into functional components and for predicting what is likely to be carried at different points through each bundle. These results also help determine the specific connections that are likely to be captured at different neurosurgical targets.
Collapse
|
481
|
Hamilton J, Furman D, Gotlib I. Neural Foundations of Major Depression. NEUROBIOLOGY OF DEPRESSION 2011. [DOI: 10.1201/b11232-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
482
|
Meng H, Wang Y, Huang M, Lin W, Wang S, Zhang B. Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res 2011; 1422:32-8. [PMID: 21978548 DOI: 10.1016/j.brainres.2011.08.041] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/14/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
In the present study, we aim to determine the antidepressant effects of chronic deep brain stimulation (DBS) of the lateral habenula nucleus (LHb) in a rat model of depression and to explore the potential mechanism of DBS induced improvement of depressive symptoms. To establish the rat depression model, animals were repeatedly exposed to a set of chronic mild stressors for four consecutive weeks. The open-field and sucrose consumption tests were used as measures of depression. For DBS treatment, rats were stereotaxically implanted with electrodes into the LHb and stimulated over a course of 28 d. A separate positive control group was given pharmacotherapy with clomipramine hydrochloride. Open-field testing was used to determine behavioral changes following DBS treatment. Monoamine concentrations in blood and brain tissues were determined by fluorescence spectrophotometry. This study demonstrates that DBS of the LHb region significantly improved depressive-like symptoms in the rat model. These improvements manifested as elevated numbers of crossings and rearings during the open-field test in DBS-treated depressed rats compared to controls. In addition, concentrations of monoamines including norepinephrine (NE), dopamine (DA), and serotonin (5-HT) in blood serum and brain tissues were also increased by DBS of the LHb. Therefore, significant improvements in all outcomes were detected following chronic DBS treatment. These results indicate that long-term DBS treatment of the LHb region effectively improved depressive symptoms in rats, likely as a result of elevated monoamine levels. LHb DBS may therefore provide a valuable therapeutic strategy for the clinical treatment of depression.
Collapse
Affiliation(s)
- Hongmei Meng
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
483
|
Carlson JM, Foti D, Mujica-Parodi LR, Harmon-Jones E, Hajcak G. Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study. Neuroimage 2011; 57:1608-16. [DOI: 10.1016/j.neuroimage.2011.05.037] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/08/2011] [Accepted: 05/13/2011] [Indexed: 11/26/2022] Open
|
484
|
Vago DR, Epstein J, Catenaccio E, Stern E. Identification of neural targets for the treatment of psychiatric disorders: the role of functional neuroimaging. Neurosurg Clin N Am 2011; 22:279-305, x. [PMID: 21435577 DOI: 10.1016/j.nec.2011.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurosurgical treatment of psychiatric disorders has been influenced by evolving neurobiological models of symptom generation. The advent of functional neuroimaging and advances in the neurosciences have revolutionized understanding of the functional neuroanatomy of psychiatric disorders. This article reviews neuroimaging studies of depression from the last 3 decades and describes an emerging neurocircuitry model of mood disorders, focusing on critical circuits of cognition and emotion, particularly those networks involved in the regulation of evaluative, expressive and experiential aspects of emotion. The relevance of this model for neurotherapeutics is discussed, as well as the role of functional neuroimaging of psychiatric disorders.
Collapse
Affiliation(s)
- David R Vago
- Department of Psychiatry, Functional Neuroimaging Laboratory, Brigham & Womens Hospital/Harvard Medical School, 824 Boylston Street, Chestnut Hill, MA 02143, USA.
| | | | | | | |
Collapse
|
485
|
What is an emotional feeling? Lessons about affective origins from cross-species neuroscience. MOTIVATION AND EMOTION 2011. [DOI: 10.1007/s11031-011-9232-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
486
|
Abstract
Deep brain stimulation (DBS) has developed during the past 20 years as a remarkable treatment option for several different disorders. Advances in technology and surgical techniques have essentially replaced ablative procedures for most of these conditions. Stimulation of the ventralis intermedius nucleus of the thalamus has clearly been shown to markedly improve tremor control in patients with essential tremor and tremor related to Parkinson disease. Symptoms of bradykinesia, tremor, gait disturbance, and rigidity can be significantly improved in patients with Parkinson disease. Because of these improvements, a decrease in medication can be instrumental in reducing the disabling features of dyskinesias in such patients. Primary dystonia has been shown to respond well to DBS of the globus pallidus internus. The success of these procedures has led to application of these techniques to multiple other debilitating conditions such as neuropsychiatric disorders, intractable pain, epilepsy, camptocormia, headache, restless legs syndrome, and Alzheimer disease. The literature analysis was performed using a MEDLINE search from 1980 through 2010 with the term deep brain stimulation, and several double-blind and larger case series were chosen for inclusion in this review. The exact mechanism of DBS is not fully understood. This review summarizes many of the current and potential future clinical applications of this technology.
Collapse
Affiliation(s)
- Mark K Lyons
- Department of Neurological Surgery, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
487
|
Abstract
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.
Collapse
|
488
|
Schlaepfer TE, Bewernick B, Kayser S, Lenz D. Modulating affect, cognition, and behavior - prospects of deep brain stimulation for treatment-resistant psychiatric disorders. Front Integr Neurosci 2011; 5:29. [PMID: 21738500 PMCID: PMC3125515 DOI: 10.3389/fnint.2011.00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022] Open
Abstract
Most patients suffering from psychiatric disorders respond to combinations of psycho- and psychopharmacotherapy; however there are patients who profit little if anything even after many years of treatment. Since about a decade different modalities of targeted neuromodulation – among them most prominently – deep brain stimulation (DBS) – are being actively researched as putative approaches to very treatment-resistant forms of those disorders. Recently, promising pilot data have been reported both for major depression (MD) and obsessive–compulsive disorder (OCD). Given the fact that patients included in DBS studies had been treated unsuccessfully for many years with conventional treatment methods, renders these findings remarkable. Remarkable is the fact, that in case of the long-term studies underway for MD, patients show a stable response. This gives hope to a substantial percentage of therapy–resistant psychiatric patients requiring new therapy approaches. There are no fundamental ethic objections to its use in psychiatric disorders, but until substantial clinical data is available, mandatory standards are needed. DBS is a unique and very promising method for the treatment of therapy–resistant psychiatric patients. The method allows manipulating pathological neuronal networks in a very precise way.
Collapse
Affiliation(s)
- Thomas E Schlaepfer
- Brain Stimulation Group, Department of Psychiatry and Psychotherapy, University of Bonn Bonn, Germany
| | | | | | | |
Collapse
|
489
|
Murray EA, Wise SP, Drevets WC. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol Psychiatry 2011; 69:e43-54. [PMID: 21111403 PMCID: PMC3058124 DOI: 10.1016/j.biopsych.2010.09.041] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/22/2010] [Accepted: 09/25/2010] [Indexed: 11/27/2022]
Abstract
Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of "self" underlies the core disorder in MDD; the medial frontal cortex represents "self"; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD.
Collapse
Affiliation(s)
- Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Steven P. Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Potomac, Maryland
| | - Wayne C. Drevets
- Laureate Institute for Brain Research, Tulsa, OK, Oklahoma University College of Medicine, Tulsa, Oklahoma
| |
Collapse
|
490
|
Bichot NP, Heard MT, Desimone R. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys. J Neurosci Methods 2011; 199:265-72. [PMID: 21704383 DOI: 10.1016/j.jneumeth.2011.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/10/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project.
Collapse
Affiliation(s)
- Narcisse P Bichot
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | |
Collapse
|
491
|
Johansson V, Garwicz M, Kanje M, Röcklinsberg H, Schouenborg J, Tingström A, Görman U. Beyond Blind Optimism and Unfounded Fears: Deep Brain Stimulation for Treatment Resistant Depression. NEUROETHICS-NETH 2011. [DOI: 10.1007/s12152-011-9112-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
492
|
Johansson V, Garwicz M, Kanje M, Schouenborg J, Tingström A, Görman U. Authenticity, depression, and deep brain stimulation. Front Integr Neurosci 2011; 5:21. [PMID: 21647398 PMCID: PMC3102217 DOI: 10.3389/fnint.2011.00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/09/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Veronica Johansson
- Department of Experimental Medical Science, Neuronano Research Center, Lund University Lund, Sweden
| | | | | | | | | | | |
Collapse
|
493
|
Cohen MX, Bour L, Mantione M, Figee M, Vink M, Tijssen MAJ, van Rootselaar AF, van den Munckhof P, Schuurman PR, Denys D. Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation. Hum Brain Mapp 2011; 33:246-52. [PMID: 21547982 DOI: 10.1002/hbm.21195] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/23/2010] [Accepted: 10/01/2010] [Indexed: 11/11/2022] Open
Abstract
The nucleus accumbens and medial frontal cortex (MFC) are part of a loop involved in modulating behavior according to anticipated rewards. However, the precise temporal landscape of their electrophysiological interactions in humans remains unknown because it is not possible to record neural activity from the nucleus accumbens using noninvasive techniques. We recorded electrophysiological activity simultaneously from the nucleus accumbens and cortex (via surface EEG) in humans who had electrodes implanted as part of deep-brain-stimulation treatment for obsessive-compulsive disorder. Patients performed a simple reward motivation task previously shown to activate the ventral striatum. Spectral Granger causality analyses were applied to dissociate "top-down" (cortex → nucleus accumbens)- from "bottom-up" (nucleus accumbens → cortex)-directed synchronization (functional connectivity). "Top-down"-directed synchrony from cortex to nucleus accumbens was maximal over medial frontal sites and was significantly stronger when rewards were anticipated. These findings provide direct electrophysiological evidence for a role of the MFC in modulating nucleus accumbens reward-related processing and may be relevant to understanding the mechanisms of deep-brain stimulation and its beneficial effects on psychiatric conditions.
Collapse
Affiliation(s)
- Michael X Cohen
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
van Dijk A, Mason O, Klompmakers AA, Feenstra MGP, Denys D. Unilateral deep brain stimulation in the nucleus accumbens core does not affect local monoamine release. J Neurosci Methods 2011; 202:113-8. [PMID: 21565219 DOI: 10.1016/j.jneumeth.2011.04.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/29/2011] [Accepted: 04/25/2011] [Indexed: 11/19/2022]
Abstract
Recent publications have shown promising results of deep brain stimulation (DBS) in the nucleus accumbens for patients with obsessive compulsive disorder and major depressive disorder. Despite its increasing application in the clinical setting, the neurobiological mechanism of action of DBS is still uncertain. One of the possible effects of DBS might be phasic or tonic changes in monoamine release either locally in the target area or in a distant, connected region. In the present study we investigate whether unilateral DBS of the Nucleus Accumbens Core (NAc core) has a local effect on in vivo monoamine release. Freely moving animals were unilaterally stimulated with 300 μA or 400 μA (120 Hz, pulse width 80 μs) in the NAc core for 5 h. 1h before and during stimulation we measured dopamine, serotonin, their metabolites and noradrenaline using in vivo microdialysis. We found no significant effect of stimulation on extracellular concentrations of monoaminergic neurotransmitters or their metabolites in the NAc core during stimulation. Our results suggest that the rapid effects of DBS in the NAc are not a result of changes in local monoamine release in the NAc core. For future directions it is interesting to note that several microdialysis and electrophysiology studies have shown effects of DBS in areas distant from the stimulation target.
Collapse
Affiliation(s)
- Addy van Dijk
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
495
|
Borairi S, Dougherty DD. The use of neuroimaging to predict treatment response for neurosurgical interventions for treatment-refractory major depression and obsessive-compulsive disorder. Harv Rev Psychiatry 2011; 19:155-61. [PMID: 21631161 DOI: 10.3109/10673229.2011.581888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuroimaging has contributed profoundly to our understanding of the pathophysiology of psychiatric disorders but has had little impact on treatment. An important goal in neuroscience research is identifying biological markers that predict subsequent response to given treatments. This approach may be especially valuable when considering high-risk and high-cost treatments such as psychiatric neurosurgery. Here, we review neuroimaging findings pertaining to treatment-refractory major depression and obsessive-compulsive disorder, and imaging markers that predict response to neurotherapeutic interventions. Thus far, studies conducted with neurotherapeutic interventions have found patterns of predictive brain activity that are similar to those conducted with pharmacological treatments. The predictive neural correlates are concordant with pathophysiological models of major depressive and obsessive-compulsive disorder. These promising findings should motivate additional work establishing the reliability and cost-effectiveness of neuroimaging to predict treatment response across psychiatric diagnoses and interventions.
Collapse
|
496
|
Nahas Z, Anderson BS. Brain stimulation therapies for mood disorders: the continued necessity of electroconvulsive therapy. J Am Psychiatr Nurses Assoc 2011; 17:214-6. [PMID: 21653491 DOI: 10.1177/1078390311409037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ziad Nahas
- Institute of Psychiatry, Medical University of South Carolina, 502 N, 67 President Street, Charleston, SC 29425, USA.
| | | |
Collapse
|
497
|
Rigoard P, Buffenoir K, Jaafari N, Giot JP, Houeto JL, Mertens P, Velut S, Bataille B. The Accumbofrontal Fasciculus in the Human Brain: A Microsurgical Anatomical Study. Neurosurgery 2011; 68:1102-11; discussion 1111. [DOI: 10.1227/neu.0b013e3182098e48] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
BACKGROUND:
The fiber-dissection technique provides unique 3-dimensional anatomic knowledge of the white matter.
OBJECTIVE:
To better identify the frontostriatal pathways in the human brain, we used a fiber-dissection technique to reconstruct neural connections between the frontal cortex and the nucleus accumbens (NAcc), which is the most ventral extent of the striatum.
METHODS:
Thirty previously frozen, formalin-fixed human brains were dissected under the operating microscope using a modified fiber-dissection technique, primarily reported by Klingler.
RESULTS:
Our serial dissections of 30 human brain specimens clearly demonstrated that projection fibers form a connection between the NAcc and the frontal lobe. We evidenced this newly described subcortical tract as an accumbofrontal fasciculus. This focal projection was concentrated at the level of the ventromedial part of the NAcc and characterized by an elective and specific projection from the orbitomedial prefrontal cortex, particularly the gyrus rectus and the medial orbital gyrus situated between the H-shaped and the medial orbital sulcus.
CONCLUSION:
The accumbofrontal fasciculus is an elective and specific projection from the orbitoprefrontal cortex. This fasciculus is part of a corticostriatothalamocortical loop and a putative target for deep-brain stimulation in the treatment of obsessive-compulsive disorder and major depression. The analysis of in vivo diffusion tractography, used today as a standard in the investigation of many brain disorders, could potentially take advantage of complementary anatomic correlations and functional extrapolations, as described in this study.
Collapse
Affiliation(s)
- Philippe Rigoard
- Department of Neurosurgery and Anatomy, Poitiers University School of Medicine, Poitiers, France
| | - Kévin Buffenoir
- Department of Neurosurgery, Nantes University School of Medicine, Nantes, France
| | - Nemhat Jaafari
- Department of Psychiatry, Poitiers University School of Medicine, Poitiers, France
| | - Jean P. Giot
- Department of Morphology, Poitiers University School of Medicine, Poitiers, France
| | - Jean L. Houeto
- Department of Neurology, Poitiers University School of Medicine, Poitiers, France
| | - Patrick Mertens
- Department of Anatomy, Lyon University School of Medicine, Lyon, France
| | - Stéphane Velut
- Department of Anatomy, Tours University School of Medicine, Tours, France
| | - Benoit Bataille
- Department of Neurosurgery, Poitiers University School of Medicine, Poitiers, France
| |
Collapse
|
498
|
Mavridis I, Boviatsis E, Anagnostopoulou S. Stereotactic anatomy of the human nucleus accumbens: from applied mathematics to microsurgical accuracy. Surg Radiol Anat 2011; 33:583-94. [PMID: 21437651 DOI: 10.1007/s00276-011-0804-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 03/10/2011] [Indexed: 11/24/2022]
Abstract
PURPOSE Stereotactic surgery of the human NA is a neurosurgical achievement of the twenty-first century. Our purpose was to provide a clinically oriented study focused on the detailed stereotactic anatomy of the NA, with great respect to its targeting. We tried to offer a guide of NA stereotactic targeting for neurosurgeons. METHODS For our imaging study, we used cerebral magnetic resonance images (MRIs) from 26 neurosurgical patients (52 NAs). The material of our anatomic study consisted of 32 cerebral hemispheres (32 NAs) from 18 normal human brains, which we have in our Department (Department of Anatomy) from cadaver donors. We measured and analyzed the X, X', Y, Y', Z, Z' stereotactic coordinates of the NA at specific clinically important transverse, coronal and sagittal levels. RESULTS Our principal findings contain a probability-based guide for in vivo (side depended) stereotactic localization of the human NA, a standard for the NA, specific stereotactic zone of the human brain (Z = -4), two specific standard NA areas (X = 7, X = 8) and the most reliable stereotactically standard area of the human NA (Y = 2). CONCLUSIONS We provide a stereotactic anatomic guide for some common targeting necessities of the NA stereotactic surgery, resulted from detailed analysis and careful combination of the measured data of our clinically oriented study. We hope that our work will be a really useful guide for neurosurgeons applying deep brain stimulation of the NA.
Collapse
Affiliation(s)
- Ioannis Mavridis
- Department of Anatomy, University of Athens School of Medicine, Mikras Assias str. 75 Goudi, 11527, Athens, Greece.
| | | | | |
Collapse
|
499
|
Mavridis I, Boviatsis E, Anagnostopoulou S. The human nucleus accumbens suffers parkinsonism-related shrinkage: a novel finding. Surg Radiol Anat 2011; 33:595-9. [PMID: 21404044 DOI: 10.1007/s00276-011-0802-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 03/03/2011] [Indexed: 12/30/2022]
Abstract
PURPOSE The human nucleus accumbens (NA) plays an important role in motivation and emotional processes and is involved in some of the most disabling neuropsychiatric disorders such as Parkinson's disease (PD). The purpose of our study was to check out the potential existence of a statistically significant difference in NA size between parkinsonian and non-parkinsonian individuals, through studying brain magnetic resonance images (MRIs). METHODS For our study we used 52 NAs from 26 cerebral MRIs from neurosurgical patients. Of these MRIs, 15 were preoperative from patients with advanced PD who underwent bilateral deep brain stimulation of the subthalamic nucleus. The group of non-parkinsonian MRIs came from the rest 11 individuals. We measured the absolute and relative NA maximum transverse diameter (D (max)), and absolute and relative NA width at a specific transverse plane. RESULTS We found a statistically significant difference of the mean value of the D (max) (absolute and relative) between the two groups. The mean percentage reduction of the NA size was 11.77% represented by the relative D (max). CONCLUSIONS To our knowledge, this is the first report of parkinsonism-related shrinkage of the human NA. Further research is needed to identify whether a respective shrinkage is also observed in patients with early PD and whether this atrophy is correlated with dopaminergic neuropsychiatric symptoms (perhaps mediated by a malfunctioning NA) that occur in PD.
Collapse
Affiliation(s)
- Ioannis Mavridis
- Department of Anatomy, University of Athens School of Medicine, Mikras Assias str. 75, Goudi, 11527, Athens, Greece.
| | | | | |
Collapse
|
500
|
Encinas JM, Hamani C, Lozano AM, Enikolopov G. Neurogenic hippocampal targets of deep brain stimulation. J Comp Neurol 2011; 519:6-20. [PMID: 21120924 DOI: 10.1002/cne.22503] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deep brain stimulation (DBS) is being used to treat movement, neurological, and psychiatric disorders; recently it has been successfully applied to patients with treatment-resistant depression or in minimally conscious state. In addition to its clinical importance, DBS presents a powerful approach to target specific neural circuits and determine the functional relationship between the components of these circuits. We examined the effect of high-frequency stimulation of a crucial component of the limbic circuitry, the anterior thalamic nuclei (ATN), on the generation of new neurons in the dentate gyrus (DG) of the hippocampus, another component of the same circuitry. Adult hippocampal neurogenesis emerges as a strong correlate of antidepressant treatments; however, in most cases, the progenitor cell population targeted by a specific treatment is not known. Using reporter mouse lines designed to quantify changes in selected classes of neural progenitors, we found that high-frequency stimulation of the ATN increases symmetric divisions of a defined class of neural progenitors in the DG; this effect is later manifested as an increased number of new neurons. The affected class of neural progenitors is also affected by the antidepressant fluoxetine (Prozac) and physical exercise (running). This indicates that neurogenic stimuli of different natures can converge on the same neurogenic target in the DG. Our results also suggest that hippocampal neurogenesis may be used as a sensitive indicator of the limbic circuitry activation induced by DBS.
Collapse
Affiliation(s)
- Juan M Encinas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|