451
|
The age-related slowing of voluntary shortening velocity exacerbates power loss during repeated fast knee extensions. Exp Gerontol 2012; 47:85-92. [DOI: 10.1016/j.exger.2011.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/12/2011] [Accepted: 10/25/2011] [Indexed: 11/22/2022]
|
452
|
Ohlendieck K. Proteomic Profiling of Fast-To-Slow Muscle Transitions during Aging. Front Physiol 2011; 2:105. [PMID: 22207852 PMCID: PMC3245893 DOI: 10.3389/fphys.2011.00105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/03/2011] [Indexed: 01/19/2023] Open
Abstract
Old age is associated with a large spectrum of physical ailments, including muscle wasting. Skeletal muscle degeneration drastically increases the risk of poor balance, frequent falling and impaired mobility in the elderly. In order to identify new therapeutic targets to halt or even reverse age-dependent muscle weakness and improve diagnostic methods to properly evaluate sarcopenia as a common geriatric syndrome, there is an urgent need to establish a reliable biomarker signature of muscle aging. In this respect, mass spectrometry-based proteomics has been successfully applied for studying crude extracts and subcellular fractions from aged animal and human muscle tissues to identify novel aging marker proteins. This review focuses on key physiological and metabolic aspects of sarcopenia, i.e., age-related muscle fiber transitions and metabolic shifts in aging muscle as revealed by proteomics. Over the last decade, proteomic profiling studies have clearly confirmed the idea that sarcopenia is based on a multi-factorial pathophysiology and that a glycolytic-to-oxidative shift occurs in slower-twitching senescent muscles. Both, newly identified protein factors and confirmed alterations in crucial metabolic and contractile elements can now be employed to establish a sarcopenia-specific biomarker signature.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Muscle Biology Laboratory, National University of Ireland, Maynooth County Kildare, Ireland
| |
Collapse
|
453
|
Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One 2011; 6:e28090. [PMID: 22164231 PMCID: PMC3229526 DOI: 10.1371/journal.pone.0028090] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/01/2011] [Indexed: 01/06/2023] Open
Abstract
Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia.
Collapse
|
454
|
Niewiadomski W, Pilis W, Laskowska D, Gąsiorowska A, Cybulski G, Strasz A. Effects of a brief Valsalva manoeuvre on hemodynamic response to strength exercises. Clin Physiol Funct Imaging 2011; 32:145-57. [DOI: 10.1111/j.1475-097x.2011.01069.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
455
|
Reid KF, Doros G, Clark DJ, Patten C, Carabello RJ, Cloutier GJ, Phillips EM, Krivickas LS, Frontera WR, Fielding RA. Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation. Eur J Appl Physiol 2011; 112:2289-301. [PMID: 22005960 DOI: 10.1007/s00421-011-2200-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022]
Abstract
This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power would be significantly lower in mobility-limited elders relative to both healthy groups and sought to characterize the physiological mechanisms associated with the reduction of muscle power with aging. Computed tomography was utilized to assess mid-thigh body composition and calculate specific muscle power and strength. Surface electromyography was used to assess rate of neuromuscular activation and muscle biopsies were taken to evaluate single muscle fiber contractile properties. Peak muscle power, strength, muscle cross-sectional area, specific muscle power and rate of neuromuscular activation were significantly lower among mobility-limited elders compared to both healthy groups (P ≤ 0.05). Mobility-limited older participants had greater deposits of intermuscular adipose tissue (P < 0.001). Single fiber contractile properties of type I and type IIA muscle fibers were preserved in mobility-limited elders relative to both healthy groups. Male gender was associated with greater decrements in peak and specific muscle power among mobility-limited participants. Impairments in the rate of neuromuscular activation and concomitant reductions in muscle quality are important physiological mechanisms contributing to muscle power deficits and mobility limitations. The dissociation between age-related changes at the whole muscle and single fiber level suggest that, even among older adults with overt mobility problems, contractile properties of surviving muscle fibers are preserved in an attempt to maintain overall muscle function.
Collapse
Affiliation(s)
- Kieran F Reid
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Malatesta M, Fattoretti P, Giagnacovo M, Pellicciari C, Zancanaro C. Physical training modulates structural and functional features of cell nuclei in type II myofibers of old mice. Rejuvenation Res 2011; 14:543-52. [PMID: 21978085 DOI: 10.1089/rej.2011.1175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aging is associated with a progressive loss of muscle mass, strength, and function, a condition known as sarcopenia, which represents an important risk factor for physical disability in elderly. The mechanisms leading to sarcopenia are still largely unknown, and no specific therapy is presently available to counteract its onset or progress. Many studies have stressed the importance of physical exercise as an effective approach to prevent/limit the age-related muscle mass loss. This study investigated the effects of physical training on pre-mRNA pathways in quadriceps and gastrocnemius muscles of old mice by ultrastructural cytochemistry: Structural and in situ molecular features of myonuclei and satellite cell nuclei of type II fibers were compared in exercised versus sedentary old mice, using adult individuals as control. Our results demonstrated that in myonuclei of old mice physical exercise stimulates pre-mRNA transcription, splicing, and export to the cytoplasm, likely increasing muscle protein turnover. In satellite cells, the effect of physical exercise seems to be limited to the reactivation of some factors involved in the transcriptional and splicing apparatus without increasing RNA production, probably making these quiescent cells more responsive to activating stimuli.
Collapse
Affiliation(s)
- Manuela Malatesta
- Department of Neurological, Neuropsychological, Morphological and Motor Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
457
|
Abstract
Four body composition phenotypes exist in older adults: normal, sarcopenic, obese, and a combination of sarcopenic and obese. There is no consensus, however, on the definitions and classifications of these phenotypes and their etiology and consequences continue to be debated. The lack of standard definitions, particularly for sarcopenia and sarcopenic obesity, creates challenges for determining prevalence across different populations. The etiology of these phenotypes is multifactorial with complex covariate relationships. This review focuses on the current literature addressing the classification, prevalence, etiology, and correlates of sarcopenia, obesity, and the combination of sarcopenia and obesity, referred to as sarcopenic obesity.
Collapse
Affiliation(s)
- Debra L Waters
- Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, New Zealand.
| | | |
Collapse
|
458
|
Hvid LG, Ortenblad N, Aagaard P, Kjaer M, Suetta C. Effects of ageing on single muscle fibre contractile function following short-term immobilisation. J Physiol 2011; 589:4745-57. [PMID: 21825028 DOI: 10.1113/jphysiol.2011.215434] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Very little attention has been given to the combined effects of healthy ageing and short-term disuse on the contractile function of human single muscle fibres. Therefore, the present study investigated the effects of 2 weeks of lower limb cast immobilisation (i.e. disuse) on selected contractile properties of single muscle fibres (n = 378) from vastus lateralis of nine young (24 ± 1 years) and eight old (67 ± 2 years) healthy men with comparable levels of physical activity. Prior to immobilisation, MHC IIa fibres produced higher maximum Ca(2+)-activated force (approx. 32%) and specific force (approx. 33%) and had lower Ca(2+) sensitivity than MHC I fibres (P < 0.05), with no differences between young and old. After immobilisation, the decline in single fibre force (MHC I: young 21% and old 22%; MHC IIa: young 22% and old 30%; P < 0.05) as well as specific force (MHC I: young 14% and old 13%; MHC IIa: young 18% and old 25%; P < 0.05) was more pronounced in MHC IIa fibres compared to MHC I fibres (P < 0.05), with no differences between young and old. Notably, there was a selective decrease in Ca(2+) sensitivity in MHC IIa fibres of young (P < 0.05) and in MHC I fibres of old individuals (P < 0.05), respectively. In conclusion, 2 weeks of lower limb immobilisation caused greater impairments in single muscle fibre force and specific force in MHC IIa than MHC I fibres independently of age. In contrast, immobilisation-induced changes in Ca(2+) sensitivity that were dependent on age and MHC isoform.
Collapse
Affiliation(s)
- Lars G Hvid
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| | | | | | | | | |
Collapse
|
459
|
Singh DKA, Bailey M, Lee RYW. Ageing modifies the fibre angle and biomechanical function of the lumbar extensor muscles. Clin Biomech (Bristol, Avon) 2011; 26:543-7. [PMID: 21392870 DOI: 10.1016/j.clinbiomech.2011.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ageing is associated with geometrical changes in muscle fascicles that may lead to deteriorations in physical functions. The purpose of this study was to study the effects of ageing on fibre orientation and strength of the lumbar extensor muscles. METHODS Fifty two healthy, 26 younger (10 males and 16 females, aged from 20 to 35) and 26 older (10 males and 16 females, aged from 65 to 90) volunteers participated in this study. Ultrasound images of the lumbar extensor muscles were obtained with the participants in relaxed standing and half flexion (50% of the range of trunk flexion). The fibre angles at the mid-substance of the muscle were recorded. Lumbar extensor muscle strength was measured in the upright posture with a load cell. FINDINGS The mean lumbar extensor fibre angles were found to significantly decrease in the half flexion posture when compared to upright stance (P<0.01). Both the fibre angle and the moment generation capability of the muscles decreased with ageing (P<0.01). There was a moderate correlation between the fibre angles in the upright posture and the muscle strength measured in this posture (r=0.40, P<0.01). INTERPRETATION Age-related changes in muscle geometry and posture may partly account for the deterioration in muscle function in the elderly.
Collapse
Affiliation(s)
- Devinder K A Singh
- National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
460
|
Pillard F, Laoudj-Chenivesse D, Carnac G, Mercier J, Rami J, Rivière D, Rolland Y. Physical activity and sarcopenia. Clin Geriatr Med 2011; 27:449-70. [PMID: 21824557 DOI: 10.1016/j.cger.2011.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physical activity can be a valuable countermeasure to sarcopenia in its treatment and prevention. In considering physical training strategies for sarcopenic subjects, it is critical to consider personal and environmental obstacles to access opportunities for physical activity for any patient with chronic disease. This article presents an overview of current knowledge of the effects of physical training on muscle function and the physical activity recommended for sarcopenic patients. So that this countermeasure strategy can be applied in practice, the authors propose a standardized protocol for prescribing physical activity in chronic diseases such as sarcopenia.
Collapse
Affiliation(s)
- Fabien Pillard
- Respiratory Exploration Department and Sports Medicine Department, Larrey University Hospital, Toulouse CEDEX, France.
| | | | | | | | | | | | | |
Collapse
|
461
|
Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW. Comparison of Traditional and Recent Approaches in the Promotion of Balance and Strength in Older Adults. Sports Med 2011; 41:377-400. [DOI: 10.2165/11539920-000000000-00000] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
462
|
Mayer F, Scharhag-Rosenberger F, Carlsohn A, Cassel M, Müller S, Scharhag J. The intensity and effects of strength training in the elderly. DEUTSCHES ARZTEBLATT INTERNATIONAL 2011; 108:359-64. [PMID: 21691559 PMCID: PMC3117172 DOI: 10.3238/arztebl.2011.0359] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/14/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND The elderly need strength training more and more as they grow older to stay mobile for their everyday activities. The goal of training is to reduce the loss of muscle mass and the resulting loss of motor function. The dose-response relationship of training intensity to training effect has not yet been fully elucidated. METHODS PubMed was selectively searched for articles that appeared in the past 5 years about the effects and dose-response relationship of strength training in the elderly. RESULTS Strength training in the elderly (>60 years) increases muscle strength by increasing muscle mass, and by improving the recruitment of motor units, and increasing their firing rate. Muscle mass can be increased through training at an intensity corresponding to 60% to 85% of the individual maximum voluntary strength. Improving the rate of force development requires training at a higher intensity (above 85%), in the elderly just as in younger persons. It is now recommended that healthy old people should train 3 or 4 times weekly for the best results; persons with poor performance at the outset can achieve improvement even with less frequent training. Side effects are rare. CONCLUSION Progressive strength training in the elderly is efficient, even with higher intensities, to reduce sarcopenia, and to retain motor function.
Collapse
Affiliation(s)
- Frank Mayer
- Hochschulambulanz der Universität Potsdam, Zentrum für Freizeit-, Gesundheits- und Leistungssport, Germany.
| | | | | | | | | | | |
Collapse
|
463
|
Neuromuscular performance of paretic versus non-paretic plantar flexors after stroke. Eur J Appl Physiol 2011; 111:3041-9. [PMID: 21455614 PMCID: PMC3218282 DOI: 10.1007/s00421-011-1934-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/17/2011] [Indexed: 11/04/2022]
Abstract
The objective of this study was to compare the neuromuscular function of the paretic and non-paretic plantar flexors (i.e. soleus, gastrocnemius medialis, lateralis) in chronic stroke patients. It was hypothesized that the contractile rate of force development (RFD) and neural activation, assessed by electromyogram (EMG) and V-waves normalized to the M-wave, and voluntary activation (twitch interpolation) would be reduced during plantar flexor maximum voluntary isometric contraction and that the evoked muscle twitch properties would be reduced in the paretic limb. Ten chronic stroke survivors completed the study. The main findings were that the paretic side showed deteriorated function compared to the non-paretic leg in terms of (1) RFD in all analyzed time windows from force onset to 250 ms, although relative RFD (i.e. normalized to maximum voluntary force) was similar; (2) fast neural activation (for most analyzed time windows), assessed by EMG activity in time windows from EMG onset to 250 ms; (3) V-wave responses (except for gastrocnemius medialis); (4) voluntary activation; (5) the evoked peak twitch force, although there was no evidence of intrinsic muscle slowing; (6) EMG activity obtained at maximal voluntary force. In conclusion, this study demonstrates considerable neuromuscular asymmetry of the plantar flexors in chronic stroke survivors. Effective rehabilitation regimes should be investigated.
Collapse
|
464
|
Peterson MD, Gordon PM. Resistance exercise for the aging adult: clinical implications and prescription guidelines. Am J Med 2011; 124:194-8. [PMID: 21396499 DOI: 10.1016/j.amjmed.2010.08.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 10/18/2022]
Abstract
Sarcopenia and weakness are known to precipitate risk for disability, comorbidity, and diminished independence among aging adults. Resistance exercise has been proposed as a viable intervention to elicit muscular adaptation and improve function. However, the reported prevalence of resistance exercise participation among US adults aged >50 years is very low. This may be largely attributable to inconsistency in study results that fail to fully inform the clinical and public health community of its overall value. Therefore, the purpose of this commentary review is to report the findings of recently published meta-analyses that systematically examined the overall value of resistance exercise among healthy aging adults for strength and lean body mass outcomes. Evidence reveals that not only is resistance exercise very effective for eliciting strength gain and increases in lean body mass, but that there is a dose-response relationship such that volume and intensity are strongly associated with adaptations. These findings reflect and support the viability of progression in resistance exercise dosage to accommodate optimal muscular adaptive response. Progressive resistance exercise should thus be encouraged among healthy adults to minimize degenerative muscular function associated with aging.
Collapse
Affiliation(s)
- Mark D Peterson
- Laboratory for Physical Activity and Exercise Intervention Research, Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, 48108-46202, USA
| | | |
Collapse
|
465
|
Abstract
PURPOSE OF REVIEW Current knowledge on satellite cells in relation to suggested mechanisms of loss of muscle mass and strength, induction of fat infiltration, and countermeasures is highlighted. RECENT FINDINGS Consensus on the definition of sarcopenia and sarcopenic obesity is proposed. Human satellite cell heterogeneity has now unequivocally been verified in situ as well as an adipogenic potential, though in mice other muscle stem cells are the hot topic to induce adipogenesis upon muscle damage. Inflammation, oxidative stress, proteolytic degradation, and nuclear apoptosis are discussed as pathogenetic mechanisms of sarcopenia, although little evidence exists that they are important in human muscle. In rodents, exercise-induced muscle injury is a hallmark for sequential events leading to muscle fiber necrosis and sarcopenia. Exercise in humans, on the contrary, is the key event to countermeasure sarcopenia. Cautions to extrapolate observation in rodents to explain human conditions have been presented. SUMMARY Human satellite cells are indispensable for maintenance of human muscle mass, but their implications in the pathogenesis of sarcopenia and sarcopenic obesity are still under debate. Nevertheless, satellite cell activation upon exercise seems unequivocally together with adequate nutrition to be the most effective countermeasure for sarcopenia and sarcopenic obesity.
Collapse
Affiliation(s)
- Lars-Eric Thornell
- Department of Integrative Medical Biology, Section for Anatomy, Umea University, Umea, Sweden.
| |
Collapse
|
466
|
Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients 2010; 2:1247-65. [PMID: 22254007 PMCID: PMC3257625 DOI: 10.3390/nu2121247] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.
Collapse
Affiliation(s)
- Claudia Luevano-Contreras
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
467
|
Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ørtenblad N, Kjaer M, Suetta C. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol (1985) 2010; 109:1628-34. [PMID: 20864557 DOI: 10.1152/japplphysiol.00637.2010] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Very little attention has been given to the combined effects of aging and disuse as separate factors causing deterioration in muscle mechanical function. Thus the purpose of this study was to investigate the effects of 2 wk of immobilization followed by 4 wk of retraining on knee extensor muscle mechanical function (e.g., maximal strength and rapid force capacity) and muscle fiber morphology in 9 old (OM: 67.3 ± 1.3 yr) and 11 young healthy men (YM: 24.4 ± 0.5 yr) with comparable levels of physical activity. Following immobilization, OM demonstrated markedly larger decreases in rapid force capacity (i.e., rate of force development, impulse) than YM (∼ 20-37 vs. ∼ 13-16%; P < 0.05). In contrast, muscle fiber area decreased in YM for type I, IIA, and IIx fibers (∼ 15-30%; P < 0.05), whereas only type IIa area decreased in OM (13.2%; P < 0.05). Subsequent retraining fully restored muscle mechanical function and muscle fiber area in YM, whereas OM showed an attenuated recovery in muscle fiber area and rapid force capacity (tendency). Changes in maximal isometric and dynamic muscle strength were similar between OM and YM. In conclusion, the present data reveal that OM may be more susceptible to the deleterious effects of short-term muscle disuse on muscle fiber size and rapid force capacity than YM. Furthermore, OM seems to require longer time to recover and regain rapid muscle force capacity, which may lead to a larger risk of falling in aged individuals after periods of short-term disuse.
Collapse
Affiliation(s)
- Lars Hvid
- Institute of Sports Medicine, Bispebjerg Hospital and Center of Healthy Aging, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
468
|
Dalton BH, Power GA, Vandervoort AA, Rice CL. Power loss is greater in old men than young men during fast plantar flexion contractions. J Appl Physiol (1985) 2010; 109:1441-7. [PMID: 20829493 DOI: 10.1152/japplphysiol.00335.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unclear during human aging whether healthy older adults (>70 yr old) experience greater, lesser, or the same fatigability compared with younger adults. The reported disparate findings may be related to the task-dependent nature of fatigue and the limited number of studies exploring nonisometric contractile function and aging. The purpose here was to determine the effects of fast shortening contractions on the fatigability of the triceps surae in 10 young (~24 yr old) and 10 old (~78 yr old) men using isometric and dynamic measures. Participants performed 50 maximal velocity-dependent plantar flexions at a constant load of 20% maximal voluntary isometric contraction (MVC). Isometric twitch properties and MVCs were tested at baseline and during and following the fatigue task. Voluntary activation was similar between the old and young (~98%) and was unaltered with fatigue. The old had 26% lower (P < 0.01) isometric MVC torque and 18% slower (P < 0.01) maximal shortening velocity than the young. Hence, peak power was 38% lower in the old (P < 0.01). At task termination, MVC torque was maintained in the old (P = 0.15) but decreased by 21% in the young (P < 0.01). Twitch half-relaxation time was lengthened in the old at task termination by 26% (P < 0.01) but unchanged in the young (P = 0.10). Peak power was reduced by 24% and 17% at task termination in the old and young, respectively (P < 0.01). Despite a better maintenance in isometric MVC torque production, the weaker and slower contracting triceps surae of the old was more fatigable than the young during fast dynamic efforts with an unconstrained velocity.
Collapse
Affiliation(s)
- Brian H Dalton
- Canadian Centre for Activity and Aging, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
469
|
Helms SA, Azhar G, Zuo C, Theus SA, Bartke A, Wei JY. Smaller cardiac cell size and reduced extra-cellular collagen might be beneficial for hearts of Ames dwarf mice. Int J Biol Sci 2010; 6:475-90. [PMID: 20827400 PMCID: PMC2935670 DOI: 10.7150/ijbs.6.475] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/12/2010] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To test the hypothesis that cardiac morphologic differences between Ames dwarf and wild-type littermates might correlate with the increased longevity observed in the Ames dwarf mice. METHODS Hearts removed from young adult (5-7 mo) and old (24-28 mo) Ames dwarf and wild-type littermates underwent histological and morphometric analysis. Measurements of cell size, nuclear size, and collagen content were made using computerized color deconvolution and particle analysis methodology. RESULTS In the young mice at six months of age, mean cardiomyocyte area was 46% less in Ames dwarf than in wild-type mice (p<0.0001). Cardiomyocyte size increased with age by about 52% in the wild-type mice and 44% in the Ames dwarf mice (p<0.001). There was no difference in nuclear size of the cardiomyocytes between the young adult wild-type and Ames dwarf mice. There was an age-associated increase in the cardiomyocyte nuclear size by approximately 50% in both the Ames and wild-type mice (p<0.001). The older Ames dwarf mice had slightly larger cardiomyocyte nuclei compared to wild-type (2%, p<0.05). The collagen content of the hearts in young adult Ames dwarf mice was estimated to be 57% less compared to wild-type littermates (p<0.05). Although collagen content of both Ames dwarf and wild-type mouse hearts increased with age, there was no significant difference at 24 months. CONCLUSIONS In wild-type and Ames dwarf mice, nuclear size, cardiomyocyte size, and collagen content increased with advancing age. While cardiomyocyte size was much reduced in young and old Ames dwarf mice compared with wild-type, collagen content was reduced only in the young adult mice. Taken together, these findings suggest that Ames dwarf mice may receive some longevity benefit from the reduced cardiomyocyte cell size and a period of reduced collagen content in the heart during adulthood.
Collapse
Affiliation(s)
- Scott A. Helms
- 1. Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Little Rock, AR, USA
| | - Gohar Azhar
- 1. Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Little Rock, AR, USA
| | - Chunlai Zuo
- 1. Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Little Rock, AR, USA
- 4. Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Sue A. Theus
- 4. Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Andrzej Bartke
- 3. Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jeanne Y. Wei
- 1. Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Little Rock, AR, USA
- 4. Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
470
|
Sundstrup E, Jakobsen MD, Andersen JL, Randers MB, Petersen J, Suetta C, Aagaard P, Krustrup P. Muscle function and postural balance in lifelong trained male footballers compared with sedentary elderly men and youngsters. Scand J Med Sci Sports 2010; 20 Suppl 1:90-7. [DOI: 10.1111/j.1600-0838.2010.01092.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
471
|
Suetta C, Kjaer M. What are the mechanisms behind disuse and age-related skeletal muscle atrophy? Scand J Med Sci Sports 2010; 20:167-8. [DOI: 10.1111/j.1600-0838.2010.01121.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|