451
|
Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, Naaijkens B, Perut F, Niessen HWM, Baldini N, Pegtel DM. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 2015; 6:127. [PMID: 26129847 PMCID: PMC4529699 DOI: 10.1186/s13287-015-0116-z] [Citation(s) in RCA: 591] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 01/28/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Administration of mesenchymal stem cells (MSCs) represents a promising treatment option for patients suffering from immunological and degenerative disorders. Accumulating evidence indicates that the healing effects of MSCs are mainly related to unique paracrine properties, opening opportunities for secretome-based therapies. Apart from soluble factors, MSCs release functional small RNAs via extracellular vesicles (EVs) that seem to convey essential features of MSCs. Here we set out to characterize the full small RNAome of MSC-produced exosomes. Methods We set up a protocol for isolating exosomes released by early passage adipose- (ASC) and bone marrow-MSCs (BMSC) and characterized them via electron microscopy, protein analysis and small RNA-sequencing. We developed a bioinformatics pipeline to define the exosome-enclosed RNA species and performed the first complete small RNA characterization of BMSCs and ASCs and their corresponding exosomes in biological replicates. Results Our analysis revealed that primary ASCs and BMSCs have highly similar small RNA expression profiles dominated by miRNAs and snoRNAs (together 64-71 %), of which 150–200 miRNAs are present at physiological levels. In contrast, the miRNA pool in MSC exosomes is only 2-5 % of the total small RNAome and is dominated by a minor subset of miRNAs. Nevertheless, the miRNAs in exosomes do not merely reflect the cellular content and a defined set of miRNAs are overrepresented in exosomes compared to the cell of origin. Moreover, multiple highly expressed miRNAs are precluded from exosomal sorting, consistent with the notion that these miRNAs are involved in functional repression of RNA targets. While ASC and BMSC exosomes are similar in RNA class distribution and composition, we observed striking differences in the sorting of evolutionary conserved tRNA species that seems associated with the differentiation status of MSCs, as defined by Sox2, POU5F1A/B and Nanog expression. Conclusions We demonstrate that primary MSCs release small RNAs via exosomes, which are increasingly implicated in intercellular communications. tRNAs species, and in particular tRNA halves, are preferentially released and their specific sorting into exosomes is related to MSC tissue origin and stemness. These findings may help to understand how MSCs impact neighboring or distant cells with possible consequences for their therapeutic usage. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0116-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Serena Rubina Baglio
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy. .,Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Koos Rooijers
- Department of Biological Stress Response, Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| | - Danijela Koppers-Lalic
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Frederik J Verweij
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - M Pérez Lanzón
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Nicoletta Zini
- CNR-National Research Council of Italy, IGM, Bologna, 40136, Italy. .,SC Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Benno Naaijkens
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Francesca Perut
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Hans W M Niessen
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
452
|
Sakurai K, Reon BJ, Anaya J, Dutta A. The lncRNA DRAIC/PCAT29 Locus Constitutes a Tumor-Suppressive Nexus. Mol Cancer Res 2015; 13:828-38. [PMID: 25700553 PMCID: PMC4456356 DOI: 10.1158/1541-7786.mcr-15-0016-t] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Long noncoding RNAs (lncRNA) are emerging as major regulators of cellular phenotypes and implicated as oncogenes or tumor suppressors. Here, we report a novel tumor-suppressive locus on human chromosome 15q23 that contains two multiexonic lncRNA genes of 100 kb each: DRAIC (LOC145837) and the recently reported PCAT29. The DRAIC lncRNA was identified from RNA-seq data and is downregulated as prostate cancer cells progress from an androgen-dependent (AD) to a castration-resistant (CR) state. Prostate cancers persisting in patients after androgen deprivation therapy (ADT) select for decreased DRAIC expression, and higher levels of DRAIC in prostate cancer are associated with longer disease-free survival (DFS). Androgen induced androgen receptor (AR) binding to the DRAIC locus and repressed DRAIC expression. In contrast, FOXA1 and NKX3-1 are recruited to the DRAIC locus to induce DRAIC, and FOXA1 specifically counters the repression of DRAIC by AR. The decrease of FOXA1 and NKX3-1, and aberrant activation of AR, thus accounts for the decrease of DRAIC during prostate cancer progression to the CR state. Consistent with DRAIC being a good prognostic marker, DRAIC prevents the transformation of cuboidal epithelial cells to fibroblast-like morphology and prevents cellular migration and invasion. A second tumor-suppressive lncRNA PCAT29, located 20 kb downstream of DRAIC, is regulated identically by AR and FOXA1 and also suppresses cellular migration and metastasis. Finally, based on TCGA analysis, DRAIC expression predicts good prognosis in a wide range of malignancies, including bladder cancer, low-grade gliomas, lung adenocarcinoma, stomach adenocarcinoma, renal clear cell carcinoma, hepatocellular carcinoma, skin melanoma, and stomach adenocarcinoma. IMPLICATIONS This study reveals a novel tumor-suppressive locus encoding two hormone-regulated lncRNAs, DRAIC and PCAT29, that are prognostic for a wide variety of cancer types.
Collapse
Affiliation(s)
- Kouhei Sakurai
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brian J Reon
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jordan Anaya
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
453
|
Lambertz U, Oviedo Ovando ME, Vasconcelos EJR, Unrau PJ, Myler PJ, Reiner NE. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics 2015; 16:151. [PMID: 25764986 PMCID: PMC4352550 DOI: 10.1186/s12864-015-1260-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
Background Leishmania use exosomes to communicate with their mammalian hosts and these secreted vesicles appear to contribute to pathogenesis by delivering protein virulence factors to macrophages. In other eukaryotes, exosomes were found to carry RNA cargo, such as mRNAs and small non-coding RNAs, capable of altering recipient cell phenotype. Whether leishmania exosomes also contain RNAs which they are able to deliver to bystander cells is not known. Here, we show that leishmania exosomes indeed contain RNAs and compare and contrast the RNA content of exosomes released by Leishmania donovani and Leishmania braziliensis. Results We purified RNA from exosomes collected from axenic amastigote culture supernatant and found that when compared with total leishmania RNA, exosomes mainly contained short RNA sequences. Exosomes with intact membranes were capable of protecting their RNA cargo from degradation by RNase. Moreover, exosome RNA cargo was delivered to host cell cytoplasm in vitro. Sequencing of exosomal RNA indicated that the majority of cargo sequences were derived from non-coding RNA species such as rRNA and tRNA. In depth analysis revealed the presence of tRNA-derived small RNAs, a novel RNA type with suspected regulatory functions. Northern blotting confirmed the specific and selective enrichment of tRNA-derived small RNAs in exosomes. We also identified a number of novel transcripts, which appeared to be specifically enriched in exosomes compared to total cell RNA. In addition, we observed the presence of sequences mapping to siRNA-coding regions in L. braziliensis , but not in L. donovani exosomes. Conclusions These results show that leishmania exosomes are selectively and specifically enriched in small RNAs derived almost exclusively from non-coding RNAs. These exosomes are competent to deliver their cargo of novel, potential small regulatory RNAs to macrophages where they may influence parasite-host cell interactions. The remarkably high degree of congruence in exosomal RNA content between L. donovani and L. braziliensis, argues for the presence of a conserved mechanism for exosomal RNA packaging in leishmania. These findings open up a new avenue of research on non-canonical, small RNA pathways in this trypanosomatid, which may elucidate pathogenesis and identify novel therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1260-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrike Lambertz
- Departments of Medicine, Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | - Mariana E Oviedo Ovando
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Peter J Myler
- Seattle Biomedical Research Institute, Seattle, WA, USA. .,Departments of Global Health and Biomedical Informatics & Medical Education, University of Washington, Washington, WA, USA.
| | - Neil E Reiner
- Departments of Medicine, Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
454
|
Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene Evolution. Life (Basel) 2015; 5:321-31. [PMID: 25629271 PMCID: PMC4390854 DOI: 10.3390/life5010321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs with lengths of approximately 70-100 nt. They are directly involved in protein synthesis by carrying amino acids to the ribosome. In this sense, tRNAs are key molecules that connect the RNA world and the protein world. Thus, study of the evolution of tRNA molecules may reveal the processes that led to the establishment of the central dogma: genetic information flows from DNA to RNA to protein. Thanks to the development of DNA sequencers in this century, we have determined a huge number of nucleotide sequences from complete genomes as well as from transcriptomes in many species. Recent analyses of these large data sets have shown that particular tRNA genes, especially in Archaea, are disrupted in unique ways: some tRNA genes contain multiple introns and some are split genes. Even tRNA molecules themselves are fragmented post-transcriptionally in many species. These fragmented small RNAs are known as tRNA-derived fragments (tRFs). In this review, I summarize the progress of research into the disrupted tRNA genes and the tRFs, and propose a possible model for the molecular evolution of tRNAs based on the concept of the combination of fragmented tRNA halves.
Collapse
|
455
|
Surveillance and cleavage of eukaryotic tRNAs. Int J Mol Sci 2015; 16:1873-93. [PMID: 25599528 PMCID: PMC4307339 DOI: 10.3390/ijms16011873] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/09/2015] [Indexed: 12/27/2022] Open
Abstract
Beyond their central role in protein synthesis, transfer RNAs (tRNAs) have many other crucial functions. This includes various roles in the regulation of gene expression, stress responses, metabolic processes and priming reverse transcription. In the RNA world, tRNAs are, with ribosomal RNAs, among the most stable molecules. Nevertheless, they are not eternal. As key elements of cell function, tRNAs need to be continuously quality-controlled. Two tRNA surveillance pathways have been identified. They act on hypo-modified or mis-processed pre-tRNAs and on mature tRNAs lacking modifications. A short overview of these two pathways will be presented here. Furthermore, while the exoribonucleases acting in these pathways ultimately lead to complete tRNA degradation, numerous tRNA-derived fragments (tRFs) are present within a cell. These cleavage products of tRNAs now potentially emerge as a new class of small non-coding RNAs (sncRNAs) and are suspected to have important regulatory functions. The tRFs are evolutionarily widespread and created by cleavage at different positions by various endonucleases. Here, we review our present knowledge on the biogenesis and function of tRFs in various organisms.
Collapse
|
456
|
Abstract
We have created tRFdb, the first database of transfer RNA fragments (tRFs), available at http://genome.bioch.virginia.edu/trfdb/. With over 100 small RNA libraries analyzed, the database currently contains the sequences and read counts of the three classes of tRFs for eight species: R. sphaeroides, S. pombe, D. melanogaster, C. elegans, Xenopus, zebra fish, mouse and human, for a total of 12 877 tRFs. The database can be searched by tRF ID or tRF sequence, and the results can be limited by organism. The search results show the genome coordinates and names of the tRNAs the sequence may derive from, and there are links for the sequence of the tRF and parental tRNA, and links for the read counts in all the corresponding small RNA libraries. As a case study for how this database may be used, we have shown that a certain class of tRFs, tRF-1s, is highly upregulated in B-cell malignancies.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Suresh B Mudunuri
- Department of Computer Science and Engineering, Grandhi Varalakshmi Venkatarao Institute of Technology (GVIT), Bhimavaram, Andhra Pradesh 534207, India
| | - Jordan Anaya
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| |
Collapse
|