501
|
Kaiser AD, Schuster K, Gadiot J, Borkner L, Daebritz H, Schmitt C, Andreesen R, Blank C. Reduced tumor-antigen density leads to PD-1/PD-L1-mediated impairment of partially exhausted CD8⁺ T cells. Eur J Immunol 2012; 42:662-71. [PMID: 22144176 DOI: 10.1002/eji.201141931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/07/2011] [Accepted: 11/29/2011] [Indexed: 11/10/2022]
Abstract
Clinical progression of cancer patients is often observed despite the presence of tumor-reactive T cells. Co-inhibitory ligands of the B7 superfamily have been postulated to play a part in this tumor-immune escape. One of these molecules, PD-L1 (B7-H1, CD274), is widely expressed on tumor cells and has been shown to mediate T-cell inhibition. However, attempts to correlate PD-L1 tumor expression with negative prognosis have been conflicting. To better understand when PD-1/PD-L1-mediated inhibition contributes to the functional impairment of tumor-specific CD8(+) T cells, we varied the levels of antigen density and/or PD-L1 expression at the surface of tumor cells and exposed them to CD8(+) T cells at different levels of functional exhaustion. We found that the gradual reduction of cognate antigen expression by PD-L1-expressing tumor cells increased the susceptibility of partially exhausted T cells to PD-1/PD-L1-mediated inhibition in vitro as well as in vivo. In conclusion, chronically stimulated CD8(+) T cells become sensitive to PD-1/PD-L1-mediated functional inhibition upon low antigen detection; a setting which is likely involved during tumor-immune escape.
Collapse
Affiliation(s)
- Andrew D Kaiser
- Division of Immunology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
502
|
Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O'Donnell E, Neuberg D, Shipp MA. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 2012; 18:1611-8. [PMID: 22271878 DOI: 10.1158/1078-0432.ccr-11-1942] [Citation(s) in RCA: 554] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Programmed cell death ligand 1 (PD-L1) is a molecule expressed on antigen-presenting cells that engages the PD-1 receptor on T cells and inhibits T-cell receptor signaling. The PD-1 axis can be exploited by tumor cells to dampen host antitumor immune responses and foster tumor cell survival. PD-1 blockade has shown promise in multiple malignancies but should be directed toward patients in whom it will be most effective. In recent studies, we found that the chromosome 9p24.1 amplification increased the gene dosage of PD-L1 and its induction by JAK2 in a subset of patients with classical Hodgkin lymphoma (cHL). However, cHLs with normal 9p24.1 copy numbers also expressed detectable PD-L1, prompting analyses of additional PD-L1 regulatory mechanisms. EXPERIMENTAL DESIGN Herein, we utilized immunohistochemical, genomic, and functional analyses to define alternative mechanisms of PD-L1 activation in cHL and additional EBV(+) lymphoproliferative disorders. RESULTS We identified an AP-1-responsive enhancer in the PD-L1 gene. In cHL Reed-Sternberg cells, which exhibit constitutive AP-1 activation, the PD-L1 enhancer binds AP-1 components and increases PD-L1 promoter activity. In addition, we defined Epstein-Barr virus (EBV) infection as an alternative mechanism for PD-L1 induction in cHLs with diploid 9p24.1. PD-L1 was also expressed by EBV-transformed lymphoblastoid cell lines as a result of latent membrane protein 1-mediated, JAK/STAT-dependent promoter and AP-1-associated enhancer activity. In addition, more than 70% of EBV(+) posttransplant lymphoproliferative disorders expressed detectable PD-L1. CONCLUSIONS AP-1 signaling and EBV infection represent alternative mechanisms of PD-L1 induction and extend the spectrum of tumors in which to consider PD-1 blockade.
Collapse
|
503
|
Krönig H, Julia Falchner K, Odendahl M, Brackertz B, Conrad H, Muck D, Hein R, Blank C, Peschel C, Haller B, Schulz S, Bernhard H. PD-1 expression on Melan-A-reactive T cells increases during progression to metastatic disease. Int J Cancer 2012; 130:2327-36. [PMID: 21717461 DOI: 10.1002/ijc.26272] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
Programmed death 1 (PD-1) is known as an important factor for the development of tolerogenicity. This has been proven in chronic viral infections and different tumor models. To address the role of PD-1 and its ligand programmed death ligand 1 (PD-L1) in different stages of malignant melanoma, we investigated peripheral blood and tumor tissues in regard to overall survival (OS) and prognostic relevance. One hundred samples of peripheral blood mononuclear cells from HLA-A2(+) patients with malignant melanoma (Stages I-IV) were analyzed in seven color FACS combined with multimer analyses for the immunodominant epitope of Melan-A (peptide A2/Melan-A(p26-35mod) ). Corresponding formalin-fixed paraffin-embedded tissues of primary tumor and distant organ metastases from 37 cases were analyzed by immunohistochemistry for Melan-A, PD-L1 and PD-1 expression. Compared to the total CD8(+) T cell population, PD-1 expression by A2/Melan-A(+) CD8(+) T cells was over-represented in melanoma stages III and IV (p < 0.001). Although elevation of PD-1(+) Melan-A(+) CD8(+) T cells had no significant influence on OS, a positive correlation was observed between PD-L1 expression on melanoma cells and OS (p = 0.05). Correlation of advanced tumor stage with increased A2/Melan-A-multimer(+) PD-1(+) T cells in the peripheral blood suggest that blocking of PD-1 could have therapeutic potential in advanced stage melanoma.
Collapse
Affiliation(s)
- Holger Krönig
- Department of Hematology, Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Gary R, Voelkl S, Palmisano R, Ullrich E, Bosch JJ, Mackensen A. Antigen-Specific Transfer of Functional Programmed Death Ligand 1 from Human APCs onto CD8+ T Cells via Trogocytosis. THE JOURNAL OF IMMUNOLOGY 2011; 188:744-52. [DOI: 10.4049/jimmunol.1101412] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
505
|
ABE-MUKUMOTO S, MORI T, HINO R, SAKABE JI, FUKAMACHI S, BITO T, NAKAMURA M, KABASHIMA K, TOKURA Y. Molecular mapping of lymph node metastases by real-time reverse transcription polymerase chain reaction in two melanoma patients. J Dermatol 2011; 38:1202-5. [DOI: 10.1111/j.1346-8138.2011.01204.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
506
|
Leibovici J, Itzhaki O, Huszar M, Sinai J. The tumor microenvironment: part 1. Immunotherapy 2011; 3:1367-84. [DOI: 10.2217/imt.11.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For years the mutated, highly proliferating neoplastic cells were presented as the only important agent in tumors; however, during the last 3–4 decades it has become clear that the microenvironment of the cancer cells plays a determinative role in the malignant evolution of neoplasia. Cancers are in fact heterogeneous entities containing, in addition to the neoplastic cell component, cells derived of multiple lineages (fibroblasts, endothelial cells lining blood and lymphatic vessels, pericytes, adipocytes and immune system cells belonging to both innate and adaptive responses), as well as the extracellular matrix, with a large variety of soluble molecules of biological importance, constituting a complex organ-like structure. The tumor microenvironment consists in a tissue that may have a predictive significance for tumor behavior and response to therapy.
Collapse
Affiliation(s)
| | - Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Monica Huszar
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Judith Sinai
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| |
Collapse
|
507
|
Abstract
T cell exhaustion develops under conditions of antigen-persistence caused by infection with various chronic pathogens, such as human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB), or by the development of cancer. T cell exhaustion is characterized by stepwise and progressive loss of T cell function, which is probably the main reason for the failed immunological control of chronic pathogens and cancers. Recent observations have detailed some of the intrinsic and extrinsic factors that influence the severity of T cell exhaustion. Duration and magnitude of antigenic activation of T cells might be associated with up-regulation of inhibitory receptors, which is a major intrinsic factor of T cell exhaustion. Extrinsic factors might include the production of suppressive cytokines, T cell priming by either non-professional antigen-presenting cells (APCs) or tolerogenic dendritic cells (DCs), and alteration of regulatory T (Treg) cells. Further investigation of the cellular and molecular processes behind the development of T cell exhaustion can reveal therapeutic targets and strategies for the treatment of chronic infections and cancers. Here, we report the properties and the mechanisms of T cell exhaustion in a chronic environment.
Collapse
Affiliation(s)
- Hyun-Tak Jin
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
508
|
Abstract
High-dose interleukin-2 (IL-2) and interferon were the most commonly administered therapies before the recent introduction of targeted agents, including vascular endothelial growth factor and mammalian target of rapamycin pathway inhibitors. Although the new agents result in a progression-free survival benefit, high-dose IL-2 remains the only agent with proven efficacy in producing durable complete and partial responses in patients with metastatic renal cell carcinoma (RCC). Furthermore, although the use of single-agent interferon has decreased significantly since the introduction of targeted therapy, it remains in the frontline setting in combination with bevacizumab as a result of 2 large phase III trials. Lastly, improved understanding of immune regulation has led to the advancement of targeted immunotherapy using immune checkpoint inhibitors that have shown promising activity and are moving forward in clinical development. This article focuses on the current status of immunotherapy in the management of metastatic RCC.
Collapse
Affiliation(s)
- Saby George
- Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | |
Collapse
|
509
|
Norde WJ, Maas F, Hobo W, Korman A, Quigley M, Kester MGD, Hebeda K, Falkenburg JHF, Schaap N, de Witte TM, van der Voort R, Dolstra H. PD-1/PD-L1 interactions contribute to functional T-cell impairment in patients who relapse with cancer after allogeneic stem cell transplantation. Cancer Res 2011; 71:5111-22. [PMID: 21659460 DOI: 10.1158/0008-5472.can-11-0108] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor relapses remain a serious problem after allogeneic stem cell transplantation (alloSCT), despite the long-term persistence of minor histocompatibility antigen (MiHA)-specific memory CD8(+) T cells specific for the tumor. We hypothesized that these memory T cells may lose their function over time in transplanted patients. Here, we offer functional and mechanistic support for this hypothesis, based on immune inhibition by programmed death-1 (PD-1) expressed on MiHA-specific CD8(+) T cells and the associated role of the PD-1 ligand PD-L1 on myeloid leukemia cells, especially under inflammatory conditions. PD-L1 was highly upregulated on immature human leukemic progenitor cells, whereas costimulatory molecules such as CD80 and CD86 were not expressed. Thus, immature leukemic progenitor cells seemed to evade the immune system by inhibiting T-cell function via the PD-1/PD-L1 pathway. Blocking PD-1 signaling using human antibodies led to elevated proliferation and IFN-γ production of MiHA-specific T cells cocultured with PD-L1-expressing leukemia cells. Moreover, patients with relapsed leukemia after initial MiHA-specific T-cell responses displayed high PD-L1 expression on CD34(+) leukemia cells and increased PD-1 levels on MiHA-specific CD8(+) T cells. Importantly, blocking PD-1/PD-L1 interactions augment proliferation of MiHA-specific CD8(+) memory T cells from relapsed patients. Taken together, our findings indicate that the PD-1/PD-L pathway can be hijacked as an immune escape mechanism in hematological malignancies. Furthermore, they suggest that blocking the PD-1 immune checkpoint offers an appealing immunotherapeutic strategy following alloSCT in patients with recurrent or relapsed disease.
Collapse
Affiliation(s)
- Wieger J Norde
- Departments of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
510
|
Sierro SR, Donda A, Perret R, Guillaume P, Yagita H, Levy F, Romero P. Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity. Eur J Immunol 2011; 41:2217-28. [DOI: 10.1002/eji.201041235] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/14/2011] [Accepted: 04/27/2011] [Indexed: 11/08/2022]
|
511
|
Abstract
PURPOSE OF REVIEW Melanoma therapy has recently seen significant progress, with several new drugs in phase II/III trials showing promising results. In this review, we discuss the most promising immunotherapies either already established or being developed, concentrating on agents for which there are high-level data to support or refute their role in treating this disease. This topic is timely, given the lengthy list of immune checkpoint inhibitors and vaccine formulations in development for melanoma. RECENT FINDINGS The discovery of immune checkpoint proteins like CTLA-4, PD-1 and CD40 and the development of antibodies and small molecules that either inhibit or promote their activity has lent a huge impetus to the immunotherapy of melanoma. The development of vaccines that include agonists of various immune signaling like the MAGE-3 ASCI has also revived the field of cancer vaccines. Melanoma is the 'poster child' for immunotherapy of cancer, since a recent randomized phase III trial showed a survival benefit for immunotherapy. SUMMARY The burgeoning field of immunotherapy for melanoma has important implications for clinicians, and for the novel paradigms of treatment and response assessment that immunotherapies will promote. The unique side-effect profile for immune checkpoint inhibitors will be a challenge but new skills for dealing with them in community based practice will be learned. The concept that physicians might see late regression, or progression followed by regression will cause a sea-change in the way patients are treated, since treating beyond progression may be suitable in some cases using immunotherapy.
Collapse
|
512
|
Quandt D, Fiedler E, Boettcher D, Marsch WC, Seliger B. B7-h4 expression in human melanoma: its association with patients' survival and antitumor immune response. Clin Cancer Res 2011; 17:3100-11. [PMID: 21378130 DOI: 10.1158/1078-0432.ccr-10-2268] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancers have developed a number of strategies to escape immune responses including the differential expression of costimulatory molecules of the B7 family. B7-H3 and B7-H4 have recently been described in different tumor entities but the relevance for melanoma has not yet been studied so far. EXPERIMENTAL DESIGN Using immunohistochemistry, B7-H3 and B7-H4 expression was studied on 29 melanoma lesions. Survival curves and log-rank tests were used to test the association of protein expression with survival. Cell lines were evaluated for B7-H3 and B7-H4 expression by PCR and flow cytometry. Functional T-cell-tumor coculture assays were carried out with in vitro generated tumor transfectants. RESULTS B7-H3 and B7-H4 expression was detected in primary tumor lesions (29 of 29 and 28 of 29) and in metastases (28 of 29 and 26 of 29). The numbers of CD68(+) macrophages were significantly lower in patients with low B7-H4 expression, whereas CD8(+) T-cell infiltrates were independent of expression levels. Furthermore, a survival benefit for patients with B7-H4 low expressing melanoma was found, whereas B7-H3 was not associated with any clinical parameter. All 23 melanoma cell lines analyzed expressed B7-H3 and B7-H4 mRNA and protein, but B7-H4 was restricted to intracellular compartments. On silencing of B7-H3 by specific shRNA tumor-associated antigen-specific T cell responses were unaltered. Overexpression of B7-H4 on melanoma cells did not alter the cytotoxicity of different CD8(+) effector cells, but drastically inhibited cytokine production. CONCLUSIONS Our study provides for the first time evidence of B7-H4 expression on melanoma cells as a mechanism controlling tumor immunity which is associated with patients' survival.
Collapse
Affiliation(s)
- Dagmar Quandt
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany
| | | | | | | | | |
Collapse
|
513
|
Progressive upregulation of PD-1 in primary and metastatic melanomas associated with blunted TCR signaling in infiltrating T lymphocytes. J Invest Dermatol 2011; 131:1300-7. [PMID: 21346771 DOI: 10.1038/jid.2011.30] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Programmed death-1 (PD-1) is involved in T-cell tolerance to self-antigens. For some cancers, it has been suggested that the expression of a ligand of PD-1, namely PD-L1, could contribute to tumor escape from immune destruction. Nevertheless, the relationship between PD-1 expression on tumor-infiltrating T lymphocytes (TILs), disease stage, and TIL responsiveness is still poorly documented. In this study, we show that freshly isolated CD4(+) and CD8(+) TILs express substantial levels of PD-1 in primary melanomas. The expression of PD-1 was further increased at later stages in distant cutaneous metastases, especially on CD8(+) TILs. The expression of PD-1 ligands was frequent only in metastases, on both tumor cells and tumor-derived myeloid cells. TILs isolated from these cutaneous tumors are poorly reactive ex vivo, with blunted calcium response and IFN-γ production after TCR stimulation. Surprisingly, in distinct parts of a primary melanoma, either invasive or regressing, we show that TILs similarly express PD-1 and remain dysfunctional. The expressions of PD-1 and PD-L1 in metastatic melanoma lesions could be considered as witnesses of an unsuccessful anti-tumoral immune response, but the direct involvement of PD-1 in the severity of the disease, and the importance of TILs in tumor regression, remain to be established.
Collapse
|
514
|
Abstract
For the last two decades the immunotherapy of patients with solid and hematopoietic tumors has met with variable success. We have reviewed the field of tumor vaccines to examine what has worked and what has not, why this has been the case, how the anti-tumor responses were examined, and how we can make tumor immunity successful for the majority of individuals rather than for the exceptional patients who currently show successful immune responses against their tumors.
Collapse
Affiliation(s)
- Jan Joseph Melenhorst
- Stem Cell Allogeneic Transplant Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
515
|
Gadiot J, Hooijkaas AI, Kaiser ADM, van Tinteren H, van Boven H, Blank C. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer 2010; 117:2192-201. [DOI: 10.1002/cncr.25747] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 12/31/2022]
|
516
|
Program death 1 (PD1) haplotyping in patients with breast carcinoma. Mol Biol Rep 2010; 38:4205-10. [PMID: 21113674 DOI: 10.1007/s11033-010-0542-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/16/2010] [Indexed: 01/14/2023]
Abstract
Located on chromosome 2q37.3, the programmed death 1 (PD1) gene encodes for PD-1 (also known as CD279), a negative co-stimulator in the immune system. PD-1 renders potent inhibitory effects on T and B lymphocytes as well as monocyte responses. Expression of PD-1 ligands by tumor cells has been reported to contribute in immune system evasion. We aimed, in current study, to investigate the association of two single nucleotide polymorphisms in PD1 gene, +7146 G to A (PD-1.3) and +7785 C to T (PD-1.5 or +872), with susceptibility and/or progression of breast carcinoma. Four hundred forty-three women with breast cancer and 328 age-sex match healthy donors were recruited in present study. Genotyping was performed using Nested polymerase chain reaction-restriction fragment length polymorphisms. Arlequin software package was used to check for the Hardy-Weinberg equilibration and to determine the haplotypes. Results revealed no significant differences in the frequencies of genotypes and alleles at PD-1.3 (P=0.252 and 0.279 for genotypes and alleles, respectively) and PD-1.5 positions (P=0.522 and 0.278 for genotypes and alleles, respectively). Four haplotypes were observed among populations with no differences in the frequency between patients and controls. Our results also revealed no association between PD1 genotypes and tumor stage, tumor size, tumor grade, lymph node involvement, vascular invasion, distant metastasis, and Nottingham prognostic index. Present data do not confirm association of PD-1.3 (+7146) G/A and PD-1.5 (+7785 or +872) C/T genetic markers with susceptibility of Iranians to breast cancer.
Collapse
|
517
|
Speeckaert R, van Geel N, Vermaelen KV, Lambert J, Van Gele M, Speeckaert MM, Brochez L. Immune reactions in benign and malignant melanocytic lesions: lessons for immunotherapy. Pigment Cell Melanoma Res 2010; 24:334-44. [DOI: 10.1111/j.1755-148x.2010.00799.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
518
|
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010; 116:3268-77. [PMID: 20628145 DOI: 10.1182/blood-2010-05-282780] [Citation(s) in RCA: 981] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) and mediastinal large B-cell lymphoma (MLBCL) are lymphoid malignancies with certain shared clinical, histologic, and molecular features. Primary cHLs and MLBCLs include variable numbers of malignant cells within an inflammatory infiltrate, suggesting that these tumors escape immune surveillance. Herein, we integrate high-resolution copy number data with transcriptional profiles and identify the immunoregulatory genes, PD-L1 and PD-L2, as key targets at the 9p24.1 amplification peak in HL and MLBCL cell lines. We extend these findings to laser-capture microdissected primary Hodgkin Reed-Sternberg cells and primary MLBCLs and find that programmed cell death-1 (PD-1) ligand/9p24.1 amplification is restricted to nodular sclerosing HL, the cHL subtype most closely related to MLBCL. Using quantitative immunohistochemical methods, we document the association between 9p24.1 copy number and PD-1 ligand expression in primary tumors. In cHL and MLBCL, the extended 9p24.1 amplification region also included the Janus kinase 2 (JAK2) locus. Of note, JAK2 amplification increased protein expression and activity, specifically induced PD-1 ligand transcription and enhanced sensitivity to JAK2 inhibition. Therefore, 9p24.1 amplification is a disease-specific structural alteration that increases both the gene dosage of PD-1 ligands and their induction by JAK2, defining the PD-1 pathway and JAK2 as complementary rational therapeutic targets.
Collapse
|
519
|
Cholinergic urticaria: studies on the muscarinic cholinergic receptor M3 in anhidrotic and hypohidrotic skin. J Invest Dermatol 2010; 130:2683-6. [PMID: 20613776 DOI: 10.1038/jid.2010.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
520
|
Abstract
During the past decade, new insights into the mechanisms by which T-cell activation and proliferation are regulated have led to the identification of checkpoint proteins that either up- or down-modulate T-cell reactivity. In the presence of active malignancy, pathophysiologic inhibition of T-cell activity may predominate over stimulation. A number of antibodies have been generated that can block inhibitory checkpoint proteins or promote the activity of activating molecules. In murine models, their use alone or with a vaccine strategy has resulted in regression of poorly immunogenic tumors and cures of established tumors. The prototypical immune regulatory antibodies are those directed against cytotoxic T-lymphocyte antigen-4, a molecule present on activated T cells. In this review, the preclinical rationale and clinical experience with 2 anticytotoxic T-lymphocyte antigen-4 antibodies are extensively discussed, demonstrating that abrogation of an immune inhibitory molecule can result in significant regression of tumors and long-lasting responses. The unique kinetics of antitumor response and the characteristic immune-related side effects of ipilimumab are also discussed. This clinical efficacy of this promising antitumor agent has been evaluated in 2 randomized phase III trials, whose results are eagerly awaited. Programmed death (PD)-1 is another immune inhibitory molecule against which an abrogating human antibody has been prepared. Initial preclinical testing with anti-PD-1 and anti-PD-L1 has shown encouraging results. Stimulatory molecules such as CD40, 41-BB, and OX-40 are also targets for antibody binding and activation, not blockade, and early dose ranging trials with antibodies against all 3 have shown that they can mediate regression of tumors, albeit with their own spectrum of side effects that are different from those that occur with abrogation of immune inhibition.
Collapse
Affiliation(s)
- Jedd D. Wolchok
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Arvin S. Yang
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jeffrey S. Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
521
|
|
522
|
Abstract
Programmed cell death-1 (PD-1) is a member of the CD28 superfamily that delivers negative signals upon interaction with its two ligands, PD-L1 or PD-L2. PD-1 and its ligands are broadly expressed and exert a wider range of immunoregulatory roles in T cells activation and tolerance compared with other CD28 members. Subsequent studies show that PD-1-PD-L interaction regulates the induction and maintenance of peripheral tolerance and protect tissues from autoimmune attack. PD-1 and its ligands are also involved in attenuating infectious immunity and tumor immunity, and facilitating chronic infection and tumor progression. The biological significance of PD-1 and its ligand suggests the therapeutic potential of manipulation of PD-1 pathway against various human diseases. In this review, we summarize our current understanding of PD-1 and its ligands ranging from discovery to clinical significance.
Collapse
|