501
|
Hock AK, Vousden KH. The role of ubiquitin modification in the regulation of p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:137-49. [DOI: 10.1016/j.bbamcr.2013.05.022] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/16/2013] [Accepted: 05/23/2013] [Indexed: 01/09/2023]
|
502
|
Bensaad K, Harris AL. Hypoxia and metabolism in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:1-39. [PMID: 24272352 DOI: 10.1007/978-1-4614-5915-6_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interest in targeting metabolism has been renewed in recent years as research increases understanding of the altered metabolic profile of tumor cells compared with that of normal cells. Metabolic reprogramming allows cancer cells to survive and proliferate in the hostile tumor microenvironment. These metabolic changes support energy generation, anabolic processes, and the maintenance of redox potential, mechanisms that are all essential for the proliferation and survival of tumor cells. The metabolic switch in a number of key metabolic pathways is mainly regulated by genetic events, rendering cancer cells addicted to certain nutrients, such as glutamine. In addition, hypoxia is induced when highly proliferative tumor cells distance themselves from an oxygen supply. Hypoxia-inducible factor 1α is largely responsible for alterations in metabolism that support the survival of hypoxic tumor cells. Metabolic alterations and dependencies of cancer cells may be exploited to improve anticancer therapy. This chapter reviews the main aspects of altered metabolism in cancer cells, emphasizing recent advances in glucose, glutamine, and lipid metabolism.
Collapse
Affiliation(s)
- Karim Bensaad
- CRUK Hypoxia and Angiogenesis Group, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK,
| | | |
Collapse
|
503
|
Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett 2013; 356:197-203. [PMID: 24374014 DOI: 10.1016/j.canlet.2013.12.025] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
Tumor-suppressor p53 plays a key role in tumor prevention. As a transcription factor, p53 transcriptionally regulates its target genes to initiate different biological processes in response to stress, including apoptosis, cell cycle arrest or senescence, to exert its function in tumor suppression. Recent studies have revealed that metabolic regulation is a novel function of p53. Metabolic changes have been regarded as a hallmark of tumors and a key contributor to tumor development. p53 regulates many different aspects of metabolism, including glycolysis, mitochondrial oxidative phosphorylation, pentose phosphate pathway, fatty acid synthesis and oxidation, to maintain the homeostasis of cellular metabolism, which contributes to the role of p53 in tumor suppression. p53 is frequently mutated in human tumors. In addition to loss of tumor suppressive function, tumor-associated mutant p53 proteins often gain new tumorigenic activities, termed gain-of-function of mutant p53. Recent studies have shown that mutant p53 mediates metabolic changes in tumors as a novel gain-of-function to promote tumor development. Here we review the functions and mechanisms of wild-type and mutant p53 in metabolic regulation, and discuss their potential roles in tumorigenesis.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA; Department of Pediatrics, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
504
|
Lacroix M, Linares LK, Le Cam L. Rôle du suppresseur de tumeurs p53 dans le contrôle du métabolisme. Med Sci (Paris) 2013; 29:1125-30. [DOI: 10.1051/medsci/20132912016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
505
|
Jiang P, Du W, Yang X. A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle 2013; 12:3720-6. [PMID: 24270845 DOI: 10.4161/cc.27267] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pentose phosphate pathway (PPP) provides ribose and NADPH that support biosynthesis and antioxidant defense. Our recent findings suggest that the p53-related protein TAp73 enhances the PPP flux. TAp73 stimulates the expression of glucose-6-phophate dehydrogenase (G6PD), the rate-limiting enzymes of the PPP. Through this regulation, TAp73 promotes the accumulation of macromolecules and increases cellular capability to withstand oxidative stresses. TAp73 also regulates other metabolic enzymes, and the relative importance of these targets in TAp73-mediated cell growth is not well understood. Here we show that, like in other cell lines, TAp73 is required for supporting proliferation and maintaining the expression of G6PD in the human lung cancer H1299 cells. Restoration of G6PD expression almost fully rescues the defects in cell growth caused by TAp73 knockdown, suggesting that G6PD is the major proliferative target of TAp73 in these cells. G6PD expression is elevated in various tumors, correlating with the upregulation of TAp73. These results indicate that TAp73 may function as an oncogene, and that G6PD is likely a focal point of regulation in oncogenic growth.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Cancer Biology and Abramson Family Cancer Research Institute; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Wenjing Du
- Department of Cancer Biology and Abramson Family Cancer Research Institute; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
506
|
Abstract
SIGNIFICANCE We herein review recent advances on the role exerted by protein redox machines engaged in tumor progression, focusing on cell adhesion and migration, regulation of transcriptional response, and tumor metabolic reprogramming, all features belonging to the new hallmarks of cancer. RECENT ADVANCES Several recent insights have reported that oxidative stress, either due to intracellular sources of oxidants, which are frequently deregulated in cancers or to microenvironment factors as hypoxia or stromal cell contact, plays a key role in tumor malignancy, as well as in metabolic pathways control. Indeed, many proteins behave as sensors of intracellular oxidative stress, including protein tyrosine kinases and phosphatases, transcription factors as p53, forkhead box class-Os, nuclear respiratory factor-2, nuclear factor-kB, hypoxia inducible factor, enzymes involved in glycolysis or penthose phosphate pathway as pyruvate kinase-M2 and adenylate monophosphate kinase, or DNA repair enzymes as Ataxia Teleangectasia Mutated. All these proteins have been reported to play essential roles during cancer progression and their sensitivity to oxidative stress has added new levels of complexity to the cancer field. CRITICAL ISSUES Main significant issues that need to be addressed in redox cancer biology are (i) sensitivity to a different level of oxidative stress of sensors, that is, they can respond to different oxidative insults/signals, and (ii) the real susceptibility of cancer cells to redox-based therapies due to the acknowledged plasticity of cancer cells to develop adoptive strategies. FUTURE DIRECTIONS Definitely, redox machines have the potentiality to develop into novel biomarkers and related target therapies should attain the goal of personalized medicine in the fight against cancer.
Collapse
Affiliation(s)
- Matteo Parri
- 1 Department of Biochemical Science, University of Florence , Florence, Italy
| | | |
Collapse
|
507
|
Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 2013; 4:584-99. [PMID: 23603840 PMCID: PMC3720606 DOI: 10.18632/oncotarget.965] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that V600EBRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to V600EBRAF. Finally, the senescence response associated with inhibition of V600EBRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation.
Collapse
|
508
|
Jiang P, Du W, Yang X. p53 and regulation of tumor metabolism. J Carcinog 2013; 12:21. [PMID: 24379735 PMCID: PMC3869960 DOI: 10.4103/1477-3163.122760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/28/2013] [Indexed: 01/28/2023] Open
Abstract
The tumor suppressor p53 plays a pre-eminent role in protecting against cancer, through its ability to sense various stresses and in turn invoke anti-proliferative and repair responses. Emerging evidence suggest that p53 is both a central sentinel for metabolic stresses and a master regulator of metabolic fluxes. This newly identified function of p53, along with the ability of p53 to induce senescence, appears to be crucial for the prevention of oncogenic transformation. A better understanding of the reciprocal regulation of p53 and metabolism, as well as p53-mediated connection between metabolism and senescence, may lead to the identification of valuable targets for tumor therapy.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Wenjing Du
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Xiaolu Yang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
509
|
Abstract
The function of p53 is best understood in response to genotoxic stress, but increasing evidence suggests that p53 also plays a key role in the regulation of metabolic homeostasis. p53 and its family members directly influence various metabolic pathways, enabling cells to respond to metabolic stress. These functions are likely to be important for restraining the development of cancer but could also have a profound effect on the development of metabolic diseases, including diabetes. A better understanding of the metabolic functions of p53 family members may aid in the identification of therapeutic targets and reveal novel uses for p53-modulating drugs.
Collapse
|
510
|
Abstract
The transcription factor p73, a close relative of p53, has complex yet poorly understood roles in tumorigenesis. TAp73, a p73 variant, has now been shown to promote cancer cell proliferation by regulating glucose metabolism to control cellular biosynthetic pathways and antioxidant capacity.
Collapse
|
511
|
Abstract
Malignant cells exhibit metabolic changes, when compared to their normal counterparts, owing to both genetic and epigenetic alterations. Although such a metabolic rewiring has recently been indicated as yet another general hallmark of cancer, accumulating evidence suggests that the metabolic alterations of each neoplasm represent a molecular signature that intimately accompanies and allows for different facets of malignant transformation. During the past decade, targeting cancer metabolism has emerged as a promising strategy for the development of selective antineoplastic agents. Here, we discuss the intimate relationship between metabolism and malignancy, focusing on strategies through which this central aspect of tumour biology might be turned into cancer's Achilles heel.
Collapse
|
512
|
Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells. Toxicol Lett 2013; 224:114-20. [PMID: 24120424 DOI: 10.1016/j.toxlet.2013.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 01/22/2023]
Abstract
Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.
Collapse
|
513
|
Reid MA, Kong M. Dealing with hunger: Metabolic stress responses in tumors. J Carcinog 2013; 12:17. [PMID: 24227992 PMCID: PMC3816312 DOI: 10.4103/1477-3163.119111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/06/2013] [Indexed: 12/20/2022] Open
Abstract
Increased nutrient uptake and usage is a hallmark of many human malignancies. During the course of tumorigenesis, cancer cells often outstrip their local nutrient supply leading to periods of nutrient deprivation. Interestingly, cancer cells often develop strategies to adapt and survive these challenging conditions. Accordingly, understanding these processes is critical for developing therapies that target cancer metabolism. Exciting new progress has been made in elucidating the mechanisms used by cancer cells under nutrient restricted conditions. In this review, we highlight recent studies that have brought insight into how cancer cells deal with low nutrient environments.
Collapse
Affiliation(s)
- Michael A Reid
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, CA 91010, USA
| | | |
Collapse
|
514
|
Stanley IA, Ribeiro SM, Giménez-Cassina A, Norberg E, Danial NN. Changing appetites: the adaptive advantages of fuel choice. Trends Cell Biol 2013; 24:118-27. [PMID: 24018218 DOI: 10.1016/j.tcb.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 01/02/2023]
Abstract
Cells are capable of metabolizing a variety of carbon substrates, including glucose, fatty acids, ketone bodies, and amino acids. Cellular fuel choice not only fulfills specific biosynthetic needs, but also enables programmatic adaptations to stress conditions beyond compensating for changes in nutrient availability. Emerging evidence indicates that specific switches from utilization of one substrate to another can have protective or permissive roles in disease pathogenesis. Understanding the molecular determinants of cellular fuel preference may provide insights into the homeostatic control of stress responses, and unveil therapeutic targets. Here, we highlight overarching themes encompassing cellular fuel choice; its link to cell fate and function; its advantages in stress protection; and its contribution to metabolic dependencies and maladaptations in pathological conditions.
Collapse
Affiliation(s)
- Illana A Stanley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sofia M Ribeiro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Alfredo Giménez-Cassina
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Erik Norberg
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
515
|
D’Alessandro A, Marrocco C, Rinalducci S, Peschiaroli A, Timperio AM, Bongiorno-Borbone L, Finazzi Agrò A, Melino G, Zolla L. Analysis of TAp73-Dependent Signaling via Omics Technologies. J Proteome Res 2013; 12:4207-20. [DOI: 10.1021/pr4005508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angelo D’Alessandro
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Cristina Marrocco
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | | | - Anna Maria Timperio
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Finazzi Agrò
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Medical Research Council, Toxicology
Unit, Hodgkin Building, Leicester University, Lancaster Road, P.O. Box 138, Leicester LE1 9HN, U.K
| | - Lello Zolla
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| |
Collapse
|
516
|
Yang Y, Lane AN, Ricketts CJ, Sourbier C, Wei MH, Shuch B, Pike L, Wu M, Rouault TA, Boros LG, Fan TWM, Linehan WM. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma. PLoS One 2013; 8:e72179. [PMID: 23967283 PMCID: PMC3744468 DOI: 10.1371/journal.pone.0072179] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 07/07/2013] [Indexed: 12/28/2022] Open
Abstract
Fumarate hydratase (FH)-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP) that either generate NADPH (oxidative) or do not (non-oxidative), we utilized [U-13C]-glucose, [U-13C,15N]-glutamine, and [1,2- 13C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α–ketoglutarate through to fumarate. [1,2- 13C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66%) that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid synthesis for rapid proliferation and is essential for defense against increased oxidative stress. This increased NADPH producing PPP activity was shown to be a strong consistent feature in both fumarate hydratase deficient tumors and cell line models.
Collapse
Affiliation(s)
- Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew N. Lane
- J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, Kentucky, United States of America
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ming-Hui Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian Shuch
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lisa Pike
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - Min Wu
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - Tracey A. Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institutes of Child Health and Development, Bethesda, Maryland, United States of America
| | - Laszlo G. Boros
- SIDMAP LLC, Los Angeles, California, United States of America
- University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Teresa W.-M. Fan
- J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, Kentucky, United States of America
- Department of Chemistry, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (WML); (TWMF)
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (WML); (TWMF)
| |
Collapse
|
517
|
Gallagher EJ, LeRoith D. Epidemiology and molecular mechanisms tying obesity, diabetes, and the metabolic syndrome with cancer. Diabetes Care 2013; 36 Suppl 2:S233-9. [PMID: 23882051 PMCID: PMC3920794 DOI: 10.2337/dcs13-2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
518
|
Franck D, Tracy L, Armata HL, Delaney CL, Jung DY, Ko HJ, Ong H, Kim JK, Scrable H, Sluss HK. Glucose Tolerance in Mice is Linked to the Dose of the p53 Transactivation Domain. Endocr Res 2013; 38:139-150. [PMID: 23102272 PMCID: PMC5074905 DOI: 10.3109/07435800.2012.735735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To test the transactivation domain-mediated control of glucose homeostasis by the tumor suppressor p53. BACKGROUND The tumor suppressor p53 has a critical role in maintenance of glucose homeostasis. Phosphorylation of Ser18 in the transaction domain of p53 controls the expression of Zpf385a, a zinc finger protein that regulates adipogenesis and adipose function. This results suggest that the transactivation domain of p53 is essential to the control of glucose homeostasis. MATERIALS AND METHODS Mice with mutations in the p53 transactivation domain were examined for glucose homeostasis as well as various metabolic parameters. Glucose tolerance and insulin tolerance tests were performed on age matched wild type and mutant animals. In addition, mice expressing increased dosage of p53 were also examined. RESULTS Mice with a mutation in p53Ser18 exhibit reduced Zpf385a expression in adipose tissue, adipose tissue-specific insulin resistance, and glucose intolerance. Mice with relative deficits in the transactivation domain of p53 exhibit similar defects in glucose homeostasis, while "Super p53" mice with an increased dosage of p53 exhibit improved glucose tolerance. CONCLUSION These data support the role of an ATM-p53 cellular stress axis that helps combat glucose intolerance and insulin resistance and regulates glucose homeostasis.
Collapse
Affiliation(s)
- Debra Franck
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Department of Biology, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Laura Tracy
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Department of Biology, Worcester Polytechnic Institute, Worcester, MA 01609 USA
| | - Heather L. Armata
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Christine L. Delaney
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Hwi Jin Ko
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Helena Ong
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jason K. Kim
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | | | - Hayla K. Sluss
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Corresponding author: Hayla K. Sluss, Department of Medicine, LRB 370W, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01655 USA, Phone: (508) 856-3372,
| |
Collapse
|
519
|
Hu J, Liu Z, Wang X. Does TP53 mutation promote ovarian cancer metastasis to omentum by regulating lipid metabolism? Med Hypotheses 2013; 81:515-20. [PMID: 23880140 DOI: 10.1016/j.mehy.2013.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/29/2013] [Accepted: 06/17/2013] [Indexed: 01/30/2023]
Abstract
TP53 (Tumor Protein 53, previously known as p53) is probably the best known of all tumor suppressor genes, and is mutated in nearly all (96%) high-grade serous ovarian cancer (HGS-OvCa), which is the most common histopathological type of epithelial ovarian cancer (EOC). Recently, TP53 is found to involve in regulating cell metabolic pathways besides its classical tumor suppressive functions. In addition, emerging evidence suggests that mutant TP53 is associated with cancer metastasis. Through summarizing and comparing the roles of wild-type TP53 and mutant TP53 in the progression of various types of cancer, we hypothesize that mutant TP53 in HGS-OvCa cells interacts with sterol regulatory element-binding proteins (SREBPs) and guanidinoacetate N-methyltransferase (GAMT), leading to increased gene expression of key enzymes involved in fatty acids (FAs) and cholesterol biosynthesis and the inhibition of fatty acid oxidation (FAO), thus promotes lipid anabolism to accelerate tumor growth and progression. Elevated platelet number in patients' tumor microenvironment results in increased TGF-β production. Then, TGF-β acts in concert with mutant TP53 to promote HGS-OvCa metastasis by assembling a mutant-TP53/p63/Smads protein complex, in which p63's functions as metastasis suppressor are antagonized, and by enhancing the activities of the Slug/Snail and Twist families to drive induce EMT-like transition. Then adipocyte-derived IL-8 facilitates the metastasis of transformative cancer cells to abdominal adipose tissue (e.g., omentum). Once metastasis is established, mutant TP53 together with adipocyte-derived IL-8 upregulates Fatty acid-binding protein 4 (FABP4) expression and then promotes FAs absorption from adipocytes to support rapid tumor growth in adipocyte-rich metastatic environments. In summary, these indicate that mutant TP53 may play determinant roles in the progression of HGS-OvCa.
Collapse
Affiliation(s)
- Jing Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
520
|
Louwen F, Yuan J. Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 2013; 4:958-71. [PMID: 23948487 PMCID: PMC3759674 DOI: 10.18632/oncotarget.1096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023] Open
Abstract
Polo-like kinase 1, a pivotal regulator of mitosis and cytokinesis, is highly expressed in a broad spectrum of tumors and its expression correlates often with poor prognosis, suggesting its potential as a therapeutic target. p53, the guardian of the genome, is the most important tumor suppressor. In this review, we address the intertwined relationship of these two key molecules by fighting each other as eternal rivals in many signaling pathways. p53 represses the promoter of Polo-like kinase 1, whereas Polo-like kinase 1 inhibits p53 and its family members p63 and p73 in cancer cells lacking functional p53. Plk1 inhibitors target all rapidly dividing cells irrespective of tumor cells or non-transformed normal but proliferating cells. Upon treatment with Plk1 inhibitors, p53 in tumor cells is activated and induces strong apoptosis, whereas tumor cells with inactive p53 arrest in mitosis with DNA damage. Thus, inactive p53 is not associated with a susceptible cytotoxicity of Polo-like kinase 1 inhibition and could rather foster the induction of polyploidy/aneuploidy in surviving cells. In addition, compared to the mono-treatment, combination of Polo-like kinase 1 inhibition with anti-mitotic or DNA damaging agents boosts more severe mitotic defects, effectually triggers apoptosis and strongly inhibits proliferation of cancer cells with functional p53. In this regard, restoration of p53 in tumor cells with loss or mutation of p53 will reinforce the cytotoxicity of combined Polo-like kinase 1 therapy and provide a proficient strategy for combating relapse and metastasis of cancer.
Collapse
Affiliation(s)
- Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
521
|
TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013; 15:991-1000. [PMID: 23811687 PMCID: PMC3733810 DOI: 10.1038/ncb2789] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/16/2013] [Indexed: 12/12/2022]
Abstract
TAp73 is a structural homologue of the pre-eminent tumor suppressor p53. However, unlike p53, TAp73 is rarely mutated, and instead is frequently over-expressed in human tumors. It remains unclear whether TAp73 affords an advantage to tumor cells and if so, what is the underlying mechanism. Here we show that TAp73 supports the proliferation of human and mouse tumor cells. TAp73 activates the expression of the glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP). By stimulating G6PD, TAp73 increases PPP flux and directs glucose to the production of NADPH and ribose, for the synthesis of macromolecules and detoxification of reactive oxygen species (ROS). The growth defect of TAp73-deficient cells can be rescued by either enforced G6PD expression or the presence of nucleosides plus an ROS scavenger. These findings establish a critical role for TAp73 in regulating metabolism, and connect TAp73 and the PPP to oncogenic cell growth.
Collapse
|
522
|
Vermeersch KA, Styczynski MP. Applications of metabolomics in cancer research. J Carcinog 2013; 12:9. [PMID: 23858297 PMCID: PMC3709411 DOI: 10.4103/1477-3163.113622] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/12/2013] [Indexed: 11/30/2022] Open
Abstract
The first discovery of metabolic changes in cancer occurred almost a century ago. While the genetic underpinnings of cancer have dominated its study since then, altered metabolism has recently been acknowledged as a key hallmark of cancer and metabolism-focused research has received renewed attention. The emerging field of metabolomics – which attempts to profile all metabolites within a cell or biological system – is now being used to analyze cancer metabolism on a system-wide scale, painting a broad picture of the altered pathways and their interactions with each other. While a large fraction of cancer metabolomics research is focused on finding diagnostic biomarkers, metabolomics is also being used to obtain more fundamental mechanistic insight into cancer and carcinogenesis. Applications of metabolomics are also emerging in areas such as tumor staging and assessment of treatment efficacy. This review summarizes contributions that metabolomics has made in cancer research and presents the current challenges and potential future directions within the field.
Collapse
Affiliation(s)
- Kathleen A Vermeersch
- School of Chemical & Biomolecular Engineering and Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA 30332-0100, USA
| | | |
Collapse
|
523
|
Bao Y, Mukai K, Hishiki T, Kubo A, Ohmura M, Sugiura Y, Matsuura T, Nagahata Y, Hayakawa N, Yamamoto T, Fukuda R, Saya H, Suematsu M, Minamishima YA. Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo. Mol Cancer Res 2013; 11:973-85. [PMID: 23741060 DOI: 10.1158/1541-7786.mcr-12-0669-t] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Activation of aerobic glycolysis in cancer cells is well known as the Warburg effect, although its relation to cell- cycle progression remains unknown. In this study, human colon cancer cells were labeled with a cell-cycle phase-dependent fluorescent marker Fucci to distinguish cells in G1-phase and those in S + G2/M phases. Fucci-labeled cells served as splenic xenograft transplants in super-immunodeficient NOG mice and exhibited multiple metastases in the livers, frozen sections of which were analyzed by semiquantitative microscopic imaging mass spectrometry. Results showed that cells in G1-phase exhibited higher concentrations of ATP, NADH, and UDP-N-acetylglucosamine than those in S and G2-M phases, suggesting accelerated glycolysis in G1-phase cells in vivo. Quantitative determination of metabolites in cells synchronized in S, G2-M, and G1 phases suggested that efflux of lactate was elevated significantly in G1-phase. By contrast, ATP production in G2-M was highly dependent on mitochondrial respiration, whereas cells in S-phase mostly exhibited an intermediary energy metabolism between G1 and G2-M phases. Isogenic cells carrying a p53-null mutation appeared more active in glycolysis throughout the cell cycle than wild-type cells. Thus, as the cell cycle progressed from G2-M to G1 phases, the dependency of energy production on glycolysis was increased while the mitochondrial energy production was reciprocally decreased. IMPLICATIONS These results shed light on distinct features of the phase-specific phenotypes of metabolic systems in cancer cells.
Collapse
Affiliation(s)
- Yan Bao
- Department of Biochemistry, School of Medicine, Keio University, and Leader, JST ERATO Suematsu Gas Biology Project, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
524
|
Ruan HB, Singh JP, Li MD, Wu J, Yang X. Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 2013; 24:301-9. [PMID: 23647930 PMCID: PMC3783028 DOI: 10.1016/j.tem.2013.02.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/16/2013] [Accepted: 02/17/2013] [Indexed: 12/15/2022]
Abstract
Nuclear, cytoplasmic, and mitochondrial proteins are extensively modified by O-linked β-N-acetylglucosamine (O-GlcNAc) moieties. This sugar modification regulates fundamental cellular processes in response to diverse nutritional and hormonal cues. The enzymes O-GlcNAc transferase (OGT) and O-linked β-N-acetylglucosaminase (O-GlcNAcase) mediate the addition and removal of O-GlcNAc, respectively. Aberrant O-GlcNAcylation has been implicated in a plethora of human diseases, including diabetes, cancer, aging, cardiovascular disease, and neurodegenerative disease. Because metabolic dysregulation is a vital component of these diseases, unraveling the roles of O-GlcNAc in metabolism is of emerging importance. Here, we review the current understanding of the functions of O-GlcNAc in cell signaling and gene transcription involved in metabolism, and focus on its relevance to diabetes, cancer, circadian rhythm, and mitochondrial function.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Min-Dian Li
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- School of Life Science and Technology, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, U.S.A
| |
Collapse
|
525
|
Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Dis 2013; 4:e639. [PMID: 23703384 PMCID: PMC3674370 DOI: 10.1038/cddis.2013.163] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor cell tolerance to nutrient deprivation can be an important factor for tumor progression, and may depend on deregulation of both oncogenes and oncosuppressor proteins. Homeodomain-interacting protein kinase 2 (HIPK2) is an oncosuppressor that, following its activation by several cellular stress, induces cancer cell death via p53-dependent or -independent pathways. Here, we used genetically matched human RKO colon cancer cells harboring wt-HIPK2 (HIPK2+/+) or stable HIPK2 siRNA interference (siHIPK2) to investigate in vitro whether HIPK2 influenced cell death in glucose restriction. We found that glucose starvation induced cell death, mainly due to c-Jun NH2-terminal kinase activation, in HIPK2+/+cells compared with siHIPK2 cells that did not die. 1H-nuclear magnetic resonance quantitative metabolic analyses showed a marked glycolytic activation in siHIPK2 cells. However, treatment with glycolysis inhibitor 2-deoxy-𝒟-glucose induced cell death only in HIPK2+/+ cells but not in siHIPK2 cells. Similarly, siGlut-1 interference did not re-establish siHIPK2 cell death under glucose restriction, whereas marked cell death was reached only after zinc supplementation, a condition known to reactivate misfolded p53 and inhibit the pseudohypoxic phenotype in this setting. Further siHIPK2 cell death was reached with zinc in combination with autophagy inhibitor. We propose that the metabolic changes acquired by cells after HIPK2 silencing may contribute to induce resistance to cell death in glucose restriction condition, and therefore be directly relevant for tumor progression. Moreover, elimination of such a tolerance might serve as a new strategy for cancer therapy.
Collapse
|
526
|
Hu T, Zhang C, Tang Q, Su Y, Li B, Chen L, Zhang Z, Cai T, Zhu Y. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model. BMC Cancer 2013; 13:251. [PMID: 23693134 PMCID: PMC3765728 DOI: 10.1186/1471-2407-13-251] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 05/07/2013] [Indexed: 01/10/2023] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD), elevated in tumor cells, catalyzes the first reaction in the pentose-phosphate pathway. The regulation mechanism of G6PD and pathological change in human melanoma growth remains unknown. Methods HEM (human epidermal melanocyte) cells and human melanoma cells with the wild-type G6PD gene (A375-WT), G6PD deficiency (A375-G6PD∆), G6PD cDNA overexpression (A375-G6PD∆-G6PD-WT), and mutant G6PD cDNA (A375-G6PD∆-G6PD-G487A) were subcutaneously injected into 5 groups of nude mice. Expressions of G6PD, STAT3, STAT5, cell cycle-related proteins, and apoptotic proteins as well as mechanistic exploration of STAT3/STAT5 were determined by quantitative real-time PCR (qRT-PCR), immunohistochemistry and western blot. Results Delayed formation and slowed growth were apparent in A375-G6PD∆ cells, compared to A375-WT cells. Significantly decreased G6PD expression and activity were observed in tumor tissues induced by A375-G6PD∆, along with down-regulated cell cycle proteins cyclin D1, cyclin E, p53, and S100A4. Apoptosis-inhibited factors Bcl-2 and Bcl-xl were up-regulated; however, apoptosis factor Fas was down-regulated, compared to A375-WT cells. Moderate protein expressions were observed in A375-G6PD∆-G6PD-WT and A375-G6PD∆-G6PD-G487A cells. Conclusions G6PD may regulate apoptosis and expression of cell cycle-related proteins through phosphorylation of transcription factors STAT3 and STAT5, thus mediating formation and growth of human melanoma cells. Further study will, however, be required to determine potential clinical applications.
Collapse
Affiliation(s)
- Tao Hu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650031, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Ranaweera RS, Yang X. Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity. J Biol Chem 2013; 288:18939-46. [PMID: 23671280 DOI: 10.1074/jbc.m113.454470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes.
Collapse
Affiliation(s)
- Ruchira S Ranaweera
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
528
|
Vadlakonda L, Pasupuleti M, Pallu R. Role of PI3K-AKT-mTOR and Wnt Signaling Pathways in Transition of G1-S Phase of Cell Cycle in Cancer Cells. Front Oncol 2013; 3:85. [PMID: 23596569 PMCID: PMC3624606 DOI: 10.3389/fonc.2013.00085] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/31/2013] [Indexed: 01/09/2023] Open
Abstract
The PI3K-Akt pathway together with one of its downstream targets, the mechanistic target of rapamycin (mTOR; also known as the mammalian target of rapamycin) is a highly deregulated pathway in cancers. mTOR exists in two complexes, mTORC1 and mTORC2. Akt phosphorylated at T308 inhibits TSC1/2 complex to activate mTORC1; mTORC2 is recognized as the kinase phosphorylating Akt at S473. Inhibition of autophagy by mTORC1 was shown to rescue disheveled (Dvl) leading to activation of Wnt pathway. Cyclin D1 and the c-Myc are activated by the Wnt signaling. Cyclin D1 is a key player in initiation of cell cycle. c-Myc triggers metabolic reprograming in G1 phase of cell cycle, which also activates the transcription factors like FoxO and p53 that play key roles in promoting the progression of cell cycle. While the role of p53 in cancer cell metabolism in arresting glycolysis and inhibition of pentose phosphate pathway has come to be recognized, there are confusions in the literature on the role of FoxO and that of rictor. FoxO was shown to be the transcription factor of rictor, in addition to the cell cycle inhibitors like p21. Rictor has dual roles; inhibition of c-Myc and constitution of mTORC2, both of which are key factors in the exit of G1-S phase and entry into G2 phase of cell cycle. A model is presented in this article, which suggests that the PI3K-Akt-mTOR and Wnt pathways converge and regulate the progression of cell cycle through G0-G1-S-phases and reprogram the metabolism in cancer cells. This model is different from the conventional method of looking at individual pathways triggering the cell cycle.
Collapse
|
529
|
Aberrant lipid metabolism: an emerging diagnostic and therapeutic target in ovarian cancer. Int J Mol Sci 2013; 14:7742-56. [PMID: 23574936 PMCID: PMC3645713 DOI: 10.3390/ijms14047742] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer remains the most lethal gynaecological cancer. A better understanding of the molecular pathogenesis of ovarian cancer is of critical importance to develop early detection tests and identify new therapeutic targets that would increase survival. Cancer cells depend on de novo lipid synthesis for the generation of fatty acids to meet the energy requirements for increased tumour growth. There is increasing evidence that lipid metabolism is deregulated in cancers, including ovarian cancer. The increased expression and activity of lipogenic enzymes is largely responsible for increased lipid synthesis, which is regulated by metabolic and oncogenic signalling pathways. This article reviews the latest knowledge on lipid metabolism and the alterations in the expression of lipogenic enzymes and downstream signalling pathways in ovarian cancer. Current developments for exploiting lipids as biomarkers for the detection of early stage ovarian cancer and therapeutic targets are discussed. Current research targeting lipogenic enzymes and lipids to increase the cytotoxicity of chemotherapy drugs is also highlighted.
Collapse
|
530
|
Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell 2013; 49:388-98. [PMID: 23395269 DOI: 10.1016/j.molcel.2013.01.018] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022]
Abstract
Metabolism impacts all cellular functions and plays a fundamental role in biology. In the last century, our knowledge of metabolic pathway architecture and the genomic landscape of disease has increased exponentially. Combined with these insights, advances in analytical methods for quantifying metabolites and systems approaches to analyze these data now provide powerful tools to study metabolic regulation. Here we review the diverse mechanisms cells use to adapt metabolism to specific physiological states and discuss how metabolic flux analyses can be applied to identify important regulatory nodes to understand normal and pathological cell physiology.
Collapse
Affiliation(s)
- Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
531
|
Noguchi T, Dawn A, Yoshihara D, Tsuchiya Y, Yamamoto T, Shinkai S. Selective detection of NADPH among four pyridine-nucleotide cofactors by a fluorescent probe based on aggregation-induced emission. Macromol Rapid Commun 2013; 34:779-84. [PMID: 23495077 DOI: 10.1002/marc.201300015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 01/01/2023]
Abstract
A fluorescent sensor based on guanidinium-tethered tetraphenylethene (TPE) has been investigated toward the differentiation of pyridine nucleotide cofactors (NAD(+) , NADH, NADP(+) , and NADPH). TPE selectively recognizes NADPH possessing the higher tetra-anionic net-charge, resulting in the steep "turn-on" fluorescence increase. The comparative aggregation behaviors and fluorescence response studies of TPE on the four cofactors reveal that the critical aggregate concentration of TPE against NADPH correlates directly with the concentration threshold for the fluorescence response. These results establish that TPE can selectively differentiate NADPH over the other three cofactors by the steep aggregation-induced fluorescence response accompanied by the high signal-to-background contrast.
Collapse
Affiliation(s)
- Takao Noguchi
- Institute for Advanced Study, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | |
Collapse
|
532
|
Abstract
Emerging evidence suggests that the ability of p53 to regulate metabolism is important for its tumor suppressor activity. A recent study published in Nature reveals a novel connection between p53 and metabolism: p53 transcriptionally represses the expression of malic enzymes and associated NADPH production, which in turn triggers a positive feedback loop resulting in sustained p53 activation, cellular senescence, and tumor suppression.
Collapse
|
533
|
Preuss J, Richardson AD, Pinkerton A, Hedrick M, Sergienko E, Rahlfs S, Becker K, Bode L. Identification and characterization of novel human glucose-6-phosphate dehydrogenase inhibitors. JOURNAL OF BIOMOLECULAR SCREENING 2013; 18:286-97. [PMID: 23023104 DOI: 10.1177/1087057112462131] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the key enzyme of the pentose phosphate pathway, converting glucose-6-phosphate to 6-phosphoglucono-δ-lactone with parallel reduction of NADP(+). Several human diseases, including cancer, are associated with increased G6PD activity. To date, only a few G6PD inhibitors have been available. However, adverse side effects and high IC(50) values hamper their use as therapeutics and basic research probes. In this study, we developed a high-throughput screening assay to identify novel human G6PD (hG6PD) inhibitors. Screening the LOPAC (Sigma-Aldrich; 1280 compounds), Spectrum (Microsource Discovery System; 1969 compounds), and DIVERSet (ChemBridge; 49 971 compounds) small-molecule compound collections revealed 139 compounds that presented ≥50% hG6PD inhibition. Hit compounds were further included in a secondary and orthogonal assay in order to identify false-positives and to determine IC(50) values. The most potent hG6PD inhibitors presented IC(50) values of <4 µM. Compared with the known hG6PD inhibitors dehydroepiandrosterone and 6-aminonicotinamide, the inhibitors identified in this study were 100- to 1000-fold more potent and showed different mechanisms of enzyme inhibition. One of the newly identified hG6PD inhibitors reduced viability of the mammary carcinoma cell line MCF10-AT1 (IC(50) ~25 µM) more strongly than that of normal MCF10-A cells (IC(50) >50 µM).
Collapse
|
534
|
Liang Y, Liu J, Feng Z. The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 2013; 3:9. [PMID: 23388203 PMCID: PMC3573943 DOI: 10.1186/2045-3701-3-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/06/2012] [Indexed: 02/04/2023] Open
Abstract
As a hallmark of tumor cells, metabolic alterations play a critical role in tumor development and could be targeted for tumor therapy. Tumor suppressor p53 plays a central role in tumor prevention. As a transcription factor, p53 mainly exerts its function in tumor suppression through its transcriptional regulation of its target genes to initiate various cellular responses. Cell cycle arrest, apoptosis and senescence are most well-understood functions of p53, and are traditionally accepted as the major mechanisms for p53 in tumor suppression. Recent studies have revealed a novel function of p53 in regulation of cellular metabolism. p53 regulates mitochondrial oxidative phosphorylation, glycolysis, glutamine metabolism, lipid metabolism, and antioxidant defense. Through the regulation of these metabolic processes, p53 maintains the homeostasis of cellular metabolism and redox balance in cells, which contributes significantly to the role of p53 as a tumor suppressor. Further understanding of the role and molecular mechanism of p53 in cellular metabolism could lead to the identification of novel targets and development of novel strategies for tumor therapy.
Collapse
Affiliation(s)
- Yingjian Liang
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Juan Liu
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Zhaohui Feng
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| |
Collapse
|
535
|
Tang J, Agrawal T, Cheng Q, Qu L, Brewer MD, Chen J, Yang X. Phosphorylation of Daxx by ATM contributes to DNA damage-induced p53 activation. PLoS One 2013; 8:e55813. [PMID: 23405218 PMCID: PMC3566025 DOI: 10.1371/journal.pone.0055813] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022] Open
Abstract
p53 plays a central role in tumor suppression. It does so by inducing anti-proliferative processes as a response to various tumor-promoting stresses. p53 is regulated by the ubiquitin ligase Mdm2. The optimal function of Mdm2 requires Daxx, which stabilizes Mdm2 through the deubiquitinase Hausp/USP7 and also directly promotes Mdm2’s ubiquitin ligase activity towards p53. The Daxx-Mdm2 interaction is disrupted upon DNA damage. However, both the mechanisms and the consequence of the Daxx-Mdm2 dissociation are not understood. Here we show that upon DNA damage Daxx is phosphorylated in a manner that is dependent on ATM, a member of the PI 3-kinase family that orchestrates the DNA damage response. The main phosphorylation site of Daxx is identified to be Ser564, which is a direct target of ATM. Phosphorylation of endogenous Daxx at Ser564 occurs rapidly during the DNA damage response and precedes p53 activation. Blockage of this phosphorylation event prevents the separation of Daxx from Mdm2, stabilizes Mdm2, and inhibits DNA damage-induced p53 activation. These results suggest that phosphorylation of Daxx by ATM upon DNA damage disrupts the Daxx-Mdm2 interaction and facilitates p53 activation.
Collapse
Affiliation(s)
- Jun Tang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Trisha Agrawal
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Qian Cheng
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Like Qu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael D. Brewer
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jiandong Chen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
536
|
Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab 2013; 1:8. [PMID: 24280138 PMCID: PMC4178209 DOI: 10.1186/2049-3002-1-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023] Open
Abstract
The increased glucose metabolism in cancer cells is required to fulfill their high energetic and biosynthetic demands. Changes in the metabolic activity of cancer cells are caused by the activation of oncogenes or loss of tumor suppressors. They can also be part of the metabolic adaptations to the conditions imposed by the tumor microenvironment, such as the hypoxia response. Among the metabolic enzymes that are modulated by these factors are the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases (PFKFBs), a family of bifunctional enzymes that control the levels of fructose 2,6-bisphosphate (Fru-2,6-P2). This metabolite is important for the dynamic regulation of glycolytic flux by allosterically activating the rate-limiting enzyme of glycolysis phosphofructokinase-1 (PFK-1). Therapeutic strategies designed to alter the levels of this metabolite are likely to interfere with the metabolic balance of cancer cells, and could lead to a reduction in cancer cell proliferation, invasiveness and survival. This article will review our current understanding of the role of PFKFB proteins in the control of cancer metabolism and discuss the emerging interest in these enzymes as potential targets for the development of antineoplastic agents.
Collapse
Affiliation(s)
- Susana Ros
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | | |
Collapse
|
537
|
Goldstein I, Yizhak K, Madar S, Goldfinger N, Ruppin E, Rotter V. p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production. Cancer Metab 2013; 1:9. [PMID: 24280180 PMCID: PMC4178212 DOI: 10.1186/2049-3002-1-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/05/2012] [Indexed: 01/16/2023] Open
Abstract
Background The p53 tumor suppressor protein is a transcription factor that initiates transcriptional programs aimed at inhibiting carcinogenesis. p53 represses metabolic pathways that support tumor development (such as glycolysis and the pentose phosphate pathway (PPP)) and enhances metabolic pathways that are considered counter-tumorigenic such as fatty acid oxidation. Findings In an attempt to comprehensively define metabolic pathways regulated by p53, we performed two consecutive high-throughput analyses in human liver-derived cells with varying p53 statuses. A gene expression microarray screen followed by constraint-based modeling (CBM) predicting metabolic changes imposed by the transcriptomic changes suggested a role for p53 in enhancing gluconeogenesis (de novo synthesis of glucose). Examining glucogenic gene expression revealed a p53-dependent induction of genes involved in both gluconeogenesis (G6PC, PCK2) and in supplying glucogenic precursors (glycerol kinase (GK), aquaporin 3 (AQP3), aquaporin 9 (AQP9) and glutamic-oxaloacetic transaminase 1 (GOT1)). Accordingly, p53 augmented hepatic glucose production (HGP) in both human liver cells and primary mouse hepatocytes. Conclusions These findings portray p53 as a novel regulator of glucose production. By facilitating glucose export, p53 may prevent it from being shunted to pro-cancerous pathways such as glycolysis and the PPP. Thus, our findings suggest a metabolic pathway through which p53 may inhibit tumorigenesis.
Collapse
Affiliation(s)
- Ido Goldstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| | | | | | | | | | | |
Collapse
|
538
|
Natter K, Kohlwein SD. Yeast and cancer cells - common principles in lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:314-26. [PMID: 22989772 PMCID: PMC3549488 DOI: 10.1016/j.bbalip.2012.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 12/15/2022]
Abstract
One of the paradigms in cancer pathogenesis is the requirement of a cell to undergo transformation from respiration to aerobic glycolysis - the Warburg effect - to become malignant. The demands of a rapidly proliferating cell for carbon metabolites for the synthesis of biomass, energy and redox equivalents, are fundamentally different from the requirements of a differentiated, quiescent cell, but it remains open whether this metabolic switch is a cause or a consequence of malignant transformation. One of the major requirements is the synthesis of lipids for membrane formation to allow for cell proliferation, cell cycle progression and cytokinesis. Enzymes involved in lipid metabolism were indeed found to play a major role in cancer cell proliferation, and most of these enzymes are conserved in the yeast, Saccharomyces cerevisiae. Most notably, cancer cell physiology and metabolic fluxes are very similar to those in the fermenting and rapidly proliferating yeast. Both types of cells display highly active pathways for the synthesis of fatty acids and their incorporation into complex lipids, and imbalances in synthesis or turnover of lipids affect growth and viability of both yeast and cancer cells. Thus, understanding lipid metabolism in S. cerevisiae during cell cycle progression and cell proliferation may complement recent efforts to understand the importance and fundamental regulatory mechanisms of these pathways in cancer.
Collapse
Affiliation(s)
- Klaus Natter
- University of Graz, Institute of Molecular Biosciences, Lipidomics Research Center Graz, Humboldtstrasse 50/II, 8010 Graz,
| | | |
Collapse
|
539
|
Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 2013; 138:255-71. [PMID: 23356980 DOI: 10.1016/j.pharmthera.2013.01.011] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023]
Abstract
Cell proliferation is an essential mechanism for growth, development and regeneration of eukaryotic organisms; however, it is also the cause of one of the most devastating diseases of our era: cancer. Given the relevance of the processes in which cell proliferation is involved, its regulation is of paramount importance for multicellular organisms. Cell division is orchestrated by a complex network of interactions between proteins, metabolism and microenvironment including several signaling pathways and mechanisms of control aiming to enable cell proliferation only in response to specific stimuli and under adequate conditions. Three main players have been identified in the coordinated variation of the many molecules that play a role in cell cycle: i) The cell cycle protein machinery including cyclin-dependent kinases (CDK)-cyclin complexes and related kinases, ii) The metabolic enzymes and related metabolites and iii) The reactive-oxygen species (ROS) and cellular redox status. The role of these key players and the interaction between oscillatory and non-oscillatory species have proved essential for driving the cell cycle. Moreover, cancer development has been associated to defects in all of them. Here, we provide an overview on the role of CDK-cyclin complexes, metabolic adaptations and oxidative stress in regulating progression through each cell cycle phase and transitions between them. Thus, new approaches for the design of innovative cancer therapies targeting crosstalk between cell cycle simultaneous events are proposed.
Collapse
Affiliation(s)
- Santiago Diaz-Moralli
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
540
|
Wu S, Kasim V, Kano MR, Tanaka S, Ohba S, Miura Y, Miyata K, Liu X, Matsuhashi A, Chung UI, Yang L, Kataoka K, Nishiyama N, Miyagishi M. Transcription factor YY1 contributes to tumor growth by stabilizing hypoxia factor HIF-1α in a p53-independent manner. Cancer Res 2013; 73:1787-99. [PMID: 23328582 DOI: 10.1158/0008-5472.can-12-0366] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to hypoxic stress, hypoxia-inducible factor (HIF)-1α is a critical transcription factor regulating fundamental cellular processes, and its elevated expression level and activity are associated with poor outcomes in most malignancies. The transcription factor Yin Yang 1 (YY1) is an important negative regulator of the tumor suppressor factor p53. However, the role of YY1 under tumor hypoxic condition is poorly understood. Herein, we show that inhibition of YY1 reduced the accumulation of HIF-1α and its activity under hypoxic condition, and consequently downregulated the expression of HIF-1α target genes. Interestingly, our results revealed that the downregulation of HIF-1α by inhibiting YY1 is p53-independent. Functionally, the in vivo experiments revealed that inhibition of YY1 significantly suppressed growth of metastatic cancer cells and lung colonization and also attenuated angiogenesis in a p53-null tumor. Collectively, our findings unraveled a novel mechanism by which YY1 inhibition disrupts hypoxia-stimulated HIF-1α stabilization in a p53-independent manner. Therefore, YY1 inhibition could be considered as a potential tumor therapeutic strategy to give consistent clinical outcomes independent of p53 status.
Collapse
Affiliation(s)
- Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
541
|
Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013; 493:689-93. [PMID: 23334421 PMCID: PMC3561500 DOI: 10.1038/nature11776] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022]
Abstract
Cellular senescence both protects multicellular organisms from cancer and contributes to their aging1. The preeminent tumor suppressor p53 plays an important role in the induction and maintenance of senescence, but how p53 carries out this function remains poorly understood1–3. Additionally, while increasing evidence supports the notion that metabolic changes underlie many cell fate decisions and p53-mediated tumor suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a novel mechanism by which p53 links the functions. We show that p53 represses the expression of the tricarboxylic acid cycle (TCA cycle)-associated malic enzyme 1 (ME1) and malic enzyme 2 (ME2). Both MEs are important for NADPH production, lipogenesis, and glutamine metabolism, with ME2 having a more profound effect. Through inhibiting MEs, p53 regulates cell metabolism and proliferation. Down-regulation of ME1 and ME2 reciprocally activates p53 through distinct Mdm2 and AMPK-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Down-regulation of ME1 and ME2 also modulates the outcome of p53 activation leading to strong induction of senescence, but not apoptosis, while enforced expression of either ME suppresses senescence. Our findings define physiological functions of MEs, demonstrate a positive feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.
Collapse
|
542
|
Holyoak T, Zhang B, Deng J, Tang Q, Prasannan CB, Fenton AW. Energetic coupling between an oxidizable cysteine and the phosphorylatable N-terminus of human liver pyruvate kinase. Biochemistry 2013; 52:466-76. [PMID: 23270483 DOI: 10.1021/bi301341r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During our efforts to characterize the regulatory properties of human liver pyruvate kinase (L-PYK), we have noted that the affinity of the protein for phosphoenolpyruvate (PEP) becomes reduced several days after cell lysis. A 1.8 Å crystallographic structure of L-PYK with the S12D mimic of phosphorylation indicates that Cys436 is oxidized, the first potential insight into explaining the effect of "aging". Interestingly, the oxidation is only to sulfenic acid despite the crystal growth time period of 2 weeks. Mutagenesis confirms that the side chain of residue 436 is energetically coupled to PEP binding. Mass spectrometry confirms that the oxidation is present in solution and is not an artifact caused by X-ray exposure. Exposure of the L-PYK mutations to H₂O₂ also confirms that PEP affinity is sensitive to the nature of the side chain at position 436. A 1.95 Å structure of the C436M mutant of L-PYK, the only mutation at position 436 that has been shown to strengthen PEP affinity, revealed that the methionine substitution results in the ordering of several N-terminal residues that have not been ordered in previous structures. This result allowed speculation that oxidation of Cys436 and phosphorylation of the N-terminus at Ser12 may function through a similar mechanism, namely the interruption of an activating interaction between the nonphosphorylated N-terminus with the nonoxidized main body of the protein. Mutant cycles were used to provide evidence that mutations of Cys436 are energetically synergistic with N-terminal modifications, a result that is consistent with phosphorylation of the N-terminus and oxidation of Cys436 functioning through mechanisms with common features. Alanine-scanning mutagenesis was used to confirm that the newly ordered N-terminal residues were important to the regulation of enzyme function by the N-terminus of the enzyme (i.e., not an artifact caused by the introduced methionine substitution) and to further define which residues in the N-terminus are energetically coupled to PEP affinity. Collectively, these studies indicate energetic coupling (and potentially mechanistic similarities) between the oxidation of Cys436 and phosphorylation of Ser12 in the N-terminus of L-PYK.
Collapse
Affiliation(s)
- Todd Holyoak
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MS 3030, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
543
|
van Horssen R, Buccione R, Willemse M, Cingir S, Wieringa B, Attanasio F. Cancer cell metabolism regulates extracellular matrix degradation by invadopodia. Eur J Cell Biol 2013; 92:113-21. [PMID: 23306026 DOI: 10.1016/j.ejcb.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022] Open
Abstract
Transformed cancer cells have an altered metabolism, characterized by a shift towards aerobic glycolysis, referred to as 'the Warburg phenotype'. A change in flux through mitochondrial OXPHOS and cytosolic pathways for ATP production and a gain of capacity for biomass production in order to sustain the needs for altered growth and morphodynamics are typically involved in this global rewiring of cancer cell metabolism. Characteristically, these changes in metabolism are accompanied by enhanced uptake of nutrients like glucose and glutamine. Here we focus on the relationship between cell metabolism and cell dynamics, in particular the formation and function of invadopodia, specialized structures for focal degradation of the extracellular matrix. Since we recently found presence of enzymes that are active in glycolysis and associated pathways in invadopodia, we hypothesize that metabolic adaptation and invadopodia formation are linked processes. We give an overview on the background for this idea and show for the first time that extracellular matrix degradation by invadopodia can be differentially manipulated, without effects on cell proliferation, by use of metabolic inhibitors or changes in nutrient composition of cell culture media. We conclude that cell metabolism and carbohydrate availability, especially pyruvate, are involved in fuelling of invadopodia formation and activity.
Collapse
Affiliation(s)
- Remco van Horssen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
544
|
Mitsuishi Y, Motohashi H, Yamamoto M. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2012; 2:200. [PMID: 23272301 PMCID: PMC3530133 DOI: 10.3389/fonc.2012.00200] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
The Keap1–Nrf2 [Kelch-like ECH-associated protein 1–nuclear factor (erythroid-derived 2)-like 2] pathway plays a central role in the protection of cells against oxidative and xenobiotic stresses. Nrf2 is a potent transcription activator that recognizes a unique DNA sequence known as the antioxidant response element (ARE). Under normal conditions, Nrf2 binds to Keap1 in the cytoplasm, resulting in proteasomal degradation. Following exposure to electrophiles or reactive oxygen species, Nrf2 becomes stabilized, translocates into the nucleus, and activates the transcription of various cytoprotective genes. Increasing attention has been paid to the role of Nrf2 in cancer cells because the constitutive stabilization of Nrf2 has been observed in many human cancers with poor prognosis. Recent studies have shown that the antioxidant and detoxification activities of Nrf2 confer chemo- and radio-resistance to cancer cells. In this review, we provide an overview of the Keap1–Nrf2 system and discuss its role under physiological and pathological conditions, including cancers. We also introduce the results of our recent study describing Nrf2 function in the metabolism of cancer cells. Nrf2 likely confers a growth advantage to cancer cells through enhancing cytoprotection and anabolism. Finally, we discuss the possible impact of Nrf2 inhibitors on cancer therapy.
Collapse
Affiliation(s)
- Yoichiro Mitsuishi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine Sendai, Japan ; Department of Respiratory Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | | | | |
Collapse
|
545
|
[Energy metabolism pathway related genes and adaptive evolution of tumor cells]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:557-65. [PMID: 23266974 DOI: 10.3724/sp.j.1141.2012.06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The proliferation of tumor cells is an extremely energy-consuming process. However, different from normal cells, tumor cells generate energy via glycolysis even under aerobic conditions, which is one of the ten hallmarks of tumor cells. The switch of energy metabolism results in a series of physiological changes in tumor cells, including rapid generation of ATP and abundant biomass for cell proliferation, which form the basis of tumor cells to successfully adapt to their extreme microenvironment (e.g. lack of oxygen). In this review, we will introduce recent progress in studying somatic mutations on the energy metabolism related genes in tumors, with special focus on the potential factors involving in the "switch" and to decipher the genetic adaptive footprint of the "switch" from the angle of molecular evolution.
Collapse
|
546
|
Wang X, Zhao X, Gao X, Mei Y, Wu M. A new role of p53 in regulating lipid metabolism. J Mol Cell Biol 2012; 5:147-50. [PMID: 23258697 DOI: 10.1093/jmcb/mjs064] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
547
|
Blagosklonny MV. Tumor suppression by p53 without apoptosis and senescence: conundrum or rapalog-like gerosuppression? Aging (Albany NY) 2012; 4:450-5. [PMID: 22869016 PMCID: PMC3433931 DOI: 10.18632/aging.100475] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
I discuss a very obscure activity of p53, namely suppression of senescence (gerosuppression), which is also manifested as anti-hypertrophic, anti-hypermetabolic, anti-inflammatory and anti-secretory effects of p53. But can gerossuppression suppress tumors?
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
548
|
Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2012; 493:542-6. [PMID: 23242140 PMCID: PMC6485472 DOI: 10.1038/nature11743] [Citation(s) in RCA: 760] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/31/2012] [Indexed: 12/15/2022]
Abstract
Cancer cells acquire distinct metabolic adaptations to survive stress associated with tumour growth and to satisfy the anabolic demands of proliferation. The tumour suppressor protein p53 influences a range of cellular metabolic processes, including glycolysis1,2 oxidative phosphorylation3 (OXPHOS), glutaminolysis4,5 and anti-oxidant response6. In contrast to its role in promoting apoptosis during DNA damaging stress, p53 can promote cell survival during metabolic stress7, a function that may contribute not only to tumour suppression but also to non-cancer associated functions of p538. Here we show that cancer cells rapidly utilise exogenous serine and that serine deprivation triggered activation of the serine synthesis pathway (SSP) and rapidly suppressed aerobic glycolysis, resulting in increased flux to the TCA cycle. Transient p53-p21 activation and cell cycle arrest promoted cell survival efficiently channelling depleted serine stores to glutathione synthesis, preserving cellular anti-oxidant capacity. Cells lacking p53 failed to complete the response to serine depletion, resulting in oxidative stress, reduced viability and severely impaired proliferation. The role of p53 in supporting cancer cell proliferation under serine starvation was translated to an in vivo model, suggesting that serine depletion has a potential role in the treatment of p53-deficient tumours.
Collapse
Affiliation(s)
- Oliver D K Maddocks
- The Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | |
Collapse
|
549
|
Mosca E, Alfieri R, Maj C, Bevilacqua A, Canti G, Milanesi L. Computational modeling of the metabolic States regulated by the kinase akt. Front Physiol 2012. [PMID: 23181020 PMCID: PMC3502886 DOI: 10.3389/fphys.2012.00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Signal transduction and gene regulation determine a major reorganization of metabolic activities in order to support cell proliferation. Protein Kinase B (PKB), also known as Akt, participates in the PI3K/Akt/mTOR pathway, a master regulator of aerobic glycolysis and cellular biosynthesis, two activities shown by both normal and cancer proliferating cells. Not surprisingly considering its relevance for cellular metabolism, Akt/PKB is often found hyperactive in cancer cells. In the last decade, many efforts have been made to improve the understanding of the control of glucose metabolism and the identification of a therapeutic window between proliferating cancer cells and proliferating normal cells. In this context, we have modeled the link between the PI3K/Akt/mTOR pathway, glycolysis, lactic acid production, and nucleotide biosynthesis. We used a computational model to compare two metabolic states generated by two different levels of signaling through the PI3K/Akt/mTOR pathway: one of the two states represents the metabolism of a growing cancer cell characterized by aerobic glycolysis and cellular biosynthesis, while the other state represents the same metabolic network with a reduced glycolytic rate and a higher mitochondrial pyruvate metabolism. Biochemical reactions that link glycolysis and pentose phosphate pathway revealed their importance for controlling the dynamics of cancer glucose metabolism.
Collapse
Affiliation(s)
- Ettore Mosca
- Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche Segrate Milano, Italy
| | | | | | | | | | | |
Collapse
|
550
|
Abstract
Metabolic reprogramming is an integral part of tumorigenesis. Tumor suppressor p53 is a well studied transcription factor intimately linked with the control of cell cycle progression and apoptosis. Here, we discuss the emerging role of p53 in the transcriptional regulation of metabolism. This activity is a key component of p53 tumor suppression function.
Collapse
Affiliation(s)
- Nirmalya Sen
- Molecular Oncology Laboratory, National Institute of Immunology Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|