501
|
A survey of machine learning techniques for detecting and diagnosing COVID-19 from imaging. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
502
|
Desai SB, Pareek A, Lungren MP. Deep learning and its role in COVID-19 medical imaging. INTELLIGENCE-BASED MEDICINE 2020; 3:100013. [PMID: 33169117 PMCID: PMC7641591 DOI: 10.1016/j.ibmed.2020.100013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 is one of the greatest global public health challenges in history. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is estimated to have an cumulative global case-fatality rate as high as 7.2% (Onder et al., 2020) [1]. As the SARS-CoV-2 spread across the globe it catalyzed new urgency in building systems to allow rapid sharing and dissemination of data between international healthcare infrastructures and governments in a worldwide effort focused on case tracking/tracing, identifying effective therapeutic protocols, securing healthcare resources, and in drug and vaccine research. In addition to the worldwide efforts to share clinical and routine population health data, there are many large-scale efforts to collect and disseminate medical imaging data, owing to the critical role that imaging has played in diagnosis and management around the world. Given reported false negative rates of the reverse transcriptase polymerase chain reaction (RT-PCR) of up to 61% (Centers for Disease Control and Prevention, Division of Viral Diseases, 2020; Kucirka et al., 2020) [2,3], imaging can be used as an important adjunct or alternative. Furthermore, there has been a shortage of test-kits worldwide and laboratories in many testing sites have struggled to process the available tests within a reasonable time frame. Given these issues surrounding COVID-19, many groups began to explore the benefits of 'big data' processing and algorithms to assist with the diagnosis and therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Sudhen B Desai
- Section of Interventional Radiology, Texas Children's Hospital, United States
| | - Anuj Pareek
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, United States
| | - Matthew P Lungren
- Center for Artificial Intelligence in Medicine & Imaging, Stanford University, United States
| |
Collapse
|
503
|
Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, Draheim D. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. CHAOS, SOLITONS, AND FRACTALS 2020; 141:110337. [PMID: 33071481 PMCID: PMC7547637 DOI: 10.1016/j.chaos.2020.110337] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/04/2023]
Abstract
While the world has experience with many different types of infectious diseases, the current crisis related to the spread of COVID-19 has challenged epidemiologists and public health experts alike, leading to a rapid search for, and development of, new and innovative solutions to combat its spread. The transmission of this virus has infected more than 18.92 million people as of August 6, 2020, with over half a million deaths across the globe; the World Health Organization (WHO) has declared this a global pandemic. A multidisciplinary approach needs to be followed for diagnosis, treatment and tracking, especially between medical and computer sciences, so, a common ground is available to facilitate the research work at a faster pace. With this in mind, this survey paper aimed to explore and understand how and which different technological tools and techniques have been used within the context of COVID-19. The primary contribution of this paper is in its collation of the current state-of-the-art technological approaches applied to the context of COVID-19, and doing this in a holistic way, covering multiple disciplines and different perspectives. The analysis is widened by investigating Artificial Intelligence (AI) approaches for the diagnosis, anticipate infection and mortality rate by tracing contacts and targeted drug designing. Moreover, the impact of different kinds of medical data used in diagnosis, prognosis and pandemic analysis is also provided. This review paper covers both medical and technological perspectives to facilitate the virologists, AI researchers and policymakers while in combating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul 34303, Turkey
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54700, Pakistan
| | - Javaria Aftab
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
| | - Syed Attique Shah
- Department of IT, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Dirk Draheim
- Information Systems Group, Tallinn University of Technology, Akadeemia tee 15a, 12618, Tallinn, Estonia
| |
Collapse
|
504
|
Majeed T, Rashid R, Ali D, Asaad A. Issues associated with deploying CNN transfer learning to detect COVID-19 from chest X-rays. Phys Eng Sci Med 2020; 43:1289-1303. [PMID: 33025386 PMCID: PMC7537970 DOI: 10.1007/s13246-020-00934-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022]
Abstract
Covid-19 first occurred in Wuhan, China in December 2019. Subsequently, the virus spread throughout the world and as of June 2020 the total number of confirmed cases are above 4.7 million with over 315,000 deaths. Machine learning algorithms built on radiography images can be used as a decision support mechanism to aid radiologists to speed up the diagnostic process. The aim of this work is to conduct a critical analysis to investigate the applicability of convolutional neural networks (CNNs) for the purpose of COVID-19 detection in chest X-ray images and highlight the issues of using CNN directly on the whole image. To accomplish this task, we use 12-off-the-shelf CNN architectures in transfer learning mode on 3 publicly available chest X-ray databases together with proposing a shallow CNN architecture in which we train it from scratch. Chest X-ray images are fed into CNN models without any preprocessing to replicate researches used chest X-rays in this manner. Then a qualitative investigation performed to inspect the decisions made by CNNs using a technique known as class activation maps (CAM). Using CAMs, one can map the activations contributed to the decision of CNNs back to the original image to visualize the most discriminating region(s) on the input image. We conclude that CNN decisions should not be taken into consideration, despite their high classification accuracy, until clinicians can visually inspect and approve the region(s) of the input image used by CNNs that lead to its prediction.
Collapse
Affiliation(s)
- Taban Majeed
- Department of Computer Science and Information Technology, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
| | - Rasber Rashid
- Department of Software Engineering, Faculty of Engineering, Koya University, Koya KOY45, Kurdistan Region, Iraq
| | - Dashti Ali
- Independent Researcher, Toronto, ON Canada
| | - Aras Asaad
- Oxford Drug Design, Oxford Centre for Innovation, New Road, Oxford, OX1 1BY UK
| |
Collapse
|
505
|
A Survey of Deep Learning for Lung Disease Detection on Medical Images: State-of-the-Art, Taxonomy, Issues and Future Directions. J Imaging 2020; 6:jimaging6120131. [PMID: 34460528 PMCID: PMC8321202 DOI: 10.3390/jimaging6120131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The recent developments of deep learning support the identification and classification of lung diseases in medical images. Hence, numerous work on the detection of lung disease using deep learning can be found in the literature. This paper presents a survey of deep learning for lung disease detection in medical images. There has only been one survey paper published in the last five years regarding deep learning directed at lung diseases detection. However, their survey is lacking in the presentation of taxonomy and analysis of the trend of recent work. The objectives of this paper are to present a taxonomy of the state-of-the-art deep learning based lung disease detection systems, visualise the trends of recent work on the domain and identify the remaining issues and potential future directions in this domain. Ninety-eight articles published from 2016 to 2020 were considered in this survey. The taxonomy consists of seven attributes that are common in the surveyed articles: image types, features, data augmentation, types of deep learning algorithms, transfer learning, the ensemble of classifiers and types of lung diseases. The presented taxonomy could be used by other researchers to plan their research contributions and activities. The potential future direction suggested could further improve the efficiency and increase the number of deep learning aided lung disease detection applications.
Collapse
|
506
|
Zhang P, Zhong Y, Deng Y, Tang X, Li X. Drr4covid: Learning Automated COVID-19 Infection Segmentation From Digitally Reconstructed Radiographs. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:207736-207757. [PMID: 34812368 PMCID: PMC8545269 DOI: 10.1109/access.2020.3038279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 05/07/2023]
Abstract
Automated infection measurement and COVID-19 diagnosis based on Chest X-ray (CXR) imaging is important for faster examination, where infection segmentation is an essential step for assessment and quantification. However, due to the heterogeneity of X-ray imaging and the difficulty of annotating infected regions precisely, learning automated infection segmentation on CXRs remains a challenging task. We propose a novel approach, called DRR4Covid, to learn COVID-19 infection segmentation on CXRs from digitally reconstructed radiographs (DRRs). DRR4Covid consists of an infection-aware DRR generator, a segmentation network, and a domain adaptation module. Given a labeled Computed Tomography scan, the infection-aware DRR generator can produce infection-aware DRRs with pixel-level annotations of infected regions for training the segmentation network. The domain adaptation module is designed to enable the segmentation network trained on DRRs to generalize to CXRs. The statistical analyses made on experiment results have indicated that our infection-aware DRRs are significantly better than standard DRRs in learning COVID-19 infection segmentation (p < 0.05) and the domain adaptation module can improve the infection segmentation performance on CXRs significantly (p < 0.05). Without using any annotations of CXRs, our network has achieved a classification score of (Accuracy: 0.949, AUC: 0.987, F1-score: 0.947) and a segmentation score of (Accuracy: 0.956, AUC: 0.980, F1-score: 0.955) on a test set with 558 normal cases and 558 positive cases. Besides, by adjusting the strength of radiological signs of COVID-19 infection in infection-aware DRRs, we estimate the detection limit of X-ray imaging in detecting COVID-19 infection. The estimated detection limit, measured by the percent volume of the lung that is infected by COVID-19, is 19.43% ± 16.29%, and the estimated lower bound of infected voxel contribution rate for significant radiological signs of COVID-19 infection is 20.0%. Our codes are made publicly available at https://github.com/PengyiZhang/DRR4Covid.
Collapse
Affiliation(s)
- Pengyi Zhang
- School of Life Science, Beijing Institute of TechnologyBeijing100081China
- Key Laboratory of Convergence Medical Engineering System and Healthcare TechnologyMinistry of Industry and Information TechnologyBeijing100081China
| | - Yunxin Zhong
- School of Life Science, Beijing Institute of TechnologyBeijing100081China
- Key Laboratory of Convergence Medical Engineering System and Healthcare TechnologyMinistry of Industry and Information TechnologyBeijing100081China
| | - Yulin Deng
- School of Life Science, Beijing Institute of TechnologyBeijing100081China
- Key Laboratory of Convergence Medical Engineering System and Healthcare TechnologyMinistry of Industry and Information TechnologyBeijing100081China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of TechnologyBeijing100081China
- Key Laboratory of Convergence Medical Engineering System and Healthcare TechnologyMinistry of Industry and Information TechnologyBeijing100081China
| | - Xiaoqiong Li
- School of Life Science, Beijing Institute of TechnologyBeijing100081China
- Key Laboratory of Convergence Medical Engineering System and Healthcare TechnologyMinistry of Industry and Information TechnologyBeijing100081China
| |
Collapse
|
507
|
Abstract
Covid-19 is a rapidly spreading viral disease that infects not only humans, but animals are also infected because of this disease. The daily life of human beings, their health, and the economy of a country are affected due to this deadly viral disease. Covid-19 is a common spreading disease, and till now, not a single country can prepare a vaccine for COVID-19. A clinical study of COVID-19 infected patients has shown that these types of patients are mostly infected from a lung infection after coming in contact with this disease. Chest x-ray (i.e., radiography) and chest CT are a more effective imaging technique for diagnosing lunge related problems. Still, a substantial chest x-ray is a lower cost process in comparison to chest CT. Deep learning is the most successful technique of machine learning, which provides useful analysis to study a large amount of chest x-ray images that can critically impact on screening of Covid-19. In this work, we have taken the PA view of chest x-ray scans for covid-19 affected patients as well as healthy patients. After cleaning up the images and applying data augmentation, we have used deep learning-based CNN models and compared their performance. We have compared Inception V3, Xception, and ResNeXt models and examined their accuracy. To analyze the model performance, 6432 chest x-ray scans samples have been collected from the Kaggle repository, out of which 5467 were used for training and 965 for validation. In result analysis, the Xception model gives the highest accuracy (i.e., 97.97%) for detecting Chest X-rays images as compared to other models. This work only focuses on possible methods of classifying covid-19 infected patients and does not claim any medical accuracy.
Collapse
|
508
|
Canayaz M. MH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images. Biomed Signal Process Control 2020; 64:102257. [PMID: 33042210 PMCID: PMC7538100 DOI: 10.1016/j.bspc.2020.102257] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/24/2022]
Abstract
COVID-19 is a disease that causes symptoms in the lungs and causes deaths around the world. Studies are ongoing for the diagnosis and treatment of this disease, which is defined as a pandemic. Early diagnosis of this disease is important for human life. This process is progressing rapidly with diagnostic studies based on deep learning. Therefore, to contribute to this field, a deep learning-based approach that can be used for early diagnosis of the disease is proposed in our study. In this approach, a data set consisting of 3 classes of COVID19, normal and pneumonia lung X-ray images was created, with each class containing 364 images. Pre-processing was performed using the image contrast enhancement algorithm on the prepared data set and a new data set was obtained. Feature extraction was completed from this data set with deep learning models such as AlexNet, VGG19, GoogleNet, and ResNet. For the selection of the best potential features, two metaheuristic algorithms of binary particle swarm optimization and binary gray wolf optimization were used. After combining the features obtained in the feature selection of the enhancement data set, they were classified using SVM. The overall accuracy of the proposed approach was obtained as 99.38%. The results obtained by verification with two different metaheuristic algorithms proved that the approach we propose can help experts during COVID-19 diagnostic studies.
Collapse
Affiliation(s)
- Murat Canayaz
- Computer Engineering Department, Engineering Faculty, Van Yuzuncu Yil University, 65000, Van, Turkey
| |
Collapse
|
509
|
Ulhaq A, Born J, Khan A, Gomes DPS, Chakraborty S, Paul M. COVID-19 Control by Computer Vision Approaches: A Survey. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:179437-179456. [PMID: 34812357 PMCID: PMC8545281 DOI: 10.1109/access.2020.3027685] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has triggered an urgent call to contribute to the fight against an immense threat to the human population. Computer Vision, as a subfield of artificial intelligence, has enjoyed recent success in solving various complex problems in health care and has the potential to contribute to the fight of controlling COVID-19. In response to this call, computer vision researchers are putting their knowledge base at test to devise effective ways to counter COVID-19 challenge and serve the global community. New contributions are being shared with every passing day. It motivated us to review the recent work, collect information about available research resources, and an indication of future research directions. We want to make it possible for computer vision researchers to find existing and future research directions. This survey article presents a preliminary review of the literature on research community efforts against COVID-19 pandemic.
Collapse
Affiliation(s)
- Anwaar Ulhaq
- School of Computing and MathematicsCharles Sturt UniversityPort MacquarieNSW2795Australia
| | - Jannis Born
- Department for Biosystems Science and EngineeringETH Zurich4058BaselSwitzerland
| | - Asim Khan
- College of Engineering and ScienceVictoria UniversityMelbourneVIC3011Australia
| | | | - Subrata Chakraborty
- Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyNSW2007Australia
| | - Manoranjan Paul
- School of Computing and MathematicsCharles Sturt UniversityPort MacquarieNSW2795Australia
| |
Collapse
|
510
|
Sriporn K, Tsai CF, Tsai CE, Wang P. Analyzing Malaria Disease Using Effective Deep Learning Approach. Diagnostics (Basel) 2020; 10:diagnostics10100744. [PMID: 32987888 PMCID: PMC7601431 DOI: 10.3390/diagnostics10100744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Medical tools used to bolster decision-making by medical specialists who offer malaria treatment include image processing equipment and a computer-aided diagnostic system. Malaria images can be employed to identify and detect malaria using these methods, in order to monitor the symptoms of malaria patients, although there may be atypical cases that need more time for an assessment. This research used 7000 images of Xception, Inception-V3, ResNet-50, NasNetMobile, VGG-16 and AlexNet models for verification and analysis. These are prevalent models that classify the image precision and use a rotational method to improve the performance of validation and the training dataset with convolutional neural network models. Xception, using the state of the art activation function (Mish) and optimizer (Nadam), improved the effectiveness, as found by the outcomes of the convolutional neural model evaluation of these models for classifying the malaria disease from thin blood smear images. In terms of the performance, recall, accuracy, precision, and F1 measure, a combined score of 99.28% was achieved. Consequently, 10% of all non-dataset training and testing images were evaluated utilizing this pattern. Notable aspects for the improvement of a computer-aided diagnostic to produce an optimum malaria detection approach have been found, supported by a 98.86% accuracy level.
Collapse
Affiliation(s)
- Krit Sriporn
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan;
- Department of Information Technology, Suratthani Rajabhat University, Suratthani 84100, Thailand
| | - Cheng-Fa Tsai
- Department of Management Information Systems, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-08-770-3202 (ext. 7906)
| | - Chia-En Tsai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Paohsi Wang
- Department of Food and Beverage Management, Cheng Shiu University, Kaohsiung 83347, Taiwan;
| |
Collapse
|
511
|
Abstract
Deep Learning has improved multi-fold in recent years and it has been playing a great role in image classification which also includes medical imaging. Convolutional Neural Networks (CNNs) have been performing well in detecting many diseases including coronary artery disease, malaria, Alzheimer’s disease, different dental diseases, and Parkinson’s disease. Like other cases, CNN has a substantial prospect in detecting COVID-19 patients with medical images like chest X-rays and CTs. Coronavirus or COVID-19 has been declared a global pandemic by the World Health Organization (WHO). As of 8 August 2020, the total COVID-19 confirmed cases are 19.18 M and deaths are 0.716 M worldwide. Detecting Coronavirus positive patients is very important in preventing the spread of this virus. On this conquest, a CNN model is proposed to detect COVID-19 patients from chest X-ray images. Two more CNN models with different number of convolution layers and three other models based on pretrained ResNet50, VGG-16 and VGG-19 are evaluated with comparative analytical analysis. All six models are trained and validated with Dataset 1 and Dataset 2. Dataset 1 has 201 normal and 201 COVID-19 chest X-rays whereas Dataset 2 is comparatively larger with 659 normal and 295 COVID-19 chest X-ray images. The proposed model performs with an accuracy of 98.3% and a precision of 96.72% with Dataset 2. This model gives the Receiver Operating Characteristic (ROC) curve area of 0.983 and F1-score of 98.3 with Dataset 2. Moreover, this work shows a comparative analysis of how change in convolutional layers and increase in dataset affect classifying performances.
Collapse
|
512
|
Somasekar J, Pavan Kumar Visulaization P, Sharma A, Ramesh G. Machine Learning and Image Analysis Applications in the Fight against COVID-19 Pandemic: Datasets, Research Directions, Challenges and Opportunities. MATERIALS TODAY. PROCEEDINGS 2020:S2214-7853(20)37062-0. [PMID: 32983909 PMCID: PMC7508494 DOI: 10.1016/j.matpr.2020.09.352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
COVID-19 pandemic has become the most devastating disease of the current century and spread over 216 countries around the world. The disease is spreading through outbreaks despite the availability of modern sophisticated medical treatment. Machine Learning and Image Analysis research has been making great progress in many directions in the healthcare field for providing support to subsequent medical diagnosis. In this paper, we have propose three research directions with methodologies in the fight against the pandemic namely: Chest X-Ray (CXR) images classification using deep convolution neural networks with transfer learning to assist diagnosis; Patient Risk prediction of pandemic based on risk factors such as patient characteristics, comorbidities, initial symptoms, vital signs for prognosis of disease; and forecasting of disease spread & case fatality rate using deep neural networks. Further, some of the challenges, open datasets and opportunities are discussed for researchers.
Collapse
Affiliation(s)
- J Somasekar
- Department of CSE, Gopalan College of Engineering and Management, Bangalore, India
| | | | - Avinash Sharma
- Department of CSE, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - G Ramesh
- Deparment of CSE, GRIET, Bachupally, Hyderabad, Inida
| |
Collapse
|
513
|
Abstract
In December 2019, a novel virus named COVID-19 emerged in the city of Wuhan, China. In early 2020, the COVID-19 virus spread in all continents of the world except Antarctica, causing widespread infections and deaths due to its contagious characteristics and no medically proven treatment. The COVID-19 pandemic has been termed as the most consequential global crisis since the World Wars. The first line of defense against the COVID-19 spread are the non-pharmaceutical measures like social distancing and personal hygiene. The great pandemic affecting billions of lives economically and socially has motivated the scientific community to come up with solutions based on computer-aided digital technologies for diagnosis, prevention, and estimation of COVID-19. Some of these efforts focus on statistical and Artificial Intelligence-based analysis of the available data concerning COVID-19. All of these scientific efforts necessitate that the data brought to service for the analysis should be open source to promote the extension, validation, and collaboration of the work in the fight against the global pandemic. Our survey is motivated by the open source efforts that can be mainly categorized as (a) COVID-19 diagnosis from CT scans, X-ray images, and cough sounds, (b) COVID-19 case reporting, transmission estimation, and prognosis from epidemiological, demographic, and mobility data, (c) COVID-19 emotional and sentiment analysis from social media, and (d) knowledge-based discovery and semantic analysis from the collection of scholarly articles covering COVID-19. We survey and compare research works in these directions that are accompanied by open source data and code. Future research directions for data-driven COVID-19 research are also debated. We hope that the article will provide the scientific community with an initiative to start open source extensible and transparent research in the collective fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Junaid Shuja
- Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
- Department of Computer Engineering, Umm Al-Qura University, Makkah, Saudi Arabia
- Center of Innovation and Development in Artificial Intelligence, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eisa Alanazi
- Department of Computer Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Center of Innovation and Development in Artificial Intelligence, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Alasmary
- Department of Computer Engineering, Umm Al-Qura University, Makkah, Saudi Arabia
- Center of Innovation and Development in Artificial Intelligence, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alashaikh
- Computer Engineering and Networks Department, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
514
|
Chowdhury NK, Rahman MM, Kabir MA. PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images. Health Inf Sci Syst 2020; 8:27. [PMID: 32983419 PMCID: PMC7505500 DOI: 10.1007/s13755-020-00119-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic continues to severely undermine the prosperity of the global health system. To combat this pandemic, effective screening techniques for infected patients are indispensable. There is no doubt that the use of chest X-ray images for radiological assessment is one of the essential screening techniques. Some of the early studies revealed that the patient’s chest X-ray images showed abnormalities, which is natural for patients infected with COVID-19. In this paper, we proposed a parallel-dilated convolutional neural network (CNN) based COVID-19 detection system from chest X-ray images, named as Parallel-Dilated COVIDNet (PDCOVIDNet). First, the publicly available chest X-ray collection fully preloaded and enhanced, and then classified by the proposed method. Differing convolution dilation rate in a parallel form demonstrates the proof-of-principle for using PDCOVIDNet to extract radiological features for COVID-19 detection. Accordingly, we have assisted our method with two visualization methods, which are specifically designed to increase understanding of the key components associated with COVID-19 infection. Both visualization methods compute gradients for a given image category related to feature maps of the last convolutional layer to create a class-discriminative region. In our experiment, we used a total of 2905 chest X-ray images, comprising three cases (such as COVID-19, normal, and viral pneumonia), and empirical evaluations revealed that the proposed method extracted more significant features expeditiously related to suspected disease. The experimental results demonstrate that our proposed method significantly improves performance metrics: the accuracy, precision, recall and F1 scores reach \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$96.58\%$$\end{document}96.58%, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$96.58\%$$\end{document}96.58%, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$96.59\%$$\end{document}96.59% and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$96.58\%$$\end{document}96.58%, respectively, which is comparable or enhanced compared with the state-of-the-art methods. We believe that our contribution can support resistance to COVID-19, and will adopt for COVID-19 screening in AI-based systems.
Collapse
Affiliation(s)
- Nihad K Chowdhury
- Department of Computer Science and Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Md Muhtadir Rahman
- Department of Computer Science and Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Muhammad Ashad Kabir
- School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW Australia
| |
Collapse
|
515
|
Turkoglu M. COVIDetectioNet: COVID-19 diagnosis system based on X-ray images using features selected from pre-learned deep features ensemble. APPL INTELL 2020; 51:1213-1226. [PMID: 34764550 PMCID: PMC7498308 DOI: 10.1007/s10489-020-01888-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent novel coronavirus (also known as COVID-19) has rapidly spread worldwide, causing an infectious respiratory disease that has killed hundreds of thousands and infected millions. While test kits are used for diagnosis of the disease, the process takes time and the test kits are limited in their availability. However, the COVID-19 disease is also diagnosable using radiological images taken through lung X-rays. This process is known to be both faster and more reliable as a form of identification and diagnosis. In this regard, the current study proposes an expert-designed system called COVIDetectioNet model, which utilizes features selected from combination of deep features for diagnosis of COVID-19. For this purpose, a pretrained Convolutional Neural Network (CNN)-based AlexNet architecture that employed the transfer learning approach, was used. The effective features that were selected using the Relief feature selection algorithm from all layers of the architecture were then classified using the Support Vector Machine (SVM) method. To verify the validity of the model proposed, a total of 6092 X-ray images, classified as Normal (healthy), COVID-19, and Pneumonia, were obtained from a combination of public datasets. In the experimental results, an accuracy of 99.18% was achieved using the model proposed. The results demonstrate that the proposed COVIDetectioNet model achieved a superior level of success when compared to previous studies.
Collapse
Affiliation(s)
- Muammer Turkoglu
- Computer Engineering Department, Engineering Faculty, Bingol University, 12000 Bingol, Turkey
| |
Collapse
|
516
|
Zebin T, Rezvy S. COVID-19 detection and disease progression visualization: Deep learning on chest X-rays for classification and coarse localization. APPL INTELL 2020; 51:1010-1021. [PMID: 34764549 PMCID: PMC7486976 DOI: 10.1007/s10489-020-01867-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chest X-rays are playing an important role in the testing and diagnosis of COVID-19 disease in the recent pandemic. However, due to the limited amount of labelled medical images, automated classification of these images for positive and negative cases remains the biggest challenge in their reliable use in diagnosis and disease progression. We implemented a transfer learning pipeline for classifying COVID-19 chest X-ray images from two publicly available chest X-ray datasets1,2. The classifier effectively distinguishes inflammation in lungs due to COVID-19 and Pneumonia from the ones with no infection (normal). We have used multiple pre-trained convolutional backbones as the feature extractor and achieved an overall detection accuracy of 90%, 94.3%, and 96.8% for the VGG16, ResNet50, and EfficientNetB0 backbones respectively. Additionally, we trained a generative adversarial framework (a CycleGAN) to generate and augment the minority COVID-19 class in our approach. For visual explanations and interpretation purposes, we implemented a gradient class activation mapping technique to highlight the regions of the input image that are important for predictions. Additionally, these visualizations can be used to monitor the affected lung regions during disease progression and severity stages.
Collapse
Affiliation(s)
- Tahmina Zebin
- School of Computing Sciences, University of East Anglia, Norwich, UK
| | - Shahadate Rezvy
- School of Science and Technology, Middlesex University London, London, UK
| |
Collapse
|
517
|
Horry MJ, Chakraborty S, Paul M, Ulhaq A, Pradhan B, Saha M, Shukla N. COVID-19 Detection Through Transfer Learning Using Multimodal Imaging Data. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:149808-149824. [PMID: 34931154 PMCID: PMC8668160 DOI: 10.1109/access.2020.3016780] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Detecting COVID-19 early may help in devising an appropriate treatment plan and disease containment decisions. In this study, we demonstrate how transfer learning from deep learning models can be used to perform COVID-19 detection using images from three most commonly used medical imaging modes X-Ray, Ultrasound, and CT scan. The aim is to provide over-stressed medical professionals a second pair of eyes through intelligent deep learning image classification models. We identify a suitable Convolutional Neural Network (CNN) model through initial comparative study of several popular CNN models. We then optimize the selected VGG19 model for the image modalities to show how the models can be used for the highly scarce and challenging COVID-19 datasets. We highlight the challenges (including dataset size and quality) in utilizing current publicly available COVID-19 datasets for developing useful deep learning models and how it adversely impacts the trainability of complex models. We also propose an image pre-processing stage to create a trustworthy image dataset for developing and testing the deep learning models. The new approach is aimed to reduce unwanted noise from the images so that deep learning models can focus on detecting diseases with specific features from them. Our results indicate that Ultrasound images provide superior detection accuracy compared to X-Ray and CT scans. The experimental results highlight that with limited data, most of the deeper networks struggle to train well and provides less consistency over the three imaging modes we are using. The selected VGG19 model, which is then extensively tuned with appropriate parameters, performs in considerable levels of COVID-19 detection against pneumonia or normal for all three lung image modes with the precision of up to 86% for X-Ray, 100% for Ultrasound and 84% for CT scans.
Collapse
Affiliation(s)
- Michael J. Horry
- Centre for Advanced Modelling and
Geospatial Information Systems (CAMGIS), School of Information, Systems, and
Modeling, Faculty of Engineering and ITUniversity of Technology
SydneySydneyNSW2007Australia
- IBM Australia LimitedSydneyNSW2065Australia
| | - Subrata Chakraborty
- Centre for Advanced Modelling and
Geospatial Information Systems (CAMGIS), School of Information, Systems, and
Modeling, Faculty of Engineering and ITUniversity of Technology
SydneySydneyNSW2007Australia
| | - Manoranjan Paul
- Machine Vision and Digital Health (MaViDH),
School of Computing and MathematicsCharles Sturt UniversityBathurstNSW2795Australia
| | - Anwaar Ulhaq
- Machine Vision and Digital Health (MaViDH),
School of Computing and MathematicsCharles Sturt UniversityBathurstNSW2795Australia
| | - Biswajeet Pradhan
- Centre for Advanced Modelling and
Geospatial Information Systems (CAMGIS), School of Information, Systems, and
Modeling, Faculty of Engineering and ITUniversity of Technology
SydneySydneyNSW2007Australia
- Department of Energy and Mineral
Resources EngineeringSejong UniversitySeoul05006South Korea
| | - Manas Saha
- Manning Rural Referral
HospitalTareeNSW2430Australia
| | - Nagesh Shukla
- Centre for Advanced Modelling and
Geospatial Information Systems (CAMGIS), School of Information, Systems, and
Modeling, Faculty of Engineering and ITUniversity of Technology
SydneySydneyNSW2007Australia
| |
Collapse
|
518
|
Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, Shen J, Shao L. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2626-2637. [PMID: 32730213 DOI: 10.1109/tmi.2020.2996645] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.
Collapse
|
519
|
Fan DP, Zhou T, Ji GP, Zhou Y, Chen G, Fu H, Shen J, Shao L. Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2626-2637. [PMID: 32730213 DOI: 10.1101/2020.04.22.20074948] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.
Collapse
|
520
|
Ucar F, Korkmaz D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med Hypotheses 2020; 140:109761. [PMID: 32344309 PMCID: PMC7179515 DOI: 10.1016/j.mehy.2020.109761] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) outbreak has a tremendous impact on global health and the daily life of people still living in more than two hundred countries. The crucial action to gain the force in the fight of COVID-19 is to have powerful monitoring of the site forming infected patients. Most of the initial tests rely on detecting the genetic material of the coronavirus, and they have a poor detection rate with the time-consuming operation. In the ongoing process, radiological imaging is also preferred where chest X-rays are highlighted in the diagnosis. Early studies express the patients with an abnormality in chest X-rays pointing to the presence of the COVID-19. On this motivation, there are several studies cover the deep learning-based solutions to detect the COVID-19 using chest X-rays. A part of the existing studies use non-public datasets, others perform on complicated Artificial Intelligent (AI) structures. In our study, we demonstrate an AI-based structure to outperform the existing studies. The SqueezeNet that comes forward with its light network design is tuned for the COVID-19 diagnosis with Bayesian optimization additive. Fine-tuned hyperparameters and augmented dataset make the proposed network perform much better than existing network designs and to obtain a higher COVID-19 diagnosis accuracy.
Collapse
Affiliation(s)
- Ferhat Ucar
- Firat University, Faculty of Technology, Department of Electrical and Electronics Engineering, Elazig 23119, Turkey
| | - Deniz Korkmaz
- Malatya Turgut Ozal University, Faculty of Engineering and Natural Sciences, Department of Electrical Engineering, Malatya 44210, Turkey
| |
Collapse
|
521
|
Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, McLernon DJ, Andaur Navarro CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van der Horst ICC, van Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020; 369:m1328. [PMID: 32265220 PMCID: PMC7222643 DOI: 10.1136/bmj.m1328] [Citation(s) in RCA: 1723] [Impact Index Per Article: 344.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. DESIGN Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. DATA SOURCES PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. STUDY SELECTION Studies that developed or validated a multivariable covid-19 related prediction model. DATA EXTRACTION At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). RESULTS 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. CONCLUSION Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. SYSTEMATIC REVIEW REGISTRATION Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. READERS' NOTE This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.
Collapse
Affiliation(s)
- Laure Wynants
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Richard D Riley
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Georg Heinze
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marc M J Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Darren L Dahly
- HRB Clinical Research Facility, Cork, Ireland
- School of Public Health, University College Cork, Cork, Ireland
| | - Johanna A A Damen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas P A Debray
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Valentijn M T de Jong
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten De Vos
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT Stadius, KU Leuven, Leuven, Belgium
| | - Paul Dhiman
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Maria C Haller
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Ordensklinikum Linz, Hospital Elisabethinen, Department of Nephrology, Linz, Austria
| | - Michael O Harhay
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Palliative and Advanced Illness Research Center and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liesbet Henckaerts
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- Department of General Internal Medicine, KU Leuven-University Hospitals Leuven, Leuven, Belgium
| | - Pauline Heus
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael Kammer
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Nina Kreuzberger
- Evidence-Based Oncology, Department I of Internal Medicine and Centre for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Lohmann
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kim Luijken
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Jie Ma
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Glen P Martin
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David J McLernon
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Constanza L Andaur Navarro
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johannes B Reitsma
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jamie C Sergeant
- Centre for Biostatistics, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Chunhu Shi
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, University of Manchester, Manchester, UK
| | - Nicole Skoetz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Luc J M Smits
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
| | - Kym I E Snell
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Matthew Sperrin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - René Spijker
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Medical Library, Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Toshihiko Takada
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Bas van Bussel
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Florien S van Royen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan Y Verbakel
- EPI-Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Christine Wallisch
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jack Wilkinson
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten van Smeden
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|