551
|
Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2008; 1:140-52. [PMID: 18371346 DOI: 10.1016/j.stem.2007.07.017] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The forkhead O (FoxO) family of transcription factors participates in diverse physiologic processes, including induction of cell-cycle arrest, stress resistance, differentiation, apoptosis, and metabolism. Several recent studies indicate that FoxO-dependent signaling is required for long-term regenerative potential of the hematopoietic stem cell (HSC) compartment through regulation of HSC response to physiologic oxidative stress, quiescence, and survival. These observations link FoxO function in mammalian systems with the evolutionarily conserved role of FoxO in promotion of stress resistance and longevity in lower phylogenetic systems. Furthermore, these findings have implications for aging in higher organisms and in malignant stem cell biology, and suggest that FoxOs may play an important role in the maintenance and integrity of stem cell compartments in a broad spectrum of tissues.
Collapse
Affiliation(s)
- Zuzana Tothova
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
552
|
Many forkheads in the road to regulation. Symposium on forkhead transcription factor networks in development, signalling and disease. EMBO Rep 2008; 9:721-4. [PMID: 18617889 DOI: 10.1038/embor.2008.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/10/2008] [Indexed: 01/21/2023] Open
|
553
|
Dong XC, Copps KD, Guo S, Li Y, Kollipara R, DePinho RA, White MF. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 2008; 8:65-76. [PMID: 18590693 PMCID: PMC2929667 DOI: 10.1016/j.cmet.2008.06.006] [Citation(s) in RCA: 354] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/16/2008] [Accepted: 06/06/2008] [Indexed: 01/03/2023]
Abstract
The forkhead transcription factor Foxo1 regulates expression of genes involved in stress resistance and metabolism. To assess the contribution of Foxo1 to metabolic dysregulation during hepatic insulin resistance, we disrupted Foxo1 expression in the liver of mice lacking hepatic Irs1 and Irs2 (DKO mice). DKO mice were small and developed diabetes; analysis of the DKO-liver transcriptome identified perturbed expression of growth and metabolic genes, including increased Ppargc1a and Igfbp1, and decreased glucokinase, Srebp1c, Ghr, and Igf1. Liver-specific deletion of Foxo1 in DKO mice resulted in significant normalization of the DKO-liver transcriptome and partial restoration of the response to fasting and feeding, near normal blood glucose and insulin concentrations, and normalization of body size. These results demonstrate that constitutively active Foxo1 significantly contributes to hyperglycemia during severe hepatic insulin resistance, and that the Irs1/2 --> PI3K --> Akt --> Foxo1 branch of insulin signaling is largely responsible for hepatic insulin-regulated glucose homeostasis and somatic growth.
Collapse
Affiliation(s)
- Xiaocheng C Dong
- Howard Hughes Medical Institute, Division of Endocrinology, Children's Hospital Boston, Karp Family Research Laboratories, 300 Longwood Avenue, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
554
|
Sirtuins: novel targets for metabolic disease in drug development. Biochem Biophys Res Commun 2008; 373:341-4. [PMID: 18577374 DOI: 10.1016/j.bbrc.2008.06.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/16/2008] [Indexed: 01/22/2023]
Abstract
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD(+)-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes.
Collapse
|
555
|
John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 2008; 321:197-204. [PMID: 18601916 DOI: 10.1016/j.ydbio.2008.06.017] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/26/2022]
Abstract
In mammals, oocytes are packaged into compact structures-primordial follicles-which remain inert for prolonged intervals until individual follicles resume growth via a process known as primordial follicle activation. Here we show that the phosphoinositide 3-kinase (PI3K) signalling pathway controls primordial follicle activation through the forkhead transcription factor Foxo3. Within oocytes, Foxo3 is regulated by nucleocytoplasmic shuttling. Foxo3 is imported into the nucleus during primordial follicle assembly, and is exported upon activation. Oocyte-specific ablation of Pten resulted in PI3K-induced Akt activation, Foxo3 hyperphosphorylation, and Foxo3 nuclear export, thereby triggering primordial follicle activation, defining the steps by which the PI3K pathway and Foxo3 control this process. Inducible ablation of Pten and Foxo3 in adult oocytes using a new tool for genetic analysis of the germline, Vasa-Cre(ERT2), showed that this pathway functions throughout life. Thus, a principal physiologic role of the PI3K pathway is to control primordial follicle activation via Foxo3.
Collapse
Affiliation(s)
- George B John
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9072, USA
| | | | | | | |
Collapse
|
556
|
Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10:236-46. [PMID: 18543123 DOI: 10.1007/s12017-008-8037-y] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/06/2008] [Indexed: 01/23/2023]
Abstract
Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer's and Parkinson's diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as 'preconditioning' or 'hormesis.' Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin-FOXO pathway, the NF-kappaB pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals.
Collapse
Affiliation(s)
- Tae Gen Son
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
557
|
Obsil T, Obsilova V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 2008; 27:2263-75. [PMID: 18391969 DOI: 10.1038/onc.2008.20] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The FOXO subgroup of forkhead transcription factors plays a central role in cell-cycle control, differentiation, metabolism control, stress response and apoptosis. Therefore, the function of these important molecules is tightly controlled by a wide range of protein-protein interactions and posttranslational modifications including phosphorylation, acetylation and ubiquitination. The mechanisms by which these processes regulate FOXO activity are mostly elusive. This review focuses on recent advances in structural studies of forkhead transcription factors and the insights they provide into the mechanism of DNA recognition. On the basis of these data, we discuss structural aspects of protein-protein interactions and posttranslational modifications that target the forkhead domain and the nuclear localization signal of FOXO proteins.
Collapse
Affiliation(s)
- T Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
558
|
Abstract
FoxO transcription factors are an evolutionary conserved subfamily of the forkhead transcription factors, characterized by the forkhead DNA-binding domain. FoxO factors regulate a number of cellular processes involved in cell-fate decisions in a cell-type- and environment-specific manner, including metabolism, differentiation, apoptosis and proliferation. A key mechanism by which FoxO determines cell fate is through regulation of the cell cycle machinery, and as such the cellular consequence of FoxO deregulation is often manifested through perturbation of the cell cycle. Consequently, the deregulation of FoxO factors is implicated in the development of numerous proliferative diseases, in particular cancer.
Collapse
|
559
|
Abstract
Modulation FOXO transcription factor activities can lead to a variety of cellular outputs resulting in changes in proliferation, apoptosis, differentiation and metabolic responses. Although FOXO proteins all contain an identical DNA-binding domain their cellular functions appear to be distinct, as exemplified by differences in the phenotype of Foxo1, Foxo3 and Foxo4 null mutant mice. While some of these differences may be attributable to the differential expression patterns of these transcription factors, many cells and tissues express several FOXO isoforms. Recently it has become clear that FOXO proteins can regulate transcriptional responses independently of direct DNA-binding. It has been demonstrated that FOXOs can associate with a variety of unrelated transcription factors, regulating activation or repression of diverse target genes. The complement of transcription factors expressed in a particular cell type is thus critical in determining the functional end point of FOXO activity. These interactions greatly expand the possibilities for FOXO-mediated regulation of transcriptional programmes. This review details currently described FOXO-binding partners and examines the role of these interactions in regulating cell fate decisions.
Collapse
Affiliation(s)
- K E van der Vos
- Molecular Immunology Lab, Department of Immunology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
560
|
Sedding DG. FoxO transcription factors in oxidative stress response and ageing--a new fork on the way to longevity? Biol Chem 2008; 389:279-83. [PMID: 18208360 DOI: 10.1515/bc.2008.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Forkhead box O (FoxO) transcription factors are important downstream targets of the PI3K/Akt signaling pathway and crucial regulators of cell fate. This function of FoxOs relies on their ability to control diverse cellular functions, including proliferation, differentiation, apoptosis, DNA repair, defense against oxidative stress and ageing. FoxOs are regulated by a variety of different growth factors and hormones, and their activity is tightly controlled by post-translational modifications, including phosphorylation, acetylation, ubiquitination and interaction with different proteins and transcription factors. This brief review focuses on the molecular mechanisms, cellular effects and resulting organismal phenotypes generated by differentially regulated FoxO proteins and discusses our current understanding of the role of FoxOs in disease and ageing processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology, Justus-Liebig University, D-35392 Giessen, Germany.
| |
Collapse
|
561
|
Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008; 283:16283-92. [PMID: 18420577 DOI: 10.1074/jbc.m802240200] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
FoxO proteins are key transcriptional regulators of nutrient homeostasis and stress response. The transcription factor FoxO1 activates expression of gluconeogenic, including phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, and also activates the expression of the oxidative stress response enzymes catalase and manganese superoxide dismutase. Hormonal and stress-dependent regulation of FoxO1 via acetylation, ubiquitination, and phosphorylation, are well established, but FoxOs have not been studied in the context of the glucose-derived O-linked beta-N-acetylglucosamine (O-GlcNAc) modification. Here we show that O-GlcNAc on hepatic FoxO1 is increased in diabetes. Furthermore, O-GlcNAc regulates FoxO1 activation in response to glucose, resulting in the paradoxically increased expression of gluconeogenic genes while concomitantly inducing expression of genes encoding enzymes that detoxify reactive oxygen species. GlcNAcylation of FoxO provides a new mechanism for direct nutrient control of transcription to regulate metabolism and stress response through control of FoxO1 activity.
Collapse
Affiliation(s)
- Michael P Housley
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
562
|
Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 2008; 132:1025-38. [PMID: 18358814 DOI: 10.1016/j.cell.2008.01.030] [Citation(s) in RCA: 708] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 12/18/2007] [Accepted: 01/18/2008] [Indexed: 12/27/2022]
Abstract
Insulin/IGF-1-like signaling (IIS) is central to growth and metabolism and has a conserved role in aging. In C. elegans, reductions in IIS increase stress resistance and longevity, effects that require the IIS-inhibited FOXO protein DAF-16. The C. elegans transcription factor SKN-1 also defends against oxidative stress by mobilizing the conserved phase 2 detoxification response. Here we show that IIS not only opposes DAF-16 but also directly inhibits SKN-1 in parallel. The IIS kinases AKT-1, -2, and SGK-1 phosphorylate SKN-1, and reduced IIS leads to constitutive SKN-1 nuclear accumulation in the intestine and SKN-1 target gene activation. SKN-1 contributes to the increased stress tolerance and longevity resulting from reduced IIS and delays aging when expressed transgenically. Furthermore, SKN-1 that is constitutively active increases life span independently of DAF-16. Our findings indicate that the transcription network regulated by SKN-1 promotes longevity and is an important direct target of IIS.
Collapse
|
563
|
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14:219-27. [PMID: 18403263 DOI: 10.1016/j.molmed.2008.03.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 01/08/2023]
Abstract
Forkhead transcription factors have a 'winged helix' domain and regulate processes that range from cell longevity to cell death. Of the mammalian forkhead family members in the O class, FoxO1, FoxO3a and FoxO4 can fill a crucial void for the treatment of disorders that include aging, cancer, diabetes, infertility, neurodegeneration and immune system dysfunction. Yet, observations that forkhead family members also can compromise clinical utility have fueled controversy and highlight the necessity to further outline the integrated cellular pathways governed by these transcription factors. Here we discuss recent advances that have elucidated the unique cellular pathways and clinical potential of targeting FoxO proteins to develop novel therapeutic strategies and avert potential pitfalls that might be closely intertwined with its benefits for patient care.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
564
|
Berry JM, Cao DJ, Rothermel BA, Hill JA. Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf 2008; 7:53-67. [PMID: 18171314 DOI: 10.1517/14740338.7.1.53] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent work has demonstrated the importance of chromatin remodeling, especially histone acetylation, in the control of gene expression in the heart. Studies in preclinical models suggest that inhibition of histone deacetylase (HDAC) activity - using compounds that show promise in ongoing oncology trials - blunts pathologic growth of cardiac myocytes. Indeed, small-molecule inhibitors of HDACs are members of an evolving class of pharmacologic agents in development for the treatment of several diseases. If proved effective in the treatment of heart disease, HDAC inhibitors could have a significant impact on public health, as cardiovascular disease remains the leading cause of death in the US. This paper reviews understanding of the mechanisms of action of HDAC inhibitors in the heart and summarizes emerging data regarding their effects on disease-related cardiac remodeling and function.
Collapse
Affiliation(s)
- Jeff M Berry
- University of Texas Southwestern Medical Center, Donald W Reynolds Cardiovascular Clinical Research Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
565
|
|
566
|
Abstract
Heart failure, or congestive heart failure, is a condition in which the heart cannot supply the body's tissues with enough blood. The result is a cascade of changes that lead to severe fatigue, breathlessness and, ultimately, death. In the past quarter century, much progress has been made in understanding the molecular and cellular processes that contribute to heart failure, leading to the development of effective therapies. Despite this, chronic heart failure remains a major cause of illness and death. And because the condition becomes more common with increasing age, the number of affected individuals is rising with the rapidly ageing global population. New treatments that target disease mechanisms at the cellular and whole-organ level are needed to halt and reverse the devastating consequences of this disease.
Collapse
|
567
|
Percy CJ, Power D, Gobe GC. Renal ageing: changes in the cellular mechanism of energy metabolism and oxidant handling. Nephrology (Carlton) 2008; 13:147-52. [PMID: 18275503 DOI: 10.1111/j.1440-1797.2008.00924.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The age-dependent changes in the kidney are often debilitating, can be life-threatening and are a significant cause of increasing health costs worldwide. Excessive fibrosis, a general lack of regenerative ability and an increase in apoptosis in cells that determine healthy renal function work together to cause chronic kidney disease. This review provides information on the molecules and mechanisms that determine the age-dependent effects in the kidney, and in particular, the effects of cellular metabolism and oxidant handling on the ageing kidney. With a better understanding of the influence of ageing on the structural and functional alterations that occur, new targeted therapies may be developed to minimize renal damage and promote health in the elderly.
Collapse
Affiliation(s)
- Christine J Percy
- Molecular and Cellular Pathology, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
568
|
Chakir K, Daya SK, Tunin RS, Helm RH, Byrne MJ, Dimaano VL, Lardo AC, Abraham TP, Tomaselli GF, Kass DA. Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization. Circulation 2008; 117:1369-77. [PMID: 18316490 DOI: 10.1161/circulationaha.107.706291] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac dyssynchrony in the failing heart worsens global function and efficiency and generates regional loading disparities that may exacerbate stress-response molecular signaling and worsen cell survival. We hypothesized that cardiac resynchronization (CRT) from biventricular stimulation reverses such molecular abnormalities at the regional and global levels. METHODS AND RESULTS Adult dogs (n=27) underwent left bundle-branch radiofrequency ablation, prolonging the QRS by 100%. Dogs were first subjected to 3 weeks of atrial tachypacing (200 bpm) to induce dyssynchronous heart failure (DHF) and then randomized to either 3 weeks of additional atrial tachypacing (DHF) or biventricular tachypacing (CRT). At 6 weeks, ejection fraction improved in CRT (2.8+/-1.8%) compared with DHF (-4.4+/-2.7; P=0.02 versus CRT) dogs, although both groups remained in failure with similarly elevated diastolic pressures and reduced dP/dtmax. In DHF, mitogen-activated kinase p38 and calcium-calmodulin-dependent kinase were disproportionally expressed/activated (50% to 150%), and tumor necrosis factor-alpha increased in the late-contracting (higher-stress) lateral versus septal wall. These disparities were absent with CRT. Apoptosis assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, caspase-3 activity, and nuclear poly ADP-ribose polymerase cleavage was less in CRT than DHF hearts and was accompanied by increased Akt phosphorylation/activity. Bcl-2 and BAD protein diminished with DHF but were restored by CRT, accompanied by marked BAD phosphorylation, enhanced BAD-14-3-3 interaction, and reduced phosphatase PP1alpha, consistent with antiapoptotic effects. Other Akt-coupled modulators of apoptosis (FOXO-3alpha and GSK3beta) were more phosphorylated in DHF than CRT and thus less involved. CONCLUSIONS CRT reverses regional and global molecular remodeling, generating more homogeneous activation of stress kinases and reducing apoptosis. Such changes are important benefits from CRT that likely improve cardiac performance and outcome.
Collapse
Affiliation(s)
- Khalid Chakir
- Division of Cardiology, School of Medicine, Department of Biomedical Engineering, Johns Hopkins University Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
569
|
Glauser DA, Schlegel W. FoxO proteins in pancreatic β-cells as potential therapeutic targets in diabetes. Expert Rev Endocrinol Metab 2008; 3:175-185. [PMID: 30764091 DOI: 10.1586/17446651.3.2.175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes results from complete (Type 1) or progressive (Type 2) insulin insufficiency. Resulting chronic and acute hyperglycemia are thus prevented mainly by insulin injections, a therapy that is care intensive, costly and does not abolish vascular damage, with severe consequences for the patient in the long term. In view of the epidemic spread of the disease, diabetes is considered a major threat for public healthcare systems. Thus, there is a great incentive to find therapies and drugs preserving or restoring pancreatic β-cells mass and function. In this context, this review addresses the FoxO transcription factors as direct or indirect, in vivo or ex vivo drug targets, since FoxO proteins play a central role for β-cells growth and resistance to oxidative stress. The review includes specific proposals for preclinical drug development.
Collapse
Affiliation(s)
- Dominique A Glauser
- a Fondation pour Recherches Médicales, University of Geneva, 64 ave de la Roseraie, 1211 Geneva, Switzerland.
| | - Werner Schlegel
- b Fondation pour Recherches Médicales, Medical Faculty, University of Geneva, 64 ave de la Roseraie, 1211 Geneva, Switzerland.
| |
Collapse
|
570
|
Mehar A, Macanas-Pirard P, Mizokami A, Takahashi Y, Kass GEN, Coley HM. The effects of cyclooxygenase-2 expression in prostate cancer cells: modulation of response to cytotoxic agents. J Pharmacol Exp Ther 2008; 324:1181-7. [PMID: 18089846 DOI: 10.1124/jpet.107.131383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cyclooxygenase (COX)-2 has emerged as an exciting target for therapeutic intervention in the management of cancer. Immunohistochemistry studies have indicated higher expression of COX-2 in cancerous versus benign prostatic tissue. We have explored the role of COX-2 in prostate cancer in terms of attenuation of apoptosis and sensitivity to pharmacological agents, including COX-2 inhibitors. The human prostate cancer cell line LNCaP was stably transfected with COX-2 (LNCaPCOX-2) and compared with the empty vector control line (LNCaPneo). Chemosensitivity testing indicated no change in sensitivity to the cytotoxic effects of COX-2 inhibitors celecoxib or sulindac or VP16. However, LNCaPCOX-2 cells showed 3-fold resistance to carboplatin, which was partially reversed by coincubation with the phosphatidylinositol 3-kinase inhibitor wortmannin. Concomitant with reduced apoptotic response to cytotoxic agents, LNCaPCOX-2 cells expressed increased levels of survivin and Bcl-2 with enhanced activation of AKT. We also investigated the effects of celecoxib on expression levels of genes relevant to prostate cancer and drug resistance in our model system using quantitative polymerase chain reaction analysis. Celecoxib treatment resulted in highly significant increases in the mRNA expression of the smooth muscle component desmin, the detoxification enzyme glutathione S-transferase pi (GSTpi), and nonsteroidal anti-inflammatory response gene (NAG-1) in the LNCaPCOX-2 cell line compared with LNCaPneo cells. Significant decreases in survivin levels and increases in GSTpi and NAG-1 appeared to be COX-2-dependent effects because they were more pronounced in LNCaPCOX-2 cells. Our findings indicate both COX-2-dependent and -independent mechanisms attributable to celecoxib and support its utility in the management of prostate cancer.
Collapse
Affiliation(s)
- Ayaz Mehar
- Postgraduate Medical School, University of Surrey, Guildford, Surrey GU2 7WG, UK
| | | | | | | | | | | |
Collapse
|
571
|
Nahlé Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA, Zhang MQ, Das D, Abumrad NA. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress. J Biol Chem 2008; 283:14317-26. [PMID: 18308721 DOI: 10.1074/jbc.m706478200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transcription factor FoxO1 contributes to the metabolic adaptation to fasting by suppressing muscle oxidation of glucose, sparing it for glucose-dependent tissues. Previously, we reported that FoxO1 activation in C(2)C(12) muscle cells recruits the fatty acid translocase CD36 to the plasma membrane and increases fatty acid uptake and oxidation. This, together with FoxO1 induction of lipoprotein lipase, would promote the reliance on fatty acid utilization characteristic of the fasted muscle. Here, we show that CD36-mediated fatty acid uptake, in turn, up-regulates protein levels and activity of FoxO1 as well as its target PDK4, the negative regulator of glucose oxidation. Increased fatty acid flux or enforced CD36 expression in C(2)C(12) cells is sufficient to induce FoxO1 and PDK4, whereas CD36 knockdown has opposite effects. In vivo, CD36 loss blunts fasting induction of FoxO1 and PDK4 and the associated suppression of glucose oxidation. Importantly, CD36-dependent regulation of FoxO1 is mediated by the nuclear receptor PPARdelta/beta. Loss of PPARdelta/beta phenocopies CD36 deficiency in blunting fasting induction of muscle FoxO1 and PDK4 in vivo. Expression of PPARdelta/beta in C(2)C(12) cells, like that of CD36, robustly induces FoxO1 and suppresses glucose oxidation, whereas co-expression of a dominant negative PPARdelta/beta compromises FoxO1 induction. Finally, several PPRE sites were identified in the FoxO1 promoter, which was responsive to PPARdelta/beta. Agonists of PPARdelta/beta were sufficient to confer responsiveness and transactivate the heterologous FoxO1 promoter but not in the presence of dominant negative PPARdelta/beta. Taken together, our findings suggest that CD36-dependent FA activation of PPARdelta/beta results in the transcriptional regulation of FoxO1 as well as PDK4, recently shown to be a direct PPARdelta/beta target. FoxO1 in turn can regulate CD36, lipoprotein lipase, and PDK4, reinforcing the action of PPARdelta/beta to increase muscle reliance on FA. The findings could have implications in the chronic abnormalities of fatty acid metabolism associated with obesity and diabetes.
Collapse
Affiliation(s)
- Zaher Nahlé
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
572
|
Dávila D, Torres-Aleman I. Neuronal death by oxidative stress involves activation of FOXO3 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell 2008; 19:2014-25. [PMID: 18287535 DOI: 10.1091/mbc.e07-08-0811] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress kills neurons by stimulating FOXO3, a transcription factor whose activity is inhibited by insulin-like growth factor I (IGF-I), a wide-spectrum neurotrophic signal. Because recent evidence has shown that oxidative stress blocks neuroprotection by IGF-I, we examined whether attenuation of IGF-I signaling is linked to neuronal death by oxidative stress, as both events may contribute to neurodegeneration. We observed that in neurons, activation of FOXO3 by a burst of oxidative stress elicited by 50 muM hydrogen peroxide (H(2)O(2)) recruited a two-pronged pathway. A first, rapid arm attenuated AKT inhibition of FOXO3 through p38 MAPK-mediated blockade of IGF-I stimulation of AKT. A second delayed arm involved activation of FOXO3 by Jun-kinase 2 (JNK2). Notably, blockade of IGF-I signaling through p38 MAPK was necessary for JNK2 to activate FOXO3, unveiling a competitive regulatory interplay between the two arms onto FOXO3 activity. Therefore, an abrupt rise in oxidative stress activates p38 MAPK to tilt the balance in a competitive AKT/JNK2 regulation of FOXO3 toward its activation, eventually leading to neuronal death. In view of previous observations linking attenuation of IGF-I signaling to other causes of neuronal death, these findings suggest that blockade of trophic input is a common step in neuronal death.
Collapse
Affiliation(s)
- David Dávila
- Laboratory of Neuroendocrinology, Cajal Institute, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | | |
Collapse
|
573
|
Abstract
The Akt kinase is a key regulator of cell proliferation and survival. It is activated in part by PDK1-induced phosphorylation. Here we show that RalGDS, a Ras effector protein that activates Ral GTPases, has a second function that promotes Akt phosphorylation by PDK1 by bringing these two kinases together. In support of this conclusion is our finding that suppression of RalGDS expression in cells inhibits both epidermal growth factor and insulin-induced phosphorylation of Akt. Moreover, while PDK1 complexes with N-GDS, Akt complexes with the central region of RalGDS through an intermediary, JIP1. The biological significance of this newly discovered RalGDS function is highlighted by the observation that an N-terminally deleted mutant of RalGDS that retains the ability to activate Ral proteins but loses the ability to activate Akt also fails to promote cell proliferation. Thus, RalGDS forms a nexus that transduces growth factor signaling to both Ral GTPase and Akt-mediated signaling cascades.
Collapse
|
574
|
Abstract
Ageing, or increased mortality with time, coupled with physiologic decline, is a nearly universal yet poorly understood biological phenomenon. Studies in model organisms suggest that two conserved pathways modulate longevity: DNA damage repair and Insulin/Igf1-like signalling. In addition, homologs of yeast Sir2--the sirtuins--regulate lifespan in diverse organisms. Here, we focus on one particular sirtuin, SIRT6. Mice lacking SIRT6 develop a degenerative disorder that in some respects mimics models of accelerated ageing [Cell (2006) 124:315]. We discuss how sirtuins in general and SIRT6 specifically relate to other evolutionarily conserved pathways affecting ageing, and how SIRT6 might function to ensure organismal homeostasis and normal lifespan.
Collapse
Affiliation(s)
- D B Lombard
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, Boston, MA, USA
| | | | | | | |
Collapse
|
575
|
Laurent G, Solari F, Mateescu B, Karaca M, Castel J, Bourachot B, Magnan C, Billaud M, Mechta-Grigoriou F. Oxidative stress contributes to aging by enhancing pancreatic angiogenesis and insulin signaling. Cell Metab 2008; 7:113-24. [PMID: 18249171 DOI: 10.1016/j.cmet.2007.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/15/2007] [Accepted: 12/20/2007] [Indexed: 11/18/2022]
Abstract
JunD, a transcription factor of the AP-1 family, protects cells against oxidative stress. Here, we show that junD(-/-) mice exhibit features of premature aging and shortened life span. They also display persistent hypoglycemia due to enhanced insulin secretion. Consequently, the insulin/IGF-1 signaling pathways are constitutively stimulated, leading to inactivation of FoxO1, a positive regulator of longevity. Hyperinsulinemia most likely results from enhanced pancreatic islet vascularization owing to chronic oxidative stress. Indeed, accumulation of free radicals in beta cells enhances VEGF-A transcription, which in turn increases pancreatic angiogenesis and insulin secretion. Accordingly, long-term treatment with an antioxidant rescues the phenotype of junD(-/-) mice. Indeed, dietary antioxidant supplementation was protective against pancreatic angiogenesis, hyperinsulinemia, and subsequent activation of insulin signaling cascades in peripheral tissues. Taken together, these data establish a pivotal role for oxidative stress in systemic regulation of insulin and define a key role for the JunD protein in longevity.
Collapse
Affiliation(s)
- Gaëlle Laurent
- Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Terragni J, Graham JR, Adams KW, Schaffer ME, Tullai JW, Cooper GM. Phosphatidylinositol 3-kinase signaling in proliferating cells maintains an anti-apoptotic transcriptional program mediated by inhibition of FOXO and non-canonical activation of NFkappaB transcription factors. BMC Cell Biol 2008; 9:6. [PMID: 18226221 PMCID: PMC2268685 DOI: 10.1186/1471-2121-9-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 01/28/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phosphatidylinositol (PI) 3-kinase is activated by a variety of growth factor receptors and the PI 3-kinase/Akt signaling pathway is a key regulator of cell proliferation and survival. The downstream targets of PI 3-kinase/Akt signaling include direct regulators of cell cycle progression and apoptosis as well as a number of transcription factors. Growth factor stimulation of quiescent cells leads to robust activation of PI 3-kinase, induction of immediate-early genes, and re-entry into the cell cycle. A lower level of PI 3-kinase signaling is also required for the proliferation and survival of cells maintained in the presence of growth factors, but the gene expression program controlled by PI 3-kinase signaling in proliferating cells has not been elucidated. RESULTS We used microarray analyses to characterize the changes in gene expression resulting from inhibition of PI 3-kinase in proliferating cells. The genes regulated by inhibition of PI 3-kinase in proliferating cells were distinct from genes induced by growth factor stimulation of quiescent cells and highly enriched in genes that regulate programmed cell death. Computational analyses followed by chromatin immunoprecipitations demonstrated FOXO binding to both previously known and novel sites in promoter regions of approximately one-third of the up-regulated genes, consistent with activation of FOXO1 and FOXO3a in response to inhibition of PI 3-kinase. NFkappaB binding sites were similarly identified in promoter regions of over one-third of the down-regulated genes. RelB was constitutively bound to promoter regions in cells maintained in serum, however binding decreased following PI 3-kinase inhibition, indicating that PI 3-kinase signaling activates NFkappaB via the non-canonical pathway in proliferating cells. Approximately 70% of the genes targeted by FOXO and NFkappaB regulate cell proliferation and apoptosis, including several regulators of apoptosis that were not previously known to be targeted by these transcription factors. CONCLUSION PI 3-kinase signaling in proliferating cells regulates a novel transcriptional program that is highly enriched in genes that regulate apoptosis. At least one-third of these genes are regulated either by FOXO transcription factors, which are activated following PI 3-kinase inhibition, or by RelB, which is activated by PI 3-kinase via the non-canonical pathway in proliferating cells.
Collapse
Affiliation(s)
- Jolyon Terragni
- Department of Biology, Boston University, Boston MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
577
|
Evans-Anderson HJ, Alfieri CM, Yutzey KE. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Circ Res 2008; 102:686-94. [PMID: 18218983 DOI: 10.1161/circresaha.107.163428] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiomyocytes actively proliferate during embryogenesis and withdraw from the cell cycle during neonatal stages. FOXO (Forkhead O) transcription factors are a direct target of phosphatidylinositol-3 kinase/AKT signaling in skeletal and smooth muscle and regulate expression of the Cip/Kip family of cyclin kinase inhibitors in other cell types; however, the interaction of phosphatidylinositol-3 kinase/AKT signaling, FOXO transcription factors, and cyclin kinase inhibitor expression has not been reported for the developing heart. Here, we show that FOXO1 and FOXO3 are expressed in the developing myocardium concomitant with increased cyclin kinase inhibitor expression from embryonic to neonatal stages. Cell culture studies show that embryonic cardiomyocytes are responsive to insulin-like growth factor 1 stimulation, which results in the induction of the phosphatidylinositol-3 kinase/AKT pathway, cytoplasmic localization of FOXO proteins, and increased myocyte proliferation. Likewise, adenoviral-mediated expression of AKT promotes cardiomyocyte proliferation and cytoplasmic localization of FOXO. In contrast, increased expression of FOXO1 negatively affects myocyte proliferation. In vivo myocyte-specific transgenic expression of FOXO1 during heart development causes embryonic lethality at embryonic day 10.5 because of severe myocardial defects that coincide with premature activation of p21(cip1), p27(kip1), and p57(kip2) and decreased myocyte proliferation. Transgenic expression of dominant negative FOXO1 in cardiomyocytes does not obviously affect heart development at embryonic day 10.5, but results in abnormal morphology of the myocardium by embryonic day 18.5 along with decreased cyclin kinase inhibitor expression and increased myocyte proliferation. These data support FOXO transcription factors as negative regulators of cardiomyocyte proliferation and promoters of neonatal cell cycle withdrawal during heart development.
Collapse
Affiliation(s)
- Heather J Evans-Anderson
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Ohio 45229, USA
| | | | | |
Collapse
|
578
|
Melanocyte Stem Cells: As an Excellent Model to Study Stem Cell Biology. Stem Cells 2008. [DOI: 10.1007/978-1-4020-8274-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
579
|
Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 2007; 4:e13. [PMID: 18225956 PMCID: PMC2213705 DOI: 10.1371/journal.pgen.0040013] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 12/10/2007] [Indexed: 01/20/2023] Open
Abstract
Calorie restriction (CR), the only non-genetic intervention known to slow aging and extend life span in organisms ranging from yeast to mice, has been linked to the down-regulation of Tor, Akt, and Ras signaling. In this study, we demonstrate that the serine/threonine kinase Rim15 is required for yeast chronological life span extension caused by deficiencies in Ras2, Tor1, and Sch9, and by calorie restriction. Deletion of stress resistance transcription factors Gis1 and Msn2/4, which are positively regulated by Rim15, also caused a major although not complete reversion of the effect of calorie restriction on life span. The deletion of both RAS2 and the Akt and S6 kinase homolog SCH9 in combination with calorie restriction caused a remarkable 10-fold life span extension, which, surprisingly, was only partially reversed by the lack of Rim15. These results indicate that the Ras/cAMP/PKA/Rim15/Msn2/4 and the Tor/Sch9/Rim15/Gis1 pathways are major mediators of the calorie restriction-dependent stress resistance and life span extension, although additional mediators are involved. Notably, the anti-aging effect caused by the inactivation of both pathways is much more potent than that caused by CR. Reduction in calorie intake is a well-established intervention that extends the life span of a variety of biological model organisms studied. Calorie restriction also delays and attenuates age-related changes in primates, although its longevity-promoting effect has not been demonstrated. Here, we utilized a single cell organism, baker's yeast, to examine the role of evolutionarily conserved genes in life span regulation and their involvement in calorie restriction. The yeast mutants lacking Ras2, Tor1, or Sch9 are long-lived. The anti-aging effect observed in these mutants depends on the protein Rim15 and several key regulators of gene expression that are essential in inducing cellular protection under stress. The beneficial effects of calorie restriction are much smaller in yeast that are missing these proteins, indicating their essential role in promoting longevity. Our study also showed that by combining the genetic manipulation and calorie restriction intervention, yeast can reach a life span ten times that of those grown under standard conditions. This extreme longevity requires Rim15 and also depends on other yet-to-be identified mechanisms. Our findings provided new leads that may help to elucidate the mechanisms underlying the anti-aging effect of calorie restriction in mammals.
Collapse
Affiliation(s)
- Min Wei
- Andrus Gerontology Center, University of Southern California, Los Angeles, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
580
|
FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci U S A 2007; 104:20517-22. [PMID: 18077353 DOI: 10.1073/pnas.0610290104] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance and metabolic syndrome are rapidly expanding public health problems. Acting through the PI3K/Akt pathway, insulin and insulin-like growth factor-1 (IGF-1) inactivate FoxO transcription factors, a class of highly conserved proteins important in numerous physiological functions. However, even as FoxO is a downstream target of insulin, FoxO factors also control upstream signaling elements governing insulin sensitivity and glucose metabolism. Here, we report that sustained activation of either FoxO1 or FoxO3 in cardiac myocytes increases basal levels of Akt phosphorylation and kinase activity. FoxO-activated Akt directly interacts with and phosphorylates FoxO, providing feedback inhibition. We reported previously that FoxO factors attenuate cardiomyocyte calcineurin (PP2B) activity. We now show that calcineurin forms a complex with Akt and inhibition of calcineurin enhances Akt phosphorylation. In addition, FoxO activity suppresses protein phosphatase 2A (PP2A) and disrupts Akt-PP2A and Akt-calcineurin interactions. Repression of Akt-PP2A/B interactions and phosphatase activities contributes, at least in part, to FoxO-dependent increases in Akt phosphorylation and kinase activity. Resveratrol, an activator of Sirt1, increases the transcriptional activity of FoxO1 and triggers Akt phosphorylation in heart. Importantly, FoxO-mediated increases in Akt activity diminish insulin signaling, as manifested by reduced Akt phosphorylation, reduced membrane translocation of Glut4, and decreased insulin-triggered glucose uptake. Also, inactivation of the gene coding for FoxO3 enhances insulin-dependent Akt phosphorylation. Taken together, this study demonstrates that changes in FoxO activity have a dose-responsive repressive effect on insulin signaling in cardiomyocytes through inhibition of protein phosphatases, which leads to altered Akt activation, reduced insulin sensitivity, and impaired glucose metabolism.
Collapse
|
581
|
Abstract
Forkhead box (Fox) proteins are a superfamily of evolutionarily conserved transcriptional regulators, which control a wide spectrum of biological processes. As a consequence, a loss or gain of Fox function can alter cell fate and promote tumorigenesis as well as cancer progression. Here we discuss the evidence that the deregulation of Fox family transcription factors has a crucial role in the development and progression of cancer, and evaluate the emerging role of Fox proteins as direct and indirect targets for therapeutic intervention, as well as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Stephen S Myatt
- Cancer Research UK laboratories, Department of Oncology, MRC Cyclotron Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|