551
|
Larsen A, John L, Sansom M, Corey R. Specific interactions of peripheral membrane proteins with lipids: what can molecular simulations show us? Biosci Rep 2022; 42:BSR20211406. [PMID: 35297484 PMCID: PMC9008707 DOI: 10.1042/bsr20211406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral membrane proteins (PMPs) can reversibly and specifically bind to biological membranes to carry out functions such as cell signalling, enzymatic activity, or membrane remodelling. Structures of these proteins and of their lipid-binding domains are typically solved in a soluble form, sometimes with a lipid or lipid headgroup at the binding site. To provide a detailed molecular view of PMP interactions with the membrane, computational methods such as molecular dynamics (MD) simulations can be applied. Here, we outline recent attempts to characterise these binding interactions, focusing on both intracellular proteins, such as phosphatidylinositol phosphate (PIP)-binding domains, and extracellular proteins such as glycolipid-binding bacterial exotoxins. We compare methods used to identify and analyse lipid-binding sites from simulation data and highlight recent work characterising the energetics of these interactions using free energy calculations. We describe how improvements in methodologies and computing power will help MD simulations to continue to contribute to this field in the future.
Collapse
Affiliation(s)
| | - Laura H. John
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | | | - Robin A. Corey
- Department of Biochemistry, University of Oxford, Oxford, U.K
| |
Collapse
|
552
|
Alavizargar A, Elting A, Wedlich-Söldner R, Heuer A. Lipid-Mediated Association of the Slg1 Transmembrane Domains in Yeast Plasma Membranes. J Phys Chem B 2022; 126:3240-3256. [PMID: 35446028 DOI: 10.1021/acs.jpcb.2c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clustering of transmembrane proteins underlies a multitude of fundamental biological processes at the plasma membrane (PM) such as receptor activation, lateral domain formation, and mechanotransduction. The self-association of the respective transmembrane domains (TMDs) has also been suggested to be responsible for the micron-scaled patterns seen for integral membrane proteins in the budding yeast PM. However, the underlying interplay between the local lipid composition and the TMD identity is still not mechanistically understood. In this work, we combined coarse-grained molecular dynamics simulations of simplified bilayer systems with high-resolution live-cell microscopy to analyze the distribution of a representative helical yeast TMD from the PM sensor Slg1 within different lipid environments. In our simulations, we specifically evaluated the effects of acyl chain saturation and anionic lipid head groups on the association of two TMDs. We found that weak lipid-protein interactions significantly affect the configuration of TMD dimers and the free energy of association. Increased amounts of unsaturated phospholipids (PLs) strongly reduced the helix-helix interaction, while the presence of anionic phosphatidylserine (PS) hardly affected the dimer formation. We could experimentally confirm this surprising lack of effect of PS using the network factor, a mesoscopic measure of PM pattern formation in yeast cells. Simulations also showed that the formation of TMD dimers in turn increased the order parameter of the surrounding lipids and induced long-range perturbations in lipid organization. In summary, our results shed new light on the mechanisms of lipid-mediated dimerization of TMDs in complex lipid mixtures.
Collapse
Affiliation(s)
- Azadeh Alavizargar
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| | - Annegret Elting
- Institute of Cell Dynamics and Imaging, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| |
Collapse
|
553
|
Salahub DR. Multiscale molecular modelling: from electronic structure to dynamics of nanosystems and beyond. Phys Chem Chem Phys 2022; 24:9051-9081. [PMID: 35389399 DOI: 10.1039/d1cp05928a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Important contemporary biological and materials problems often depend on interactions that span orders of magnitude differences in spatial and temporal dimensions. This Tutorial Review attempts to provide an introduction to such fascinating problems through a series of case studies, aimed at beginning researchers, graduate students, postdocs and more senior colleagues who are changing direction to focus on multiscale aspects of their research. The choice of specific examples is highly personal, with examples either chosen from our own work or outstanding multiscale efforts from the literature. I start with various embedding schemes, as exemplified by polarizable continuum models, 3-D RISM, molecular DFT and frozen-density embedding. Next, QM/MM (quantum mechanical/molecular mechanical) techniques are the workhorse of pm-to-nm/ps-to-ns simulations; examples are drawn from enzymes and from nanocatalysis for oil-sands upgrading. Using polarizable force-fields in the QM/MM framework represents a burgeoning subfield; with examples from ion channels and electron dynamics in molecules subject to strong external fields, probing the atto-second dynamics of the electrons with RT-TDDFT (real-time - time-dependent density functional theory) eventually coupled with nuclear motion through the Ehrenfest approximation. This is followed by a section on coarse graining, bridging dimensions from atoms to cells. The penultimate chapter gives a quick overview of multiscale approaches that extend into the meso- and macro-scales, building on atomistic and coarse-grained techniques to enter the world of materials engineering, on the one hand, and cell biology, on the other. A final chapter gives just a glimpse of the burgeoning impact of machine learning on the structure-dynamics front. I aim to capture the excitement of contemporary leading-edge breakthroughs in the description of physico-chemical systems and processes in complex environments, with only enough historical content to provide context and aid the next generation of methodological development. While I aim also for a clear description of the essence of methodological breakthroughs, equations are kept to a minimum and detailed formalism and implementation details are left to the references. My approach is very selective (case studies) rather than exhaustive. I think that these case studies should provide fodder to build as complete a reference tree on multiscale modelling as the reader may wish, through forward and backward citation analysis. I hope that my choices of cases will excite interest in newcomers and help to fuel the growth of multiscale modelling in general.
Collapse
Affiliation(s)
- Dennis R Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS-Centre for Molecular Simulation, IQST-Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
554
|
Kawamoto S, Liu H, Miyazaki Y, Seo S, Dixit M, DeVane R, MacDermaid C, Fiorin G, Klein ML, Shinoda W. SPICA Force Field for Proteins and Peptides. J Chem Theory Comput 2022; 18:3204-3217. [PMID: 35413197 DOI: 10.1021/acs.jctc.1c01207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A coarse-grained (CG) model for peptides and proteins was developed as an extension of the Surface Property fItting Coarse grAined (SPICA) force field (FF). The model was designed to examine membrane proteins that are fully compatible with the lipid membranes of the SPICA FF. A preliminary version of this protein model was created using thermodynamic properties, including the surface tension and density in the SPICA (formerly called SDK) FF. In this study, we improved the CG protein model to facilitate molecular dynamics (MD) simulations with a reproduction of multiple properties from both experiments and all-atom (AA) simulations. An elastic network model was adopted to maintain the secondary structure within a single chain. The side-chain analogues reproduced the transfer free energy profiles across the lipid membrane and demonstrated reasonable association free energy (potential of mean force) in water compared to those from AA MD. A series of peptides/proteins adsorbed onto or penetrated into the membrane simulated by the CG MD correctly predicted the penetration depths and tilt angles of peripheral and transmembrane peptides/proteins as comparable to those in the orientations of proteins in membranes (OPM) database. In addition, the dimerization free energies of several transmembrane helices within a lipid bilayer were comparable to those from experimental estimation. Application studies on a series of membrane protein assemblies, scramblases, and poliovirus capsids demonstrated the good performance of the SPICA FF.
Collapse
Affiliation(s)
- Shuhei Kawamoto
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Huihui Liu
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Miyazaki
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Korea Institute of Science and Technology Information, 245 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Mayank Dixit
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Russell DeVane
- Modeling & Simulation, Corporate Research & Development, The Procter and Gamble Company, West Chester, Ohio 45069, United States
| | - Christopher MacDermaid
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Giacomo Fiorin
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
555
|
Thomasen FE, Pesce F, Roesgaard MA, Tesei G, Lindorff-Larsen K. Improving Martini 3 for Disordered and Multidomain Proteins. J Chem Theory Comput 2022; 18:2033-2041. [PMID: 35377637 DOI: 10.1021/acs.jctc.1c01042] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coarse-grained molecular dynamics simulations are a useful tool to determine conformational ensembles of proteins. Here, we show that the coarse-grained force field Martini 3 underestimates the global dimensions of intrinsically disordered proteins (IDPs) and multidomain proteins when compared with small-angle X-ray scattering (SAXS) data and that increasing the strength of protein-water interactions favors more expanded conformations. We find that increasing the strength of interactions between protein and water by ca. 10% results in improved agreement with the SAXS data for IDPs and multidomain proteins. We also show that this correction results in a more accurate description of self-association of IDPs and folded proteins and better agreement with paramagnetic relaxation enhancement data for most IDPs. While simulations with this revised force field still show deviations to experiments for some systems, our results suggest that it is overall a substantial improvement for coarse-grained simulations of soluble proteins.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Francesco Pesce
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Mette Ahrensback Roesgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Giulio Tesei
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
556
|
Effects of Cholesterol on the mechanism of fengycin, a biofungicide. Biophys J 2022; 121:1963-1974. [DOI: 10.1016/j.bpj.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
|
557
|
Tempra C, Scollo F, Pannuzzo M, Lolicato F, La Rosa C. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140767. [PMID: 35144022 DOI: 10.1016/j.bbapap.2022.140767] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease; ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Collapse
Affiliation(s)
- Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
558
|
Molecular dynamics simulation: A new way to understand the functionality of the endothelial glycocalyx. Curr Opin Struct Biol 2022; 73:102330. [DOI: 10.1016/j.sbi.2022.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
|
559
|
Wang T, Yang Y, Li M, Dong Q, Li C, Yang N, Shao M, Wei Z. Triathlete for the Oxygen Reduction Reaction in Zinc–Air Fuel Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, ShaZhengJie 174, Chongqing 400044, China
| | - Yinfeng Yang
- School of Chemistry and Chemical Engineering, Chongqing University, ShaZhengJie 174, Chongqing 400044, China
| | - Meirong Li
- School of Chemistry and Chemical Engineering, Chongqing University, ShaZhengJie 174, Chongqing 400044, China
| | - Qin Dong
- School of Chemistry and Chemical Engineering, Chongqing University, ShaZhengJie 174, Chongqing 400044, China
| | - Cunpu Li
- School of Chemistry and Chemical Engineering, Chongqing University, ShaZhengJie 174, Chongqing 400044, China
| | - Na Yang
- School of Chemistry and Chemical Engineering, Chongqing University, ShaZhengJie 174, Chongqing 400044, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, ShaZhengJie 174, Chongqing 400044, China
| |
Collapse
|
560
|
Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun 2022; 13:1605. [PMID: 35338137 PMCID: PMC8956743 DOI: 10.1038/s41467-022-29272-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Cell membranes provide a selective semi-permeable barrier to the passive transport of molecules. This property differs greatly between organisms. While the cytoplasmic membrane of bacterial cells is highly permeable for weak acids and glycerol, yeasts can maintain large concentration gradients. Here we show that such differences can arise from the physical state of the plasma membrane. By combining stopped-flow kinetic measurements with molecular dynamics simulations, we performed a systematic analysis of the permeability of a variety of small molecules through synthetic membranes of different lipid composition to obtain detailed molecular insight into the permeation mechanisms. While membrane thickness is an important parameter for the permeability through fluid membranes, the largest differences occur when the membranes transit from the liquid-disordered to liquid-ordered and/or to gel state, which is in agreement with previous work on passive diffusion of water. By comparing our results with in vivo measurements from yeast, we conclude that the yeast membrane exists in a highly ordered and rigid state, which is comparable to synthetic saturated DPPC-sterol membranes. Membrane permeability of small molecules depends on the composition of the lipid bilayer. Here, authors compare permeability measured on membranes in different physical states and conclude that the yeast membrane exists in a highly ordered phase.
Collapse
Affiliation(s)
- Jacopo Frallicciardi
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Josef Melcr
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Pareskevi Siginou
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Siewert J Marrink
- Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
561
|
Wu Z, Biggin PC. Correction Schemes for Absolute Binding Free Energies Involving Lipid Bilayers. J Chem Theory Comput 2022; 18:2657-2672. [PMID: 35315270 PMCID: PMC9082507 DOI: 10.1021/acs.jctc.1c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Absolute
binding free-energy (ABFE) calculations are playing an
increasing role in drug design, especially as they can be performed
on a range of disparate compounds and direct comparisons between them
can be made. It is, however, especially important to ensure that they
are as accurate as possible, as unlike relative binding free-energy
(RBFE) calculations, one does not benefit as much from a cancellation
of errors during the calculations. In most modern implementations
of ABFE calculations, a particle mesh Ewald scheme is typically used
to treat the electrostatic contribution to the free energy. A central
requirement of such schemes is that the box preserves neutrality throughout
the calculation. There are many ways to deal with this problem that
have been discussed over the years ranging from a neutralizing plasma
with a post hoc correction term through to a simple co-alchemical
ion within the same box. The post hoc correction approach is the most
widespread. However, the vast majority of these studies have been
applied to a soluble protein in a homogeneous solvent (water or salt
solution). In this work, we explore which of the more common approaches
would be the most suitable for a simulation box with a lipid bilayer
within it. We further develop the idea of the so-called Rocklin correction
for lipid-bilayer systems and show how such a correction could work.
However, we also show that it will be difficult to make this generalizable
in a practical way and thus we conclude that the use of a “co-alchemical
ion” is the most useful approach for simulations involving
lipid membrane systems.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| | - Philip C Biggin
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
562
|
Sutcliffe KJ, Corey RA, Alhosan N, Cavallo D, Groom S, Santiago M, Bailey C, Charlton SJ, Sessions RB, Henderson G, Kelly E. Interaction With the Lipid Membrane Influences Fentanyl Pharmacology. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2. [PMID: 35909438 PMCID: PMC7613138 DOI: 10.3389/adar.2022.10280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overdose deaths from fentanyl have reached epidemic proportions in the USA and are increasing worldwide. Fentanyl is a potent opioid agonist that is less well reversed by naloxone than morphine. Due to fentanyl’s high lipophilicity and elongated structure we hypothesised that its unusual pharmacology may be explained by its interactions with the lipid membrane on route to binding to the μ-opioid receptor (MOPr). Through coarse-grained molecular dynamics simulations, electrophysiological recordings and cell signalling assays, we determined how fentanyl and morphine access the orthosteric pocket of MOPr. Morphine accesses MOPr via the aqueous pathway; first binding to an extracellular vestibule, then diffusing into the orthosteric pocket. In contrast, fentanyl may take a novel route; first partitioning into the membrane, before accessing the orthosteric site by diffusing through a ligand-induced gap between the transmembrane helices. In electrophysiological recordings fentanyl-induced currents returned after washout, suggesting fentanyl deposits in the lipid membrane. However, mutation of residues forming the potential MOPr transmembrane access site did not alter fentanyl’s pharmacological profile in vitro. A high local concentration of fentanyl in the lipid membrane, possibly in combination with a novel lipophilic binding route, may explain the high potency and lower susceptibility of fentanyl to reversal by naloxone.
Collapse
Affiliation(s)
- Katy J Sutcliffe
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Robin A Corey
- Department of Biochemistry, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Norah Alhosan
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Damiana Cavallo
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sam Groom
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Marina Santiago
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Chris Bailey
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Steven J Charlton
- Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard B Sessions
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
563
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
564
|
Rashmi, Hasheminejad H, Herziger S, Mirzaalipour A, Singh AK, Netz RR, Böttcher C, Makki H, Sharma SK, Haag R. Supramolecular Engineering of Alkylated, Fluorinated, and Mixed Amphiphiles. Macromol Rapid Commun 2022; 43:e2100914. [PMID: 35239224 DOI: 10.1002/marc.202100914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
The rational design of perfluorinated amphiphiles to control the supramolecular aggregation in aqueous medium is still a key challenge for the engineering of supramolecular architectures. Here we present the synthesis and physical properties of six novel non-ionic amphiphiles. We also studied the effect of mixed alkylated and perfluorinated segments in a single amphiphile and compared it with only alkylated and perfluorinated units. To explore their morphological behavior in aqueous medium, we used dynamic light scattering (DLS) and cryo-TEM/EM measurements. We further confirmed their assembly mechanisms with theoretical investigations, using the Martini model to perform large-scale coarse-grained molecular dynamics simulations. These novel synthesized amphiphiles offer a greater and more systematic understanding of how perfluorinated systems assemble in aqueous medium and suggest new directions for rational designing of new amphiphilic systems and interpreting their assembly process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.,Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Hooman Hasheminejad
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Svenja Herziger
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195, Germany
| | - Alireza Mirzaalipour
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abhishek K Singh
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, Berlin, 14195, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195, Germany
| | - Hesam Makki
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Rainer Haag
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| |
Collapse
|
565
|
Licari G, Dehghani-Ghahnaviyeh S, Tajkhorshid E. Membrane Mixer: A Toolkit for Efficient Shuffling of Lipids in Heterogeneous Biological Membranes. J Chem Inf Model 2022; 62:986-996. [PMID: 35104125 PMCID: PMC8892574 DOI: 10.1021/acs.jcim.1c01388] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics (MD) simulations of biological membranes have achieved such levels of sophistication that are commonly used to predict unresolved structures and various properties of lipids and to substantiate experimental data. While achieving sufficient sampling of lipid dynamics remains a major challenge, a commonly used method to improve lipid sampling, e.g., in terms of specific interactions with membrane-associated proteins, is to randomize the initial arrangement of lipid constituents in multiple replicas of simulations, without changing the overall lipid composition of the membrane of interest. Here, we introduce a method that can rapidly generate multiple replicas of lipid bilayers with different spatial and conformational configurations for any given lipid composition. The underlying algorithm, which allows one to shuffle lipids at any desired level, relies on the application of an external potential, here referred to as the "carving potential", that removes clashes/entanglements before lipid positions are exchanged (shuffled), thereby minimizing the energy penalty due to abrupt lipid repositioning. The method is implemented as "Membrane Mixer Plugin (MMP) 1.0" in VMD, with a convenient graphical user interface that guides the user in setting various options and parameters. The plugin is fully automated and generates new membrane replicas more rapidly and conveniently than other analogous tools. The plugin and its capabilities introduced here can be extended to include additional features in future versions.
Collapse
Affiliation(s)
- Giuseppe Licari
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States,Current address: Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharmaceuticals, Inc., Biberach An Der Riß, Germany,Contributed equally to this work
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States,Contributed equally to this work
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
566
|
Li S, Cui R, Yu C, Zhou Y. Coarse-Grained Model of Thiol-Epoxy-Based Alternating Copolymers in Explicit Solvents. J Phys Chem B 2022; 126:1830-1841. [PMID: 35179028 DOI: 10.1021/acs.jpcb.1c09406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cosolvent method has been widely used in the self-assembly of amphiphilic alternating copolymers (ACPs), but the role of good and selective solvents is rarely investigated. Here, we have developed a coarse-grained (CG) model for the widely studied thiol-epoxy-based amphiphilic ACPs and a three-bead CG model for tetrahydrofuran (THF) as the good solvent, which is compatible with the MARTINI water model. The accuracy of both the CG polymer and THF models was validated by reproducing the structural and thermodynamic properties obtained from experiments or atomistic simulation results. Density in bulk, the radius of gyration, and solvation free energy in water or THF showed a good agreement between CG and atomistic models. The CG models were further employed to explore the self-assembly of ACPs in THF/water mixtures with different compositions. Chain folding and liquid-liquid phase separation behaviors were found with increasing water fractions, which were the key steps of the self-assembly process. This work will provide a basic platform to explore the self-assembly of amphiphilic ACPs in solvent mixtures and to reveal the real role of different solvents in self-assembly.
Collapse
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Cui
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
567
|
Tsourtou FD, Peroukidis SD, Peristeras LD. The phase behaviour of cetyltrimethylammonium chloride surfactant aqueous solutions at high concentrations: an all-atom molecular dynamics simulation study. SOFT MATTER 2022; 18:1371-1384. [PMID: 35076047 DOI: 10.1039/d1sm01639c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We explore the phase behaviour of aqueous solutions of the cetyltrimethyl ammonium chloride (CTAC) surfactant and in particular the transition from the micellar phase (L1) to the hexagonal columnar phase (H1) by employing all-atom (AA) molecular dynamics (MD) simulations for six CTAC concentrations in the range of 34.1 wt% to 70.5 wt%, at the temperature of 318 K and pressure of 1 atm. For the concentrations considered, we examine the spontaneous occurrence of the H1 phase by testing a number of plausible values for the linear density (molecules per unit length) along the cylindrical columns. Using large simulation cells and starting from random initial configurations, the MD simulations demonstrate that the micellar phase occurs for concentrations up to 50.0 wt%, with CTAC molecules self-assembling into a mixture of spherical and rod-like micelles. At even higher concentrations, the system self-organizes into the H1 phase in accordance with the available experimental data. For the analysis of the MD trajectories, we devise a clustering algorithm based on Voronoi tesselation which enables (a) the thorough characterization of the shape and structure of both molecules and assemblies, and (b) the investigation of the positional and orientational order in the system that are further scrutinised using radial pair correlation functions and X-ray diffraction patterns. Our work paves the way for the investigation of the phase behaviour at high concentrations of other surfactants.
Collapse
Affiliation(s)
- Flora D Tsourtou
- Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research "Demokritos", GR-15310 Agia Paraskevi Attikis, Greece.
| | - Stavros D Peroukidis
- Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research "Demokritos", GR-15310 Agia Paraskevi Attikis, Greece.
| | - Loukas D Peristeras
- Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, National Center for Scientific Research "Demokritos", GR-15310 Agia Paraskevi Attikis, Greece.
| |
Collapse
|
568
|
Vermaas JV, Mayne CG, Shinn E, Tajkhorshid E. Assembly and Analysis of Cell-Scale Membrane Envelopes. J Chem Inf Model 2022; 62:602-617. [PMID: 34910495 PMCID: PMC8903035 DOI: 10.1021/acs.jcim.1c01050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The march toward exascale computing will enable routine molecular simulation of larger and more complex systems, for example, simulation of entire viral particles, on the scale of approximately billions of atoms─a simulation size commensurate with a small bacterial cell. Anticipating the future hardware capabilities that will enable this type of research and paralleling advances in experimental structural biology, efforts are currently underway to develop software tools, procedures, and workflows for constructing cell-scale structures. Herein, we describe our efforts in developing and implementing an efficient and robust workflow for construction of cell-scale membrane envelopes and embedding membrane proteins into them. A new approach for construction of massive membrane structures that are stable during the simulations is built on implementing a subtractive assembly technique coupled with the development of a structure concatenation tool (fastmerge), which eliminates overlapping elements based on volumetric criteria rather than adding successive molecules to the simulation system. Using this approach, we have constructed two "protocells" consisting of MARTINI coarse-grained beads to represent cellular membranes, one the size of a cellular organelle and another the size of a small bacterial cell. The membrane envelopes constructed here remain whole during the molecular dynamics simulations performed and exhibit water flux only through specific proteins, demonstrating the success of our methodology in creating tight cell-like membrane compartments. Extended simulations of these cell-scale structures highlight the propensity for nonspecific interactions between adjacent membrane proteins leading to the formation of protein microclusters on the cell surface, an insight uniquely enabled by the scale of the simulations. We anticipate that the experiences and best practices presented here will form the basis for the next generation of cell-scale models, which will begin to address the addition of soluble proteins, nucleic acids, and small molecules essential to the function of a cell.
Collapse
Affiliation(s)
- Josh V. Vermaas
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Christopher G. Mayne
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Eric Shinn
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
569
|
Song W, Corey RA, Ansell TB, Cassidy CK, Horrell MR, Duncan AL, Stansfeld PJ, Sansom MSP. PyLipID: A Python Package for Analysis of Protein-Lipid Interactions from Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:1188-1201. [PMID: 35020380 PMCID: PMC8830038 DOI: 10.1021/acs.jctc.1c00708] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Lipids play important modulatory and structural roles for membrane proteins. Molecular dynamics simulations are frequently used to provide insights into the nature of these protein-lipid interactions. Systematic comparative analysis requires tools that provide algorithms for objective assessment of such interactions. We introduce PyLipID, a Python package for the identification and characterization of specific lipid interactions and binding sites on membrane proteins from molecular dynamics simulations. PyLipID uses a community analysis approach for binding site detection, calculating lipid residence times for both the individual protein residues and the detected binding sites. To assist structural analysis, PyLipID produces representative bound lipid poses from simulation data, using a density-based scoring function. To estimate residue contacts robustly, PyLipID uses a dual-cutoff scheme to differentiate between lipid conformational rearrangements while bound from full dissociation events. In addition to the characterization of protein-lipid interactions, PyLipID is applicable to analysis of the interactions of membrane proteins with other ligands. By combining automated analysis, efficient algorithms, and open-source distribution, PyLipID facilitates the systematic analysis of lipid interactions from large simulation data sets of multiple species of membrane proteins.
Collapse
Affiliation(s)
- Wanling Song
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
- Rahko,
Clifton House, 46 Clifton
Terrace, Finsbury Park, London N4 3JP, United Kingdom
| | - Robin A. Corey
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - T. Bertie Ansell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - C. Keith Cassidy
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Michael R. Horrell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anna L. Duncan
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Phillip J. Stansfeld
- School
of Life Sciences & Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
570
|
Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem Soc Trans 2022; 50:541-554. [PMID: 35129612 DOI: 10.1042/bst20210499] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and multidomain proteins with flexible linkers show a high level of structural heterogeneity and are best described by ensembles consisting of multiple conformations with associated thermodynamic weights. Determining conformational ensembles usually involves the integration of biophysical experiments and computational models. In this review, we discuss current approaches to determine conformational ensembles of IDPs and multidomain proteins, including the choice of biophysical experiments, computational models used to sample protein conformations, models to calculate experimental observables from protein structure, and methods to refine ensembles against experimental data. We also provide examples of recent applications of integrative conformational ensemble determination to study IDPs and multidomain proteins and suggest future directions for research in the field.
Collapse
|
571
|
Azadi-Chegeni F, Thallmair S, Ward ME, Perin G, Marrink SJ, Baldus M, Morosinotto T, Pandit A. Protein dynamics and lipid affinity of monomeric, zeaxanthin-binding LHCII in thylakoid membranes. Biophys J 2022; 121:396-409. [PMID: 34971616 PMCID: PMC8822613 DOI: 10.1016/j.bpj.2021.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
The xanthophyll cycle in the antenna of photosynthetic organisms under light stress is one of the most well-known processes in photosynthesis, but its role is not well understood. In the xanthophyll cycle, violaxanthin (Vio) is reversibly transformed to zeaxanthin (Zea) that occupies Vio binding sites of light-harvesting antenna proteins. Higher monomer/trimer ratios of the most abundant light-harvesting protein, the light-harvesting complex II (LHCII), usually occur in Zea accumulating membranes and have been observed in plants after prolonged illumination and during high-light acclimation. We present a combined NMR and coarse-grained simulation study on monomeric LHCII from the npq2 mutant that constitutively binds Zea in the Vio binding pocket. LHCII was isolated from 13C-enriched npq2 Chlamydomonas reinhardtii (Cr) cells and reconstituted in thylakoid lipid membranes. NMR results reveal selective changes in the fold and dynamics of npq2 LHCII compared with the trimeric, wild-type and show that npq2 LHCII contains multiple mono- or digalactosyl diacylglycerol lipids (MGDG and DGDG) that are strongly protein bound. Coarse-grained simulations on npq2 LHCII embedded in a thylakoid lipid membrane agree with these observations. The simulations show that LHCII monomers have more extensive lipid contacts than LHCII trimers and that protein-lipid contacts are influenced by Zea. We propose that both monomerization and Zea binding could have a functional role in modulating membrane fluidity and influence the aggregation and conformational dynamics of LHCII with a likely impact on photoprotection ability.
Collapse
Affiliation(s)
- Fatemeh Azadi-Chegeni
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Meaghan E Ward
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Giorgio Perin
- Department of Biology, University of Padua, Padua, Italy
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | | | - Anjali Pandit
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
572
|
Smith NA, Wardak AZ, Cowan AD, Colman PM, Czabotar PE, Smith BJ. The Bak core dimer focuses triacylglycerides in the membrane. Biophys J 2022; 121:347-360. [PMID: 34973947 PMCID: PMC8822611 DOI: 10.1016/j.bpj.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Apoptosis, the intrinsic programmed cell death process, is mediated by the Bcl-2 family members Bak and Bax. Activation via formation of symmetric core dimers and oligomerization on the mitochondrial outer membrane (MOM) leads to permeabilization and cell death. Although this process is linked to the MOM, the role of the membrane in facilitating such pores is poorly understood. We recently described Bak core domain dimers, revealing lipid binding sites and an initial role of lipids in oligomerization. Here we describe simulations that identified localized clustering and interaction of triacylglycerides (TAGs) with a minimized Bak dimer construct. Coalescence of TAGs occurred beneath this Bak dimer, mitigating dimer-induced local membrane thinning and curvature in representative coarse-grain MOM and model membrane systems. Furthermore, the effects observed as a result of coarse-grain TAG cluster formation was concentration dependent, scaling from low physiological MOM concentrations to those found in other organelles. We find that increasing the TAG concentration in liposomes mimicking the MOM decreased the ability of activated Bak to permeabilize these liposomes. These results suggest that the presence of TAGs within a Bak-lipid membrane preserves membrane integrity and is associated with reduced membrane stress, suggesting a possible role of TAGs in Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Nicholas A. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ahmad Z. Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Angus D. Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter M. Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian J. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia,Corresponding author
| |
Collapse
|
573
|
Martini 3 Model of Cellulose Microfibrils: On the Route to Capture Large Conformational Changes of Polysaccharides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030976. [PMID: 35164241 PMCID: PMC8838816 DOI: 10.3390/molecules27030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022]
Abstract
High resolution data from all-atom molecular simulations is used to parameterize a Martini 3 coarse-grained (CG) model of cellulose I allomorphs and cellulose type-II fibrils. In this case, elementary molecules are represented by four effective beads centred in the positions of O2, O3, C6, and O6 atoms in the D-glucose cellulose subunit. Non-bonded interactions between CG beads are tuned according to a low statistical criterion of structural deviation using the Martini 3 type of interactions and are capable of being indistinguishable for all studied cases. To maintain the crystalline structure of each single cellulose chain in the microfibrils, elastic potentials are employed to retain the ribbon-like structure in each chain. We find that our model is capable of describing different fibril-twist angles associated with each type of cellulose fibril in close agreement with atomistic simulation. Furthermore, our CG model poses a very small deviation from the native-like structure, making it appropriate to capture large conformational changes such as those that occur during the self-assembly process. We expect to provide a computational model suitable for several new applications such as cellulose self-assembly in different aqueous solutions and the thermal treatment of fibrils of great importance in bioindustrial applications.
Collapse
|
574
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
575
|
Insights into lipid-protein interactions from computer simulations. Biophys Rev 2022; 13:1019-1027. [PMID: 35047089 PMCID: PMC8724345 DOI: 10.1007/s12551-021-00876-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid-protein interactions play an important direct role in the function of many membrane proteins. We argue they are key players in membrane structure, modulate membrane proteins in more subtle ways than direct binding, and are important for understanding the mechanism of classes of hydrophobic drugs. By directly comparing membrane proteins from different families in the same, complex lipid mixture, we found a unique lipid environment for every protein. Extending this work, we identified both differences and similarities in the lipid environment of GPCRs, dependent on which family they belong to and in some cases their conformational state, with particular emphasis on the distribution of cholesterol. More recently, we have been studying modes of coupling between protein conformation and local membrane properties using model proteins. In more applied approaches, we have used similar methods to investigate specific hypotheses on interactions of lipid and lipid-like molecules with ion channels. We conclude this perspective with some considerations for future work, including a new more sophisticated coarse-grained force field (Martini 3), an interactive visual exploration framework, and opportunities to improve sampling.
Collapse
|
576
|
Empereur-Mot C, Capelli R, Perrone M, Caruso C, Doni G, Pavan GM. Automatic multi-objective optimization of coarse-grained lipid force fields using SwarmCG. J Chem Phys 2022; 156:024801. [PMID: 35032979 DOI: 10.1063/5.0079044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of coarse-grained (CG) molecular models typically requires a time-consuming iterative tuning of parameters in order to have the approximated CG models behave correctly and consistently with, e.g., available higher-resolution simulation data and/or experimental observables. Automatic data-driven approaches are increasingly used to develop accurate models for molecular dynamics simulations. However, the parameters obtained via such automatic methods often make use of specifically designed interaction potentials and are typically poorly transferable to molecular systems or conditions other than those used for training them. Using a multi-objective approach in combination with an automatic optimization engine (SwarmCG), here, we show that it is possible to optimize CG models that are also transferable, obtaining optimized CG force fields (FFs). As a proof of concept, here, we use lipids for which we can avail reference experimental data (area per lipid and bilayer thickness) and reliable atomistic simulations to guide the optimization. Once the resolution of the CG models (mapping) is set as an input, SwarmCG optimizes the parameters of the CG lipid models iteratively and simultaneously against higher-resolution simulations (bottom-up) and experimental data (top-down references). Including different types of lipid bilayers in the training set in a parallel optimization guarantees the transferability of the optimized lipid FF parameters. We demonstrate that SwarmCG can reach satisfactory agreement with experimental data for different resolution CG FFs. We also obtain stimulating insights into the precision-resolution balance of the FFs. The approach is general and can be effectively used to develop new FFs and to improve the existing ones.
Collapse
Affiliation(s)
- Charly Empereur-Mot
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Riccardo Capelli
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Mattia Perrone
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Cristina Caruso
- Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Giovanni Doni
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Giovanni M Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| |
Collapse
|
577
|
Sarker P, Sajib MSJ, Tao X, Wei T. Multiscale Simulation of Protein Corona Formation on Silver Nanoparticles: Study of Ovispirin-1 Peptide Adsorption. J Phys Chem B 2022; 126:601-608. [PMID: 35026946 DOI: 10.1021/acs.jpcb.1c08267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exposure of nanoparticles (NPs) to biofluids leads to the rapid coverage of proteins, named protein corona, which alters the NPs' chemicophysical and biological properties. Fundamental studies of the protein corona are thus critical to the increasing applications of NPs in nanotechnology and nanomedicines. The present work utilizes multiscale simulations of a model biological system, small ovispirin-1 peptides, and bare silver nanoparticles (AgNPs) to examine the NPs' size and surface hydrophilicity effects on formation dynamics and the structure of the peptide corona. Our simulations revealed the different adsorption dynamics of ovispirin-1 peptides on the NPs, including the direct adsorption of a single peptide and peptide aggregates and multistep adsorption, as well as an intermediate cycle of desorption and readsorption. Notably, the whole process of peptide adsorption on hydrophilic AgNP surfaces can be generalized as three stages: diffusion to the surface, initial landing via hydrophilic residues, and the final attachment. The decrease in AgNP's size leads to faster adsorption with more heterogeneous peptide interfacial dynamics, a denser and inhomogeneous peptide packing structure, and a wider distribution of adsorption orientations. Subsequent atomistic molecular dynamics simulations demonstrated that on the hydrophilic AgNP surfaces, adsorbed peptides display moderate changes in their secondary structure, resulting in further changes of corona composition, i.e., amino acid residue distribution on the surface.
Collapse
Affiliation(s)
- Pranab Sarker
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| | - Md Symon Jahan Sajib
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| | - Xiuping Tao
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|
578
|
Elahi A, Bidault X, Chaudhuri S. Temperature-Transferable Coarse-Grained Model for Poly(propylene oxide) to Study Thermo-Responsive Behavior of Triblock Copolymers. J Phys Chem B 2022; 126:292-307. [PMID: 34982567 DOI: 10.1021/acs.jpcb.1c06318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thermo-responsive behavior of ethylene oxide (EO)-propylene oxide (PO) copolymers makes them suitable for many potential applications. Reproducing the origins of the tunable properties of EO-PO copolymers using coarse-grained (CG) models such as the MARTINI force field is critically important for building a better understanding of their behavior. In the present work, we have investigated the effects of coarse-graining on the water-polymer interaction across a temperature range. We compared the performance of different all-atom force fields to find the most appropriate one for the purpose of PO block parameterization in the MARTINI platform. We parameterized a CG temperature-dependent PO model based on the reproduction of the atomistic free energy of transfer of propylene oxide trimer from octane to water over a range of temperatures (20-60 °C) and compared the atomistic bond and angle distributions. Then, we used the model to study the effects of EO/PO ratio, molecular weight, and concentration on the thermo-responsive behavior of EO-PO copolymers in water. The results show an excellent agreement with experiments in different areas. Our temperature-dependent model reproduces (1) micellar phase above critical micelle temperature (CMT) and unimer phase below CMT for different Pluronics (a class of EO-PO triblock copolymers) spanning many EO/PO ratios and molecular weights; (2) spherical-to-rodlike micellar shape transition for Pluronics with 60 wt % of PO content or more; (3) diffusion coefficients for Pluronics with high PO content (P104 Pluronic with a PO mass of 3500 g mol-1) across a broad range of temperatures; and (4) micelle core size and micelle diameter similar to experimental results. Overall, our model improves the temperature sensitivity of EO-PO copolymers of existing models significantly, particularly for copolymers that are dominated by PO agents.
Collapse
Affiliation(s)
- Arash Elahi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Xavier Bidault
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Santanu Chaudhuri
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
579
|
Liu Z, Moreira RA, Dujmović A, Liu H, Yang B, Poma AB, Nash MA. Mapping Mechanostable Pulling Geometries of a Therapeutic Anticalin/CTLA-4 Protein Complex. NANO LETTERS 2022; 22:179-187. [PMID: 34918516 PMCID: PMC8759085 DOI: 10.1021/acs.nanolett.1c03584] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Indexed: 05/27/2023]
Abstract
We used single-molecule AFM force spectroscopy (AFM-SMFS) in combination with click chemistry to mechanically dissociate anticalin, a non-antibody protein binding scaffold, from its target (CTLA-4), by pulling from eight different anchor residues. We found that pulling on the anticalin from residue 60 or 87 resulted in significantly higher rupture forces and a decrease in koff by 2-3 orders of magnitude over a force range of 50-200 pN. Five of the six internal anchor points gave rise to complexes significantly more stable than N- or C-terminal anchor points, rupturing at up to 250 pN at loading rates of 0.1-10 nN s-1. Anisotropic network modeling and molecular dynamics simulations helped to explain the geometric dependency of mechanostability. These results demonstrate that optimization of attachment residue position on therapeutic binding scaffolds can provide large improvements in binding strength, allowing for mechanical affinity maturation under shear stress without mutation of binding interface residues.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Rodrigo A. Moreira
- Biosystems
and Soft Matter Division, Institute of Fundamental
Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Ana Dujmović
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Haipei Liu
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Byeongseon Yang
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Adolfo B. Poma
- Biosystems
and Soft Matter Division, Institute of Fundamental
Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
- International
Center for Research on Innovative Biobased Materials (ICRI-BioM)—International
Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
- National
Center for Competence in Research (NCCR) Molecular Systems Engineering, 4058 Basel, Switzerland
| |
Collapse
|
580
|
Wang B, Zhong C, Tieleman DP. Supramolecular Organization of SARS-CoV and SARS-CoV-2 Virions Revealed by Coarse-Grained Models of Intact Virus Envelopes. J Chem Inf Model 2022; 62:176-186. [PMID: 34911299 PMCID: PMC8691453 DOI: 10.1021/acs.jcim.1c01240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 19 (COVID-19) pandemic is causing a global health crisis and has already caused a devastating societal and economic burden. The pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a high sequence and architecture identity with SARS-CoV, but far more people have been infected by SARS-CoV-2. Here, combining the structural data from cryo-electron microscopy and structure prediction, we constructed bottom-up Martini coarse-grained models of intact SARS-CoV and SARS-CoV-2 envelopes. Microsecond molecular dynamics simulations were performed, allowing us to explore their dynamics and supramolecular organization. Both SARS-CoV and SARS-CoV-2 envelopes present a spherical morphology, with structural proteins forming multiple string-like islands in the membrane and clusters between the heads of spike proteins. Critical differences between the SARS-CoV and SARS-CoV-2 envelopes are the interaction pattern between the spike proteins and the flexibility of the spike proteins. Our models provide structural and dynamic insights into the SARS virus envelopes and could be used for further investigation, such as drug design and membrane fusion and fission processes.
Collapse
Affiliation(s)
- Beibei Wang
- Centre for Advanced Materials Research, Advanced
Institute of Natural Sciences, Beijing Normal University at
Zhuhai, No. 18 Jinfeng Road, Zhuhai 519087, Guangdong,
China
| | - Changqing Zhong
- Centre for Informational Biology, School of Life
Science and Technology, University of Electronic Science and Technology of
China, 2006 Xiyuan Avenue, Chengdu 611731, Sichuan,
China
| | - D. Peter Tieleman
- Department of Biological Sciences and Centre for
Molecular Simulation, University of Calgary, 2500 University
Drive North West, Calgary T2N 1N4, Alberta, Canada
| |
Collapse
|
581
|
Grünewald F, Alessandri R, Kroon PC, Monticelli L, Souza PCT, Marrink SJ. Polyply; a python suite for facilitating simulations of macromolecules and nanomaterials. Nat Commun 2022; 13:68. [PMID: 35013176 PMCID: PMC8748707 DOI: 10.1038/s41467-021-27627-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular dynamics simulations play an increasingly important role in the rational design of (nano)-materials and in the study of biomacromolecules. However, generating input files and realistic starting coordinates for these simulations is a major bottleneck, especially for high throughput protocols and for complex multi-component systems. To eliminate this bottleneck, we present the polyply software suite that provides 1) a multi-scale graph matching algorithm designed to generate parameters quickly and for arbitrarily complex polymeric topologies, and 2) a generic multi-scale random walk protocol capable of setting up complex systems efficiently and independent of the target force-field or model resolution. We benchmark quality and performance of the approach by creating realistic coordinates for polymer melt simulations, single-stranded as well as circular single-stranded DNA. We further demonstrate the power of our approach by setting up a microphase-separated block copolymer system, and by generating a liquid-liquid phase separated system inside a lipid vesicle.
Collapse
Affiliation(s)
- Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Riccardo Alessandri
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Peter C Kroon
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
582
|
Machado N, Bruininks BMH, Singh P, Dos Santos L, Dal Pizzol C, Dieamant GDC, Kruger O, Martin AA, Marrink SJ, Souza PCT, Favero PP. Complex nanoemulsion for vitamin delivery: droplet organization and interaction with skin membranes. NANOSCALE 2022; 14:506-514. [PMID: 34913938 DOI: 10.1039/d1nr04610a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lipid nanoemulsions are promising nanomaterials for drug delivery applications in food, pharmaceutical and cosmetic industries. Despite the noteworthy commercial interest, little is known about their supramolecular organization, especially about how such multicomponent formulations interact with cell membranes. In the present work, coarse-grained molecular dynamics simulations have been employed to study the self-assembly of a 15-component lipid nanoemulsion droplet containing vitamins A and E for skin delivery. Our results display aspects of the unique "onion-like" agglomeration between the chemical constituents in the different layers of the lipid nanodroplet. Vitamin E molecules are more concentrated in the center of the droplet together with other hydrophobic constituents such as the triglycerides with long tails. On the other hand, vitamin A occupies an intermediate layer between the core and the co-emulsifier surface of the nanodroplet, together with lecithin phospholipids. Coarse-grained molecular dynamics simulations were also performed to provide insight into the first steps involved in absorption and penetration of the nanodroplet through skin membrane models, representing an intracellular (hair follicle infundibulum) and intercellular pathway (stratum corneum) through the skin. Our data provide a first view on the complex organization of commercial nanoemulsion and its interaction with skin membranes. We expect our results to open the way towards the rational design of such nanomaterials.
Collapse
Affiliation(s)
- Neila Machado
- Institute of Research and Development, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000, São José dos Campos, São Paulo, Brazil
- UFABC Universidade Federal do ABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil.
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Priyanka Singh
- Institute of Research and Development, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000, São José dos Campos, São Paulo, Brazil
| | - Laurita Dos Santos
- Institute of Research and Development, Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000, São José dos Campos, São Paulo, Brazil
- Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy Group. Universidade Brasil UnBr, Rua Carolina Fonseca 235, 08230-030, Itaquera, São Paulo, Brazil.
| | - Carine Dal Pizzol
- Grupo Boticário, Av. Rui Barbosa, 4110, 83055-010, Parque da Fonte, São José dos Pinhais, Paraná, Brazil
| | - Gustavo de C Dieamant
- Grupo Boticário, Av. Rui Barbosa, 4110, 83055-010, Parque da Fonte, São José dos Pinhais, Paraná, Brazil
| | - Odivania Kruger
- Grupo Boticário, Av. Rui Barbosa, 4110, 83055-010, Parque da Fonte, São José dos Pinhais, Paraná, Brazil
| | - Airton A Martin
- Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy Group. Universidade Brasil UnBr, Rua Carolina Fonseca 235, 08230-030, Itaquera, São Paulo, Brazil.
- DermoProbes - Research, Innovation and Technological Development, Av. Cassiano Ricardo, 601, Sala 73-74, 12246-870, São José dos Campos, SP, Brazil
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France.
| | - Priscila P Favero
- Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy Group. Universidade Brasil UnBr, Rua Carolina Fonseca 235, 08230-030, Itaquera, São Paulo, Brazil.
| |
Collapse
|
583
|
Ingólfsson HI, Neale C, Carpenter TS, Shrestha R, López CA, Tran TH, Oppelstrup T, Bhatia H, Stanton LG, Zhang X, Sundram S, Di Natale F, Agarwal A, Dharuman G, Kokkila Schumacher SIL, Turbyville T, Gulten G, Van QN, Goswami D, Jean-Francois F, Agamasu C, Chen D, Hettige JJ, Travers T, Sarkar S, Surh MP, Yang Y, Moody A, Liu S, Van Essen BC, Voter AF, Ramanathan A, Hengartner NW, Simanshu DK, Stephen AG, Bremer PT, Gnanakaran S, Glosli JN, Lightstone FC, McCormick F, Nissley DV, Streitz FH. Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proc Natl Acad Sci U S A 2022; 119:e2113297119. [PMID: 34983849 PMCID: PMC8740753 DOI: 10.1073/pnas.2113297119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Rebika Shrestha
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy H Tran
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Harsh Bhatia
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Liam G Stanton
- Department of Mathematics and Statistics, San José State University, San José, CA 95192
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shiv Sundram
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Francesco Di Natale
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Gautham Dharuman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | - Thomas Turbyville
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Gulcin Gulten
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Que N Van
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Debanjan Goswami
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Frantz Jean-Francois
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Constance Agamasu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - De Chen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Jeevapani J Hettige
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Sumantra Sarkar
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Michael P Surh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Yue Yang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Adam Moody
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shusen Liu
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Brian C Van Essen
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Arthur F Voter
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Arvind Ramanathan
- Computing, Environment & Life Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Dhirendra K Simanshu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Andrew G Stephen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Peer-Timo Bremer
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Frank McCormick
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115
| | - Dwight V Nissley
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;
| |
Collapse
|
584
|
Challenges and frontiers of computational modelling of biomolecular recognition. QRB DISCOVERY 2022. [DOI: 10.1017/qrd.2022.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Biomolecular recognition including binding of small molecules, peptides and proteins to their target receptors plays a key role in cellular function and has been targeted for therapeutic drug design. However, the high flexibility of biomolecules and slow binding and dissociation processes have presented challenges for computational modelling. Here, we review the challenges and computational approaches developed to characterise biomolecular binding, including molecular docking, molecular dynamics simulations (especially enhanced sampling) and machine learning. Further improvements are still needed in order to accurately and efficiently characterise binding structures, mechanisms, thermodynamics and kinetics of biomolecules in the future.
Collapse
|
585
|
Yu G, Wilson MR. Molecular simulation studies of self-assembly for a chromonic perylene dye: All-atom studies and new approaches to coarse-graining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
586
|
Sotillos S, von der Decken I, Domenech Mercadé I, Srinivasan S, Sirokha D, Livshits L, Vanni S, Nef S, Biason-Lauber A, Rodríguez Gutiérrez D, Castelli-Gair Hombría J. A conserved function of Human DLC3 and Drosophila Cv-c in testis development. eLife 2022; 11:82343. [PMID: 36326091 PMCID: PMC9678365 DOI: 10.7554/elife.82343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development (DSD). Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients. We have studied the requirement of Cv-c, the Drosophila ortholog of DLC3, in Drosophila gonad development, as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development. We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting functional conservation. We also demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity. This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del DesarrolloSevilleSpain
| | - Isabel von der Decken
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Ivan Domenech Mercadé
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | | - Dmytro Sirokha
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Ludmila Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Stefano Vanni
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Anna Biason-Lauber
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Daniel Rodríguez Gutiérrez
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
587
|
Guardiani C, Cecconi F, Chiodo L, Cottone G, Malgaretti P, Maragliano L, Barabash ML, Camisasca G, Ceccarelli M, Corry B, Roth R, Giacomello A, Roux B. Computational methods and theory for ion channel research. ADVANCES IN PHYSICS: X 2022; 7:2080587. [PMID: 35874965 PMCID: PMC9302924 DOI: 10.1080/23746149.2022.2080587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023] Open
Abstract
Ion channels are fundamental biological devices that act as gates in order to ensure selective ion transport across cellular membranes; their operation constitutes the molecular mechanism through which basic biological functions, such as nerve signal transmission and muscle contraction, are carried out. Here, we review recent results in the field of computational research on ion channels, covering theoretical advances, state-of-the-art simulation approaches, and frontline modeling techniques. We also report on few selected applications of continuum and atomistic methods to characterize the mechanisms of permeation, selectivity, and gating in biological and model channels.
Collapse
Affiliation(s)
- C. Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - F. Cecconi
- CNR - Istituto dei Sistemi Complessi, Rome, Italy and Istituto Nazionale di Fisica Nucleare, INFN, Roma1 section. 00185, Roma, Italy
| | - L. Chiodo
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| | - G. Cottone
- Department of Physics and Chemistry-Emilio Segrè, University of Palermo, Palermo, Italy
| | - P. Malgaretti
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Erlangen, Germany
| | - L. Maragliano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy, and Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - M. L. Barabash
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - G. Camisasca
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
- Dipartimento di Fisica, Università Roma Tre, Rome, Italy
| | - M. Ceccarelli
- Department of Physics and CNR-IOM, University of Cagliari, Monserrato 09042-IT, Italy
| | - B. Corry
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - R. Roth
- Institut Für Theoretische Physik, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - A. Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - B. Roux
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago IL, USA
| |
Collapse
|
588
|
Shi H, Ji T, Zhai C, Lu J, Huang W, Yeo J. Thermo- and Ion-responsive Silk-elastin-like Proteins and Their Multiscale Mechanisms. J Mater Chem B 2022; 10:6133-6142. [DOI: 10.1039/d2tb01002j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silk-elastin-like protein (SELP) is an excellent biocompatible and biodegradable material for hydrogels with tunable properties that can respond to multiple external stimuli. By integrating fully atomistic, replica exchange molecular dynamics...
Collapse
|
589
|
Appukutti N, de Vries AH, Gudeangadi PG, Claringbold BR, Garrett MD, Reithofer MR, Serpell CJ. Sequence-complementarity dependent co-assembly of phosphodiester-linked aromatic donor–acceptor trimers. Chem Commun (Camb) 2022; 58:12200-12203. [DOI: 10.1039/d2cc00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-defined trimers of phosphodiester-linked aromatic donor–acceptors self-assemble according to monomer order, and co-assemble into new structures with their complementary sequence.
Collapse
Affiliation(s)
- Nadeema Appukutti
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Alex H. de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Prashant G. Gudeangadi
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Bini R. Claringbold
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Michelle D. Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Michael R. Reithofer
- Dept. of Inorganic Chemistry, University of Vienna, Wahringer Strabe. 42, 1090 Vienna, Austria
| | - Christopher J. Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| |
Collapse
|
590
|
Di Bartolo AL, Masone D. Synaptotagmin-1 C2B domains cooperatively stabilize the fusion stalk via a master-servant mechanism. Chem Sci 2022; 13:3437-3446. [PMID: 35432859 PMCID: PMC8943895 DOI: 10.1039/d1sc06711g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmin-1 is a low-affinity Ca2+ sensor that triggers synchronous vesicle fusion. It contains two similar C2 domains (C2A and C2B) that cooperate in membrane binding, being the C2B domain the...
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
| |
Collapse
|
591
|
Bernardino K, Ribeiro MCC. Role of density and electrostatic interactions in the viscosity and non-newtonian behavior of ionic liquids – a molecular dynamics study. Phys Chem Chem Phys 2022; 24:6866-6879. [DOI: 10.1039/d1cp05692a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Both viscosity and the shear-thinning of ionic liquids are determined mainly by ionic interaction, with density having a secondary effect.
Collapse
Affiliation(s)
- Kalil Bernardino
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, Brazil
| | - Mauro C. C. Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, Brazil
| |
Collapse
|
592
|
Hochwallner A, Stampfl J. A Martini 3 coarse-grain model for the simulation of the photopolymerizable organic phase in dental composites. RSC Adv 2022; 12:12053-12059. [PMID: 35481065 PMCID: PMC9020187 DOI: 10.1039/d2ra00732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
A coarse grain model of Bis-GMA and TEGDMA is presented and used to study aspects relevant to dental composites. It was found that the simulated polymerization shrinkage and double bond conversions are in good agreement with experimental data.
Collapse
Affiliation(s)
- Alexander Hochwallner
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
593
|
Alessandri R, Barnoud J, Gertsen AS, Patmanidis I, de Vries AH, Souza PCT, Marrink SJ. Martini 3 Coarse‐Grained Force Field: Small Molecules. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Riccardo Alessandri
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Anders S. Gertsen
- Department of Energy Conversion and Storage Technical University of Denmark Fysikvej 310 Lyngby DK‐2800 Kgs. Denmark
| | - Ilias Patmanidis
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Alex H. de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Paulo C. T. Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| |
Collapse
|
594
|
Barbosa GD, Turner CH. Martini Coarse-Grained Model for Poly(alkylimidazolium) Ionenes and Applications in Aromatic Compound Extraction. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriel D. Barbosa
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - C. Heath Turner
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
595
|
Borges-Araújo L, Souza PCT, Fernandes F, Melo MN. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field. J Chem Theory Comput 2021; 18:357-373. [PMID: 34962393 DOI: 10.1021/acs.jctc.1c00615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoinositides are a family of membrane phospholipids that play crucial roles in membrane regulatory events. As such, these lipids are often a key part of molecular dynamics simulation studies of biological membranes, in particular of those employing coarse-grain models because of the potential long times and sizes of the involved membrane processes. Version 3 of the widely used Martini coarse-grain force field has been recently published, greatly refining many aspects of biomolecular interactions. In order to properly use it for lipid membrane simulations with phosphoinositides, we put forth the Martini 3-specific parameterization of inositol, phosphatidylinositol, and seven physiologically relevant phosphorylated derivatives of phosphatidylinositol. Compared to parameterizations for earlier Martini versions, focus was put on a more accurate reproduction of the behavior seen in both atomistic simulations and experimental studies, including the signaling-relevant phosphoinositide interaction with divalent cations. The models that we develop improve upon the conformational dynamics of phosphoinositides in the Martini force field and provide stable topologies at typical Martini time steps. They are able to reproduce experimentally known protein-binding poses as well as phosphoinositide aggregation tendencies. The latter was tested both in the presence and absence of calcium and included correct behavior of PI(4,5)P2 calcium-induced clusters, which can be of relevance for regulation.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Associate Laboratory i4HB─Institute for Health and Bioeconomy, at Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, 7 Passage du Vercors, Lyon F-69367, France
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Associate Laboratory i4HB─Institute for Health and Bioeconomy, at Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
596
|
Explicit-pH Coarse-Grained Molecular Dynamics Simulations Enable Insights into Restructuring of Intestinal Colloidal Aggregates with Permeation Enhancers. Processes (Basel) 2021. [DOI: 10.3390/pr10010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Permeation enhancers (PEs) can increase the bioavailability of drugs. The mechanisms of action of these PEs are complex, but, typically, when used for oral administration, they can transiently induce the alteration of trans- and paracellular pathways, including increased solubilization and membrane fluidity, or the opening of the tight junctions. To elucidate these mechanistic details, it is important to understand the aggregation behavior of not only the PEs themselves but also other molecules already present in the intestine. Aggregation processes depend critically on, among other factors, the charge state of ionizable chemical groups, which is affected by the pH of the system. In this study, we used explicit-pH coarse-grained molecular dynamics simulations to investigate the aggregation behavior and pH dependence of two commonly used PEs—caprate and SNAC—together with other components of fasted- and fed-state simulated intestinal fluids. We also present and validate a coarse-grained molecular topology for the bile salt taurocholate suitable for the Martini3 force-field. Our results indicate an increase in the number of free molecules as a function of the system pH and for each combination of FaSSIF/FeSSIF and PEs. In addition, there are differences between caprate and SNAC, which are rationalized based on their different molecular structures and critical micelle concentrations.
Collapse
|
597
|
Bassereau P. Concluding remarks: peptide-membrane interactions. Faraday Discuss 2021; 232:482-493. [PMID: 34825682 DOI: 10.1039/d1fd00077b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article is based on the concluding remarks lecture given at the Faraday Discussion meeting on peptide-membrane interactions, held online, 8-10th September 2021.
Collapse
Affiliation(s)
- Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France.
| |
Collapse
|
598
|
Fu H, Shao X, Cai W. Computer-aided design of molecular machines: techniques, paradigms and difficulties. Phys Chem Chem Phys 2021; 24:1286-1299. [PMID: 34951435 DOI: 10.1039/d1cp04942a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With their development in the past decade, molecular machines, which achieve specific tasks by responding to external stimuli, have gradually come to be regarded as powerful tools for a wide range of applications, rather than interesting molecular toys. This conceptual change in turn motivates scientists to design molecular machines with complex architectures. Due to the lack of general principles bridging the functions and the chemical structures of molecular machines, experience-based design becomes difficult with the increase of size and complexity of the architectures. Computer-aided molecular-machine design, therefore, has attracted widespread attention on account of its ability to model and investigate complex molecular architectures without too much time and expense required for synthetic experiments. Using leading-edge numerical-simulation techniques, the mechanisms underlying achieving tasks through response to external stimuli of a large number of existing molecular machines have been successfully explored. Based on the experience of studying existing molecular machines, generalized methodologies of predicting the properties and working principles of molecular candidates have been established, paving the way for de novo computer-aided design of molecular machines. In this perspective, we introduce cutting-edge techniques that have been applied for investigating and designing molecular machines. We show paradigms of computer-aided design of molecular machines, which can serve as guidelines for the investigation of new supramolecular architectures. Moreover, we discuss the limitations and possible future developments of current techniques and methodologies in the field of computer-aided design of molecular machines.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
| |
Collapse
|
599
|
Srinivasan S, Vanni S. Computational Approaches to Investigate and Design Lipid-binding Domains for Membrane Biosensing. Chimia (Aarau) 2021; 75:1031-1036. [PMID: 34920773 DOI: 10.2533/chimia.2021.1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Association of proteins with cellular membranes is critical for signaling and membrane trafficking processes. Many peripheral lipid-binding domains have been identified in the last few decades and have been investigated for their specific lipid-sensing properties using traditional in vivo and in vitro studies. However, several knowledge gaps remain owing to intrinsic limitations of these methodologies. Thus, novel approaches are necessary to further our understanding in lipid-protein biology. This review briefly discusses lipid-binding domains that act as specific lipid biosensors and provides a broad perspective on the computational approaches such as molecular dynamics (MD) simulations and machine learning (ML)-based techniques that can be used to study protein-membrane interactions. We also highlight the need for de novo design of proteins that elicit specific lipid-binding properties.
Collapse
Affiliation(s)
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland;,
| |
Collapse
|
600
|
Sawade K, Peter C. Multiscale simulations of protein and membrane systems. Curr Opin Struct Biol 2021; 72:203-208. [PMID: 34953308 DOI: 10.1016/j.sbi.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Classical multiscale simulations are perfectly suited to investigate biological soft matter systems. Owing to the bridging between microscopically realistic and lower-resolution models or the integration of a hierarchy of subsystems, one gets access to biologically relevant system sizes and timescales. In recent years, increasingly complex systems and processes have come into focus such as multidomain proteins, phase separation processes in biopolymer solutions, multicomponent biomembranes, or multiprotein complexes up to entire viruses. The review shows factors that have contributed to this progress - from improved models to machine-learning-based analysis and scale-bridging methods.
Collapse
Affiliation(s)
- Kevin Sawade
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78 457, Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78 457, Konstanz, Germany.
| |
Collapse
|