551
|
May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18:7621-36. [PMID: 10618702 DOI: 10.1038/sj.onc.1203285] [Citation(s) in RCA: 442] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- P May
- Laboratoire de Cancérogenèse Moléculaire, UMR 217 CEA-CNRS, DRR, DSV, CEA 60-68 Av. Division Leclerc B.P. no 6-92265 Fontenay Aux Roses Cedex, France
| | | |
Collapse
|
552
|
David-Pfeuty T. Potent inhibitors of cyclin-dependent kinase 2 induce nuclear accumulation of wild-type p53 and nucleolar fragmentation in human untransformed and tumor-derived cells. Oncogene 1999; 18:7409-22. [PMID: 10602500 DOI: 10.1038/sj.onc.1203103] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1999] [Revised: 07/18/1999] [Accepted: 07/21/1999] [Indexed: 11/10/2022]
Abstract
The cdk2 gene has been identified as a human cdc2/CDC28-related gene that encodes a protein kinase essential for the G1/S transition in mammalian cells, but not for the G2/M transition, which requires Cdk1, another p34cdc2/CDC28 homolog. Novel potential functions of Cdk2 have been uncovered by using two potent and specific inhibitors of its kinase activity, roscovitine and olomoucine, on human wt p53-expresser untransformed and tumor-derived cells. At concentrations equal or superior to respectively 30- and 20-fold their in vitro IC50 values for cyclin B/Cdk1, cyclin A/Cdk2 and cyclin E/Cdk2, the Cdk inhibitors precipitately induce a dramatic nuclear accumulation of wt p53 and a delocalization of nucleolin from the nucleolus in all interphase cells, whatever their cell cycle status, acting in this way like the DNA-damaging drug, mitomycin C (7 microg/ml). These early events are soon followed by a nucleolar fragmentation in both normal and tumor cells in the presence of the Cdk inhibitors but not in the presence of the DNA-damaging drug. Yet, treatment with either type of compounds eventually triggers rapidly the death of the tumor cells and, much more slowly, that of the normal cells. The Cdk inhibitors, however, stimulate cell death from any stage of the cell cycle, whereas the DNA-damaging drug kills more efficaciously S phase cells. These observations provide a hint that the Cdk2 kinase might be involved in controlling the nuclear levels of the tumor suppressor wt p53 protein and in maintaining the nucleolar integrity and function, linking in this way the cell division cycle machinery to survival functions and overall cell metabolism via the control of nucleocytoplasmic transport and of ribosome production.
Collapse
Affiliation(s)
- T David-Pfeuty
- UMR 146 du CNRS, Institut Curie-Recherche, Bâtiment 110, Centre Universitaire, 91405 Orsay Cédex, France
| |
Collapse
|
553
|
Smart P, Lane EB, Lane DP, Midgley C, Vojtesek B, Laín S. Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene 1999; 18:7378-86. [PMID: 10602494 DOI: 10.1038/sj.onc.1203260] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53 tumour suppressor protein levels and p53-dependent transcriptional activity have been recently shown to increase in cells treated with leptomycin B (LMB), an inhibitor of nuclear export. Experiments presented here show that LMB treatment leads to growth arrest and a senescence-like phenotype in human normal fibroblast cultures. This effect is reversible after removal of the drug and further passage by trypsinization. Instead, LMB has a strong cytotoxic effect on human neuroblastoma cell lines even at nanomolar concentrations. In both these cell types the effects of LMB are attenuated when the activity of the endogenous wild type p53 protein is abrogated by overexpression of a dominant negative p53 mutant. We conclude that the induction of the p53 response by LMB plays an important role in the effects of this drug on cultured cells.
Collapse
Affiliation(s)
- P Smart
- CRC Cell Structure Research Group, Department of Anatomy and Physiology, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
554
|
Pasion SG, Forsburg SL. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly. Mol Biol Cell 1999; 10:4043-57. [PMID: 10588642 PMCID: PMC25742 DOI: 10.1091/mbc.10.12.4043] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.
Collapse
Affiliation(s)
- S G Pasion
- The Salk Institute for Biological Studies, Molecular Biology and Virology Laboratory, La Jolla, California 92037, USA
| | | |
Collapse
|
555
|
Liang SH, Clarke MF. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 1999; 274:32699-703. [PMID: 10551826 DOI: 10.1074/jbc.274.46.32699] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal p53 cellular localization has been considered to be one of the mechanisms that could inactivate p53 function. To understand the regulation of p53 cellular trafficking, we have previously identified two p53 domains involved in its localization. A basic domain, Lys(305)-Arg(306), is required for p53 nuclear import, and a carboxyl-terminal domain, namely the cytoplasmic sequestration domain (CSD) from residues 326-355, could block the nuclear import of Lys(305) or Arg(306) mutated p53. To characterize further the function of these two domains, we demonstrate in this report that the previously described major nuclear localization signal works together with Lys(305)-Arg(306) to form a bipartite and functional nuclear localization sequence (NLS) for p53 nuclear import. The CSD could block the binding of p53 to the NLS receptor, importin alpha, and reduce the efficiency of p53 nuclear import in MCF-7, H1299, and Saos-2 cells. The blocking effect of the CSD is not due to the enhancement of nuclear export or oligomerization of the p53. These results indicate that the CSD can regulate p53 nuclear import by controlling access of the NLS to importin alpha binding.
Collapse
Affiliation(s)
- S H Liang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0936, USA
| | | |
Collapse
|
556
|
Blagosklonny MV, An WG, Melillo G, Nguyen P, Trepel JB, Neckers LM. Regulation of BRCA1 by protein degradation. Oncogene 1999; 18:6460-8. [PMID: 10597248 DOI: 10.1038/sj.onc.1203068] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1999] [Revised: 06/29/1999] [Accepted: 06/30/1999] [Indexed: 11/08/2022]
Abstract
BRCA1, a tumor suppressor protein implicated in hereditary forms of breast and ovarian cancer, is transcriptionally regulated in a proliferation-dependent manner. In this study, we demonstrate a substantial role for proteolysis in regulating the BRCA1 steady-state protein level in several cell lines. N-acetyl-leu-leu-norleucinal (ALLN), an inhibitor of the proteasome, calpain, and cathepsins, caused BRCA1 protein to accumulate in the nucleus of several human breast, prostate, and melanoma cell lines which express low or undetectable basal levels of BRCA1 protein, but not in cells with high basal expression of BRCA1. Protease inhibition did not increase BRCA1 synthesis, nor change its mRNA level, but it dramatically prolonged the protein's half-life. In contrast to ALLN, lactacystin and PS341, two specific proteasome inhibitors, as well as calpastatin peptide and PD150606, two selective calpain inhibitors, had no effect on BRCA1 stability, whereas ALLM, an effective calpain and cathepsin inhibitor but weak proteasome inhibitor, did stimulate accumulation of BRCA1. Moreover, three inhibitors of acidic cysteine proteases, chloroquine, ammonium chloride and bafilomycin, were as effective as ALLN. These results demonstrate that degradation by a cathepsin-like protease in fine balance with BRCA1 transcription is responsible for maintaining the low steady-state level of BRCA1 protein seen in many cancer cells.
Collapse
Affiliation(s)
- M V Blagosklonny
- Department of Therapeutics, National Cancer Institute, NIH, Bethesda, Maryland, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
557
|
Ferrigno P, Silver PA. Regulated nuclear localization of stress-responsive factors: how the nuclear trafficking of protein kinases and transcription factors contributes to cell survival. Oncogene 1999; 18:6129-34. [PMID: 10557104 DOI: 10.1038/sj.onc.1203132] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The details of nuclear transport mechanisms are emerging rapidly, largely through work with model organisms. Here, we briefly describe these advances, with an emphasis on the remaining challenges. We then address the nuclear transport of some high profile cellular regulators, including p53 and the proto-oncogene PKB/Akt. We discuss the mechanisms that contribute to the differential subcellular localization of these proteins. Finally, we analyse the provocative patterns that emerge from our overview.
Collapse
Affiliation(s)
- P Ferrigno
- Department of Cancer Biology, The Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
558
|
Abstract
It is shown here that the N-terminal domain of MDM2, which is not thought to bind calcium ions, otherwise bears a striking resemblance to a cluster of four EF-hand modules like those found in the calmodulin family. There are similarities in module arrangement, supersecondary structure and the main-chain to main-chain hydrogen-bonding pattern, especially in the vicinity of the short antiparallel beta-sheet, the two strands of which lie between the two E and F helices of tandem modules. Some conserved amino acid residues are identified that are associated with short side-chain to main-chain hydrogen-bonded motifs. Also, both types of domain bind a short, functionally important hydrophobic alpha-helix from another protein in a cavity between the two pairs of EF-hand, or EF-hand-like, modules.
Collapse
Affiliation(s)
- E J Milner-White
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
559
|
Zaika A, Marchenko N, Moll UM. Cytoplasmically "sequestered" wild type p53 protein is resistant to Mdm2-mediated degradation. J Biol Chem 1999; 274:27474-80. [PMID: 10488081 DOI: 10.1074/jbc.274.39.27474] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Mdm2 oncoprotein mediates p53 degradation at cytoplasmic proteasomes and is the principal regulator for maintaining low, often undetectable levels of p53 in unstressed cells. However, a subset of human tumors including neuroblastoma constitutively harbor high levels of wild type p53 protein localized to the cytoplasm. Here we show that the abnormal p53 accumulation in such cells is due to a profound resistance to Mdm2-mediated degradation. Overexpression of Mdm2 in neuroblastoma (NB)(1) cell lines failed to decrease the high steady state levels of endogenous p53. Moreover, exogenous p53, when introduced into these cells, was also resistant to Mdm2-directed degradation. This resistance is not due to a lack of Mdm2 expression in NB cells or a lack of p53-Mdm2 interaction, nor is it due to a deficiency in the ubiquitination state of p53 or proteasome dysfunction. Instead, Mdm2-resistant p53 from NB cells is associated with covalent modification of p53 and masking of the modification-sensitive PAb 421 epitope. This system provides evidence for an important level of regulation of Mdm2-directed p53 destruction in vivo that is linked to p53 modification.
Collapse
Affiliation(s)
- A Zaika
- Department of Pathology, State University of New York, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
560
|
Winstall E, Affar EB, Shah R, Bourassa S, Scovassi IA, Poirier GG. Preferential perinuclear localization of poly(ADP-ribose) glycohydrolase. Exp Cell Res 1999; 251:372-8. [PMID: 10471322 DOI: 10.1006/excr.1999.4594] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transient nature of poly(ADP-ribosyl)ation, a posttranslational modification of nuclear proteins, is achieved by the enzyme poly(ADP-ribose) glycohydrolase (PARG) which hydrolyzes the poly(ADP-ribose) polymer into free ADP-ribose residues. To investigate the molecular size and localization of PARG, we developed a specific polyclonal antibody directed against the bovine PARG carboxy-terminal region. We found that PARG purified from bovine thymus was recognized as a 59-kDa protein, while Western blot analysis of total cell extracts revealed the presence of a unique 110-kDa protein. This 110-kDa PARG was mostly found in postnuclear extracts, whereas it was barely detectable in the nuclear fractions of COS7 cells. Further analysis by immunofluorescence revealed a cytoplasmic perinuclear distribution of PARG in COS7 cells overexpressing the bovine PARG cDNA. These results provide direct evidence that PARG is primarily a cytoplasmic enzyme and suggest that a very low amount of intranuclear PARG is required for poly(ADP-ribose) turnover.
Collapse
Affiliation(s)
- E Winstall
- Faculty of Medicine, Laval University Medical Research Center, Québec, G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
561
|
Abstract
Higher-eukaryotic nuclei contain numerous morphologically distinct substructures that are collectively called nuclear bodies. Although the precise functions of these subdomains remain unknown, elucidation of their molecular composition has been the subject of a great deal of research in recent years. Changes in the constitution of these nuclear inclusions are associated with disease phenotypes. The wide variety of components that concentrate within these subdomains makes them a likely interface for multiple cellular processes, including transcription, RNA processing, transport, RNP assembly, protein modification, apoptosis and cell-cycle control. This review discusses the different types of nuclear bodies, with emphasis on the two most prominent subtypes - the coiled and PML bodies.
Collapse
Affiliation(s)
- A G Matera
- Dept of Genetics, Center for Human Genetics and Program in Cell Biology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106-4955, USA.
| |
Collapse
|
562
|
Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 1999; 3:579-91. [PMID: 10360174 DOI: 10.1016/s1097-2765(00)80351-2] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian ARF-INK4a locus uniquely encodes two cell cycle inhibitors by using separate promoters and alternative reading frames. p16INK4a maintains the retinoblastoma protein in its growth suppressive state while ARF stabilizes p53. We report that human ARF protein predominantly localizes to the nucleolus via a sequence within the exon 2-encoded C-terminal domain and is induced to leave the nucleolus by MDM2. ARF forms nuclear bodies with MDM2 and p53 and blocks p53 and MDM2 nuclear export. Tumor-associated mutations in ARF exon 2 disrupt ARF's nucleolus localization and reduce ARF's ability to block p53 nuclear export and to stabilize p53. Our results suggest an ARF-regulated MDM2-dependent p53 stabilization and link the human tumor-associated mutations in ARF with a functional alteration.
Collapse
Affiliation(s)
- Y Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|