551
|
Fröhlich E, Wahl R. Nanoparticles: Promising Auxiliary Agents for Diagnosis and Therapy of Thyroid Cancers. Cancers (Basel) 2021; 13:cancers13164063. [PMID: 34439219 PMCID: PMC8393380 DOI: 10.3390/cancers13164063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Thyroid cancer (TC) is rare relative to cancers of many other organs (breast, prostate, lung, and colon). The majority of TCs are differentiated tumors that are relatively easy to treat and have a good prognosis. However, for anaplastic TC, a rapidly growing and aggressive tumor, treatment is suboptimal because the effective drugs cause severe adverse effects. Drug delivery by nanocarriers can improve treatment by reducing side effects. This can either be mediated through better retention in the tumor tissue due to size (passive targeting) or through the attachment of specific molecules that zero in on the cancer cells (active targeting). Nanoparticles are already used for diagnosis and imaging of TC. For unresectable anaplastic TC, nanoparticle-based treatments, less suitable for deeply located cancers, could be useful, based on low-intensity focused ultrasound and near-infrared irradiation. All potential applications of nanoparticles in TC are still in the preclinical phase. Abstract Cancers of the endocrine system are rare. The majority are not highly malignant tumors. Thyroid cancer (TC) is the most common endocrine cancer, with differentiated papillary and follicular tumors occurring more frequently than the more aggressive poorly differentiated and anaplastic TC. Nanoparticles (NP) (mainly mesoporous silica, gold, carbon, or liposomes) have been developed to improve the detection of biomarkers and routine laboratory parameters (e.g., thyroid stimulating hormone, thyroglobulin, and calcitonin), tumor imaging, and drug delivery in TC. The majority of drug-loaded nanocarriers to be used for treatment was developed for anaplastic tumors because current treatments are suboptimal. Further, doxorubicin, sorafenib, and gemcitabine treatment can be improved by nanotherapy due to decreased adverse effects. Selective delivery of retinoic acid to TC cells might improve the re-differentiation of de-differentiated TC. The use of carbon NPs for the prevention of parathyroid damage during TC surgery does not show a clear benefit. Certain technologies less suitable for the treatment of deeply located cancers may have some potential for unresectable anaplastic carcinomas, namely those based on low-intensity focused ultrasound and near-infrared irradiation. Although some of these approaches yielded promising results in animal studies, results from clinical trials are currently lacking.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, 8036 Graz, Austria;
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Richard Wahl
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-7071-2983136
| |
Collapse
|
552
|
Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Radicchi MA, Báo SN. Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics 2021; 13:1167. [PMID: 34452128 PMCID: PMC8399799 DOI: 10.3390/pharmaceutics13081167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer, a group of diseases responsible for the second largest cause of global death, is considered one of the main public health problems today. Despite the advances, there are still difficulties in the development of more efficient cancer therapies and fewer adverse effects for the patients. In this context, nanobiotechnology, a materials science on a nanometric scale specified for biology, has been developing and acquiring prominence for the synthesis of nanocarriers that provide a wide surface area in relation to volume, better drug delivery, and a maximization of therapeutic efficiency. Among these carriers, the ones that stand out are those focused on the activation of the immune system. The literature demonstrates the importance of this system for anticancer therapy, given that the best treatment for this disease also activates the immune system to recognize, track, and destroy all remaining tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Sônia N. Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (G.C.N.B.L.); (K.L.R.P.); (A.L.G.S.); (M.M.S.); (M.A.R.)
| |
Collapse
|
553
|
Chadar R, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm 2021; 605:120835. [PMID: 34197908 DOI: 10.1016/j.ijpharm.2021.120835] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by absence of estrogen (ER) receptor, progesterone (PR) receptor, and human epidermal growth factor-2 (HER-2) receptor. TNBC is an aggressive disease that develops early Chemoresistance. The major pitfall associated is its poor prognosis, low overall survival, high relapse, and mortality as compared to other types of breast cancer. Chemotherapy could be helpful but do not contribute to an increase in survival of patient. To overcome such obstacles, in our article we explored advanced therapy using genes and nanocarrier along with its conjugation to achieve high therapeutic profile with reduced side effect. siRNAs are one of the class of RNA associated with gene silencing. They also regulate the expression of certain proteins that are involved in development of tumor cells. But they are highly unstable. So, for efficient delivery of siRNA, very intelligent, efficient delivery systems are required. Several nanotechnologies based non-viral vectors such as liposome, micelles, nanoparticles, dendrimers, exosomes, nanorods and nanobubbles etc. offers enormous unique properties such as nanometric size range, targeting potential with the capability to link with several targeting moieties for the gene delivery. These non-viral vectors are much safer, effective and efficient system for the delivery of genes along with chemotherapeutics. This review provides an overview of TNBC, conventional and advanced treatment approach of TNBC along with understanding of current status of several nanocarriers used for the delivery of siRNA for the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
554
|
Ahmad RS, Eubank TD, Lukomski S, Boone BA. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules 2021; 11:biom11060901. [PMID: 34204306 PMCID: PMC8234537 DOI: 10.3390/biom11060901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.
Collapse
Affiliation(s)
- Ramiz S. Ahmad
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Brian A. Boone
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
555
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
556
|
Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021; 164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Cancer remains a global health problem largely due to a lack of effective therapies. Major cancer management strategies include chemotherapy, surgical resection, and radiation. Unfortunately, these strategies have a number of limitations, such as non-specific side effects, uneven delivery of the drugs, and lack of proper monitoring technology. Inorganic nanoparticles (NPs) are considered promising agents in treating and tracing cancer due to their unique physicochemical properties such as the controlled release of drugs, bioavailability, biocompatibility, stability, and large surface area. Also, they enhance the solubility of hydrophobic drugs, prolong their circulation time, prevent undesired off-targeting and subsequent side effects, making them efficient particles in cancer theranostics. Promising inorganic-NPs include gold, selenium, silica, and oxide NPs. Further, several techniques are used to modify the surface of inorganic-NPs, making them more efficient for the effective transport of therapeutic cargos to overcome cellular barriers. Thus, inorganic-NPs function effectively, surmounting the intrinsic drawbacks of traditional organic NPs. This mini-review summarizes the significant inorganic-NPs, their properties, surface modifications, cellular uptake, and bio-distributions, along with their potential use in cancer theranostics. We also discuss the promises and challenges faced during the inorganic-NPs mediated therapeutic approach for cancer and these particles' status in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
557
|
Beha MJ, Ryu JS, Kim YS, Chung HJ. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112167. [PMID: 34082968 DOI: 10.1016/j.msec.2021.112167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
The spread of multidrug-resistant (MDR) bacterial infections has become a serious global threat. We introduce multi-layer coated gold nanoparticles (MLGNPs) delivering antisense oligonucleotides (ASOs) targeting the resistance gene of methicillin-resistant Staphylococcus aureus (MRSA), as a selective antimicrobial by restoring susceptibility. MLGNPs were prepared by multi-step surface immobilization of gold nanoparticles (GNPs) with polyethylenimine (PEI) and loaded with ASO targeting the mecA gene. The MLGNPs were shown to be efficiently internalized into various types of Gram-positive bacteria, including MRSA, Staphylococcus epidermidis, and Bacillus subtilis, which was superior to single-layer coated GNPs and free PEI polymer. The delivery of MLGNPs into MRSA resulted in up to 74% silencing of the mecA gene with high selectivity, in a dose-dependent manner. The treatment of MLGNPs to MRSA in the presence of oxacillin, a beta-lactam antibiotic, showed major suppression (~71%) of bacterial growth, due to the recovery of antibacterial sensitivity. Furthermore, the treatment of MLGNPs in a complex system showed preferential uptake into bacteria over mammalian cells, demonstrating the suitable characteristics of MLGNPs for selective delivery into bacteria. The current approach can be potentially applied for targeting various types of MDR bacterial infections by specific silencing of a resistance gene, as a combinatorial therapeutic used with conventional antibiotics.
Collapse
Affiliation(s)
- Marcel Janis Beha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
558
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
559
|
Veloso SRS, Andrade RGD, Castanheira EMS. Magnetoliposomes: recent advances in the field of controlled drug delivery. Expert Opin Drug Deliv 2021; 18:1323-1334. [PMID: 33836636 DOI: 10.1080/17425247.2021.1915983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Magnetoliposomes have gained increasing attention as delivery systems, as they surpass many limitations associated with liposomes. The combination with magnetic nanoparticles provides a means for development of multimodal and multifunctional theranostic agents that enable on-demand drug release and real-time monitoring of therapy. AREAS COVERED Recently, several magnetoliposome structures have been reported to ensure efficient transport and delivery of therapeutics, while improving magnetic properties. Besides, novel techniques have been introduced to improve on-demand release, as well as to achieve sequential release of different therapeutic agents. This review presents the major types and methods of preparation of magnetoliposomes, and discusses recent strategies in the trigger of drug release, development of theranostic formulations, and delivery of drugs and biological entities. EXPERT OPINION Despite significant advances in efficient drug delivery, current literature lacks an assessment of formulations as theranostic agents and complementary techniques to optimize thermotherapy efficiency. Plasmonic magnetoliposomes are highly promising multimodal and multifunctional systems, providing the required design versatility to optimize theranostic capabilities. Further, photodynamic therapy and delivery of proteins/genes can be improved with a deeper research on the employed magnetic material and associated toxicity. A scale-up procedure is also lacking in recent research, which is limiting their translation to clinical use.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Raquel G D Andrade
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Elisabete M S Castanheira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
560
|
Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, Xu W, Deng Y, Li G, Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front Bioeng Biotechnol 2021; 9:630352. [PMID: 33681167 PMCID: PMC7925417 DOI: 10.3389/fbioe.2021.630352] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Nanobiotechnology plays an important role in drug delivery, and various kinds of nanoparticles have demonstrated new properties, which may provide opportunities in clinical treatment. Nanoparticle-mediated drug delivery systems have been used in anti-inflammatory therapies. Diseases, such as inflammatory bowel disease, rheumatoid arthritis, and osteoarthritis have been widely impacted by the pathogenesis of inflammation. Efficient delivery of anti-inflammatory drugs can reduce medical dosage and improve therapeutic effect. In this review, we discuss nanoparticles with potential anti-inflammatory activity, and we present a future perspective regarding the application of nanomedicine in inflammatory diseases.
Collapse
Affiliation(s)
- Huailan Wang
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qunan Sun
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenghao Zhou
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiyao Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sifeng Tao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
561
|
Lou J, Zhou Y, Feng Z, Ma M, Yao Y, Wang Y, Deng Y, Wu Y. Caspase-Independent Regulated Necrosis Pathways as Potential Targets in Cancer Management. Front Oncol 2021; 10:616952. [PMID: 33665167 PMCID: PMC7921719 DOI: 10.3389/fonc.2020.616952] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated necrosis is an emerging type of cell death independent of caspase. Recently, with increasing findings of regulated necrosis in the field of biochemistry and genetics, the underlying molecular mechanisms and signaling pathways of regulated necrosis are gradually understood. Nowadays, there are several modes of regulated necrosis that are tightly related to cancer initiation and development, including necroptosis, ferroptosis, parthanatos, pyroptosis, and so on. What’s more, accumulating evidence shows that various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in cancer cells, which indicates that caspase-independent regulated necrosis pathways are potential targets in cancer management. In this review, we expand the molecular mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We also elaborate on the roles they play in tumorigenesis and discuss how each of the regulated necrosis pathways could be therapeutically targeted.
Collapse
Affiliation(s)
- Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mindi Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
562
|
Zhou Y, Wang Y, Chen H, Xu Y, Luo Y, Deng Y, Zhang J, Shao A. Immuno-oncology: are TAM receptors in glioblastoma friends or foes? Cell Commun Signal 2021; 19:11. [PMID: 33509214 PMCID: PMC7841914 DOI: 10.1186/s12964-020-00694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors are a subfamily of receptor tyrosine kinases. TAM receptors have been implicated in mediating efferocytosis, regulation of immune cells, secretion of inflammatory factors, and epithelial-to-mesenchymal transition in the tumor microenvironment, thereby serving as a critical player in tumor development and progression. The pro-carcinogenic role of TAM receptors has been widely confirmed, overexpression of TAM receptors is tied to tumor cells growth, metastasis, invasion and treatment resistance. Nonetheless, it is surprising to detect that inhibiting TAM signaling is not all beneficial in the tumor immune microenvironment. The absence of TAM receptors also affects anti-tumor immunity under certain conditions by modulating different immune cells, as the functional diversification of TAM signaling is closely related to tumor immunotherapy. Glioblastoma is the most prevalent and lethal primary brain tumor in adults. Although research regarding the crosstalk between TAM receptors and glioblastoma remains scarce, it appears likely that TAM receptors possess potential anti-tumor effects rather than portraying a total cancer-driving role in the context of glioblastoma. Accordingly, we doubt whether TAM receptors play a double-sided role in glioblastoma, and propose the Janus-faced TAM Hypothesis as a conceptual framework for comprehending the precise underlying mechanisms of TAMs. In this study, we aim to cast a spotlight on the potential multidirectional effects of TAM receptors in glioblastoma and provide a better understanding for TAM receptor-related targeted intervention. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hailong Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211126, Jiangsu, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, 313100, Zhejiang, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
563
|
Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Yuchun Wei
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy China Pharmaceutical University Nanjing 211198 China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences Jinan 250117 China
| |
Collapse
|
564
|
Datkhile KD, Patil SR, Durgawale PP, Patil MN, Hinge DD, Jagdale NJ, Deshmukh VN, More AL. Biogenic synthesis of gold nanoparticles using Argemone mexicana L. and their cytotoxic and genotoxic effects on human colon cancer cell line (HCT-15). J Genet Eng Biotechnol 2021; 19:9. [PMID: 33443619 PMCID: PMC7809081 DOI: 10.1186/s43141-020-00113-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Background Nanomedicine has evolved as precision medicine in novel therapeutic approach of cancer management. The present study investigated the efficacy of biogenic gold nanoparticles synthesized using Argemone mexicana L. aqueous extract (AM-AuNPs) against the human colon cancer cell line, HCT-15. Results Biosynthesis of AM-AuNPs was determined by ultraviolet-visible spectroscopy and further characterized by transmission electron microscopy, X-ray diffraction, and Fourier transition infrared spectroscopy analysis. The cytotoxic activity of AM-AuNPs was assessed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, whereas genotoxicity was evaluated by the DNA fragmentation assay. The expression of apoptosis regulatory genes such as p53 and caspase-3 was explored through semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting to evidence apoptotic cell death in HCT-15 cells. Biogenic AM-AuNPs inhibited cell proliferation in HCT-15 cell line with a half maximal inhibitory concentration (IC50) of 20.53 μg/mL at 24 h and 12.03 μg/mL at 48 h of exposure. The altered cell morphology and increased apoptosis due to AM-AuNPs were also evidenced through nuclear DNA fragmentation and upregulated expression of p53 and caspase-3 in HCT-15 cells. Conclusion The AM-AuNPs may exert antiproliferative and genotoxic effects on HCT-15 cells by cell growth suppression and induction of apoptosis mediated by activation of p53 and caspase-3 genes.
Collapse
Affiliation(s)
- Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India.
| | - Satish R Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Pratik P Durgawale
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Madhavi N Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Dilip D Hinge
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Nilam J Jagdale
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Vinit N Deshmukh
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Ashwini L More
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| |
Collapse
|
565
|
Satija S, Sharma P, Kaur H, Dhanjal DS, Chopra RS, Khurana N, Vyas M, Sharma N, Tambuwala MM, Bakshi HA, Charbe NB, Zacconi FC, Chellappan DK, Dua K, Mehta M. Perfluorocarbons Therapeutics in Modern Cancer Nanotechnology for Hypoxiainduced Anti-tumor Therapy. Curr Pharm Des 2021; 27:4376-4387. [PMID: 34459378 DOI: 10.2174/1381612827666210830100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
With an estimated failure rate of about 90%, immunotherapies that are intended for the treatment of solid tumors have caused an anomalous rise in the mortality rate over the past decades. It is apparent that resistance towards such therapies primarily occurs due to elevated levels of HIF-1 (Hypoxia-induced factor) in tumor cells, which are caused by disrupted microcirculation and diffusion mechanisms. With the advent of nanotechnology, several innovative advances were brought to the fore; and, one such promising direction is the use of perfluorocarbon nanoparticles in the management of solid tumors. Perfluorocarbon nanoparticles enhance the response of hypoxia-based agents (HBAs) within the tumor cells and have been found to augment the entry of HBAs into the tumor micro-environment. The heightened penetration of HBAs causes chronic hypoxia, thus aiding in the process of cell quiescence. In addition, this technology has also been applied in photodynamic therapy, where oxygen self-enriched photosensitizers loaded perfluorocarbon nanoparticles are employed. The resulting processes initiate a cascade, depleting tumour oxygen and turning it into a reactive oxygen species eventually to destroy the tumour cell. This review elaborates on the multiple applications of nanotechnology based perfluorocarbon formulations that are being currently employed in the treatment of tumour hypoxia.
Collapse
Affiliation(s)
- Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Prabal Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Harpreet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Daljeet S Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Reena S Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Nitin B Charbe
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B, MSC 131, Kingsville, Texas, 78363, United States
| | - Flavia C Zacconi
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
566
|
Roma-Rodrigues C, Pombo I, Fernandes AR, Baptista PV. Hyperthermia Induced by Gold Nanoparticles and Visible Light Photothermy Combined with Chemotherapy to Tackle Doxorubicin Sensitive and Resistant Colorectal Tumor 3D Spheroids. Int J Mol Sci 2020; 21:E8017. [PMID: 33126535 PMCID: PMC7672550 DOI: 10.3390/ijms21218017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Current cancer therapies are frequently ineffective and associated with severe side effects and with acquired cancer drug resistance. The development of effective therapies has been hampered by poor correlations between pre-clinical and clinical outcomes. Cancer cell-derived spheroids are three-dimensional (3D) structures that mimic layers of tumors in terms of oxygen and nutrient and drug resistance gradients. Gold nanoparticles (AuNP) are promising therapeutic agents which permit diminishing the emergence of secondary effects and increase therapeutic efficacy. In this work, 3D spheroids of Doxorubicin (Dox)-sensitive and -resistant colorectal carcinoma cell lines (HCT116 and HCT116-DoxR, respectively) were used to infer the potential of the combination of chemotherapy and Au-nanoparticle photothermy in the visible (green laser of 532 nm) to tackle drug resistance in cancer cells. Cell viability analysis of 3D tumor spheroids suggested that AuNPs induce cell death in the deeper layers of spheroids, further potentiated by laser irradiation. The penetration of Dox and earlier spheroid disaggregation is potentiated in combinatorial therapy with Dox, AuNP functionalized with polyethylene glycol (AuNP@PEG) and irradiation. The time point of Dox administration and irradiation showed to be important for spheroids destabilization. In HCT116-sensitive spheroids, pre-irradiation induced earlier disintegration of the 3D structure, while in HCT116 Dox-resistant spheroids, the loss of spheroid stability occurred almost instantly in post-irradiated spheroids, even with lower Dox concentrations. These results point towards the application of new strategies for cancer therapeutics, reducing side effects and resistance acquisition.
Collapse
|
567
|
Drug Delivery Systems of Natural Products in Oncology. Molecules 2020; 25:molecules25194560. [PMID: 33036240 PMCID: PMC7582809 DOI: 10.3390/molecules25194560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, increasing interest in the use of natural products in anticancer therapy field has been observed, mainly due to unsolved drug-resistance problems. The antitumoral effect of natural compounds involving different signaling pathways and cellular mechanisms has been largely demonstrated in in vitro and in vivo studies. The encapsulation of natural products into different delivery systems may lead to a significant enhancement of their anticancer efficacy by increasing in vivo stability and bioavailability, reducing side adverse effects and improving target-specific activity. This review will focus on research studies related to nanostructured systems containing natural compounds for new drug delivery tools in anticancer therapies.
Collapse
|