601
|
Krämer WE, Caamaño-Ricken I, Richter C, Bischof K. Dynamic Regulation of Photoprotection Determines Thermal Tolerance of Two Phylotypes of Symbiodinium Clade A at Two Photon Fluence Rates. Photochem Photobiol 2011; 88:398-413. [DOI: 10.1111/j.1751-1097.2011.01048.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
602
|
Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism. Biochem J 2011; 440:375-83. [DOI: 10.1042/bj20110939] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-Ascorbate catabolism involves reversible oxidation to DHA (dehydroascorbic acid), then irreversible oxidation or hydrolysis. The precursor–product relationships and the identity of several major DHA breakdown products remained unclear. In the presence of added H2O2, DHA underwent little hydrolysis to DKG (2,3-dioxo-L-gulonate). Instead, it yielded OxT (oxalyl L-threonate), cOxT (cyclic oxalyl L-threonate) and free oxalate (~6:1:1), essentially simultaneously, suggesting that all three product classes independently arose from one reactive intermediate, proposed to be cyclic-2,3-O-oxalyl-L-threonolactone. Only with plant apoplastic esterases present were the esters significant precursors of free oxalate. Without added H2O2, DHA was slowly hydrolysed to DKG. Downstream of DKG was a singly ionized dicarboxy compound (suggested to be 2-carboxy-L-xylonolactone plus 2-carboxy-L-lyxonolactone), which reversibly de-lactonized to a dianionic carboxypentonate. Formation of these lactones and acid was minimized by the presence of residual unreacted ascorbate. In vivo, the putative 2-carboxy-L-pentonolactones were relatively stable. We propose that DHA is a branch-point in ascorbate catabolism, being either oxidized to oxalate and its esters or hydrolysed to DKG and downstream carboxypentonates. The oxidation/hydrolysis ratio is governed by reactive oxygen species status. In vivo, oxalyl esters are enzymatically hydrolysed, but the carboxypentonates are stable. The biological roles of these ascorbate metabolites invite future exploration.
Collapse
|
603
|
Laureau C, Bligny R, Streb P. The significance of glutathione for photoprotection at contrasting temperatures in the alpine plant species Soldanella alpina and Ranunculus glacialis. PHYSIOLOGIA PLANTARUM 2011; 143:246-60. [PMID: 21848651 DOI: 10.1111/j.1399-3054.2011.01505.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The significance of total glutathione content was investigated in two alpine plant species with highly differing antioxidative scavenging capacity. Leaves of Soldanella alpina and Ranunculus glacialis incubated for 48 h in the presence of buthionine-sulfoximine had 50% lower glutathione contents when compared with leaves incubated in water. The low leaf glutathione content was not compensated for by activation of other components involved in antioxidative protection or electron consumption. However, leaves with normal but not with low glutathione content increased their ascorbate content during high light (HL) treatment (S. alpina) or catalase activity at low temperature (LT) (R. glacialis), suggesting that the mere decline of the leaf glutathione content does not act as a signal to ameliorate antioxidative protection by alternative mechanisms. CO(2)-saturated oxygen evolution was not affected in glutathione-depleted leaves at various temperatures, except at 35°C, thereby increasing the high temperature (HT) sensitivity of both alpine species. Leaves with low and normal glutathione content were similarly resistant to photoinhibition and photodamage during HL treatment at ambient temperature in the presence and absence of paraquat or at LT. However, HL- and HT-induced photoinhibition increased in leaves with low compared to leaves with normal glutathione content, mainly because the recovery after heat inactivation was retarded in glutathione-depleted leaves. Differences in the response of photosystem II (PSII) activity and CO(2)-saturated photosynthesis suggest that PSII is not the primary target during HL inactivation at HT. The results are discussed with respect to the role of antioxidative protection as a safety valve for temperature extremes to which plants are not acclimated.
Collapse
Affiliation(s)
- Constance Laureau
- Université Paris-Sud 11, Ecologie, Systématique et Evolution, UMR-CNRS 8079, Bâtiment 362, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
604
|
Abstract
Dr. Christine Foyer (B.Sc. 1974; Ph.D. 1977) is recognized here as a Redox Pioneer because she has published an article on redox biology that has been cited more than 1000 times, 4 other articles that have been cited more than 500 times, and a further 32 articles that have been each cited more than 100 times. During her Ph.D. at the Kings College, University of London, United Kingdom, Dr. Foyer discovered that ascorbate and glutathione and enzymes linking NADPH, glutathione, and ascorbate are localized in isolated chloroplast preparations. These observations pioneered the discovery of the ascorbate-glutathione cycle, now known as Foyer-Halliwell-Asada pathway after the names of the three major contributors, a crucial mechanism for H(2)O(2) metabolism in both animals and plants. Dr. Foyer has made a very significant contribution to our current understanding of the crucial roles of ascorbate and glutathione in redox biology, particularly in relation to photosynthesis, respiration, and chloroplast and mitochondrial redox signaling networks. "My view is that science…is compulsive and you have to keep with it all the time and not get despondent when things do not work well. Being passionate about science is what carries you through the hard times so that it isn't so much work, as a hobby that you do for a living. It is the thrill of achieving a better understanding and finding real pleasure in putting new ideas together, explaining data and passing on knowledge that keeps you going no matter what!" --Prof. Christine Helen Foyer.
Collapse
Affiliation(s)
- Luis A Del Río
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC , Granada, Spain
| |
Collapse
|
605
|
Valluru R, Van den Ende W. Myo-inositol and beyond--emerging networks under stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:387-400. [PMID: 21889044 DOI: 10.1016/j.plantsci.2011.07.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 05/18/2023]
Abstract
Myo-inositol is a versatile compound that generates diversified derivatives upon phosphorylation by lipid-dependent and -independent pathways. Phosphatidylinositols form one such group of myo-inositol derivatives that act both as membrane structural lipid molecules and as signals. The significance of these compounds lies in their dual functions as signals as well as key metabolites under stress. Several stress- and non-stress related pathways regulated by phosphatidylinositol isoforms and associated enzymes, kinases and phosphatases, appear to function in parallel to coordinatively adapt growth and stress responses in plants. Recent evidence also postulates their crucial roles in nuclear functions as they interact with the key players of chromatin structure, yet other nuclear functions remain largely unknown. Phosphatidylinositol monophosphate 5-kinase interacts with and represses a cytosolic neutral invertase, a key enzyme of sugar metabolism suggesting a crosstalk between lipid and sugar signaling. Besides phosphatidylinositol, myo-inositol derived galactinol and associated raffinose-family oligosaccharides are emerging as antioxidants and putative signaling compounds too. Importantly, myo-inositol polyphosphate 5-phosphatase (5PTase) acts, depending on sugar status, as a positive or negative regulator of a global energy sensor, SnRK1. This implies that both myo-inositol- and sugar-derived (e.g. trehalose 6-phosphate) molecules form part of a broad regulatory network with SnRK1 as the central regulator. Recently, it was shown that the transcription factor bZIP11 also takes part in this network. Moreover, a functional coordination between neutral invertase and hexokinase is emerging as a sweet network that contributes to oxidative stress homeostasis in plants. In this review, we focus on myo-inositol, its direct and more downstream derivatives (galactinol, raffinose), and the contribution of their associated networks to plant stress tolerance.
Collapse
Affiliation(s)
- Ravi Valluru
- Ecophysiology of Plants Under Environmental Stress, INRA-SUPAGRO, Institute of Integrative Plant Biology, 2 Place Viala, Montpellier, France
| | | |
Collapse
|
606
|
Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FEL, Margis-Pinheiro M, Silveira JAG. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. PLANT, CELL & ENVIRONMENT 2011; 34:1705-22. [PMID: 21631533 DOI: 10.1111/j.1365-3040.2011.02366.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Current studies, particularly in Arabidopsis, have demonstrated that mutants deficient in cytosolic ascorbate peroxidases (APXs) are susceptible to the oxidative damage induced by abiotic stress. In contrast, we demonstrate here that rice mutants double silenced for cytosolic APXs (APx1/2s) up-regulated other peroxidases, making the mutants able to cope with abiotic stress, such as salt, heat, high light and methyl viologen, similar to non-transformed (NT) plants. The APx1/2s mutants exhibited an altered redox homeostasis, as indicated by increased levels of H₂O₂ and ascorbate and glutathione redox states. Both mutant and NT plants exhibited similar photosynthesis (CO₂) assimilation and photochemical efficiency) under both normal and stress conditions. Overall, the antioxidative compensatory mechanism displayed by the mutants was associated with increased expression of OsGpx genes, which resulted in higher glutathione peroxidase (GPX) activity in the cytosolic and chloroplastic fractions. The transcript levels of OsCatA and OsCatB and the activities of catalase (CAT) and guaiacol peroxidase (GPOD; type III peroxidases) were also up-regulated. None of the six studied isoforms of OsApx were up-regulated under normal growth conditions. Therefore, the deficiency in cytosolic APXs was effectively compensated for by up-regulation of other peroxidases. We propose that signalling mechanisms triggered in rice mutants could be distinct from those proposed for Arabidopsis.
Collapse
Affiliation(s)
- Aurenivia Bonifacio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brasil
| | | | | | | | | | | | | |
Collapse
|
607
|
Huang XS, Luo T, Fu XZ, Fan QJ, Liu JH. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5191-206. [PMID: 21778184 PMCID: PMC3193021 DOI: 10.1093/jxb/err229] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 05/18/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade plays pivotal roles in diverse signalling pathways related to plant development and stress responses. In this study, the cloning and functional characterization of a group-I MAPK gene, PtrMAPK, in Poncirus trifoliata (L.) Raf are reported. PtrMAPK contains 11 highly conserved kinase domains and a phosphorylation motif (TEY), and is localized in the nucleus of transformed onion epidermal cells. The PtrMAPK transcript level was increased by dehydration and cold, but was unaffected by salt. Transgenic overexpression of PtrMAPK in tobacco confers dehydration and drought tolerance. The transgenic plants exhibited better water status, less reactive oxygen species (ROS) generation, and higher levels of antioxidant enzyme activity and metabolites than the wild type. Interestingly, the stress tolerance capacity of the transgenic plants was compromised by inhibitors of antioxidant enzymes. In addition, overexpression of PtrMAPK enhanced the expression of ROS-related and stress-responsive genes under normal or drought conditions. Taken together, these data demonstrate that PtrMAPK acts as a positive regulator in dehydration/drought stress responses by either regulating ROS homeostasis through activation of the cellular antioxidant systems or modulating transcriptional levels of a variety of stress-associated genes.
Collapse
Affiliation(s)
- Xiao-San Huang
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Luo
- College of Life Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing-Zheng Fu
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi-Jun Fan
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
608
|
Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis, in Arabidopsis thaliana. Biosci Biotechnol Biochem 2011; 75:1783-8. [PMID: 21897033 DOI: 10.1271/bbb.110320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arabidopsis thaliana contains two GDP-L-galactose phosphorylase genes, VTC2 and VTC5, which are critical for ascorbate (AsA) biosynthesis. We investigated the expression levels of both VTC2 and VTC5 genes in wild-type A. thaliana and the AsA deficient mutants during early seedling growth. Ascorbate accumulated to an equal extent in all genotypes up to 5 d post-germination (DPG). The transcript level of VTC2 was dominant, and increased in parallel with AsA accumulation in the wild type. On the other hand, the expression of VTC5 compensated for the reduced VTC2 transcription levels in the AsA deficient mutant vtc2-1 in young seedlings. A luciferase activity assay indicated that the VTC5 promoter was more active in young (2 DPG) cotyledons and that the VTC2 and VTC5 promoters drove a day-to-night variation in expression. The present work provides clues to the precise roles of VTC2 and VTC5 in AsA biosynthesis in A. thaliana at the young seedling stage.
Collapse
|
609
|
Reguera M, Peleg Z, Blumwald E. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:186-94. [PMID: 21867784 DOI: 10.1016/j.bbagrm.2011.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 11/27/2022]
Abstract
Abiotic stress conditions are the major limitations in modern agriculture. Although many genes associated with plant response(s) to abiotic stresses have been indentified and used to generate stress tolerant plants, the success in producing stress-tolerant crops is limited. New technologies are providing opportunities to generate stress tolerant crops. Biotechnological approaches that emphasize the development of transgenic crops under conditions that mimic the field situation and focus on the plant reproductive stage will significantly improve the opportunities of producing stress tolerant crops. Here, we highlight recent advances and discuss the limitations that hinder the fast integration of transgenic crops into agriculture and suggest possible research directions. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Maria Reguera
- Department of Plant Sci.s, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
610
|
Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW. Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 2011; 33:2297-307. [PMID: 21750996 DOI: 10.1007/s10529-011-0684-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/22/2011] [Indexed: 12/28/2022]
Abstract
Salt-tolerance was studied in transgenic potato. It was conferred by overexpression of ascorbate pathway enzyme (D-galacturonic acid reductase, GalUR). As genetic engineering of the GalUR gene in potato enhances its ascorbic acid content (L-AsA), and subsequently plants suffered minimal oxidative stress-induced damage, we now report on the comprehensive aptness of this engineering approach for enhanced salt tolerance in transgenic potato (Solanum tuberosum L. cv. Taedong Valley). Potatoes overexpressing GalUR grew and tuberized in continuous presence of 200 mM of NaCl. The transgenic plants maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio together with enhanced activity of glutathione dependent antioxidative and glyoxalase enzymes under salinity stress. The transgenics resisted an increase in methylglyoxal that increased radically in untransformed control plants under salinity stress. This is the first report of genetic engineering of ascorbate pathway gene in maintaining higher level of GSH homeostasis along with higher glyoxalase activity inhibiting the accumulation in methylglyoxal (a potent cytotoxic compound) under salt stress. These results suggested the engineering of ascorbate pathway enzymes as a major step towards developing salinity tolerant crop plants.
Collapse
|
611
|
Murchie EH, Niyogi KK. Manipulation of photoprotection to improve plant photosynthesis. PLANT PHYSIOLOGY 2011; 155:86-92. [PMID: 21084435 PMCID: PMC3075776 DOI: 10.1104/pp.110.168831] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom.
| | | |
Collapse
|