601
|
Lee MH, Jeon HS, Kim HG, Park OK. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164. THE NEW PHYTOLOGIST 2017; 214:343-360. [PMID: 28032643 DOI: 10.1111/nph.14371] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/27/2016] [Indexed: 05/18/2023]
Abstract
Hypersensitive response (HR) is a form of programmed cell death (PCD) and the primary immune response that prevents pathogen invasion in plants. Here, we show that a microRNAmiR164 and its target gene NAC4 (At5g07680), encoding a NAC transcription factor, play essential roles in the regulation of HR PCD in Arabidopsis thaliana. Cell death symptoms were noticeably enhanced in NAC4-overexpressing (35S:NAC4) and mir164 mutant plants in response to avirulent bacterial pathogens. NAC4 expression was induced by pathogen infection and negatively regulated by miR164 expression. NAC4-binding DNA sequences were determined by in vitro binding site selection using random oligonucleotide sequences. Microarray, chromatin immunoprecipitation and quantitative real time polymerase chain reaction (qRT-PCR) analyses, followed by cell death assays in protoplasts, led to the identification of NAC4 target genes LURP1, WRKY40 and WRKY54, which act as negative regulators of cell death. Our results suggest that NAC4 promotes hypersensitive cell death by suppressing its target genes and this immune process is fine-tuned by the negative action of miR164.
Collapse
Affiliation(s)
- Myoung-Hoon Lee
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hwi Seong Jeon
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Hye Gi Kim
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Ohkmae K Park
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| |
Collapse
|
602
|
Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes JL. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2013-2026. [PMID: 28338719 PMCID: PMC5429018 DOI: 10.1093/jxb/erw380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit.
Collapse
Affiliation(s)
- Guadalupe Sosa-Valencia
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - Miguel Palomar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| |
Collapse
|
603
|
Efficacy of New Fungicides against Late Blight of Potato in Subtropical Plains of India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
604
|
Velayudha Vimala Kumar K, Srikakulam N, Padbhanabhan P, Pandi G. Deciphering microRNAs and Their Associated Hairpin Precursors in a Non-Model Plant, Abelmoschus esculentus. Noncoding RNA 2017; 3:ncrna3020019. [PMID: 29657290 PMCID: PMC5831935 DOI: 10.3390/ncrna3020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial regulatory RNAs, originated from hairpin precursors. For the past decade, researchers have been focusing extensively on miRNA profiles in various plants. However, there have been few studies on the global profiling of precursor miRNAs (pre-miRNAs), even in model plants. Here, for the first time in a non-model plant—Abelmoschus esculentus with negligible genome information—we are reporting the global profiling to characterize the miRNAs and their associated pre-miRNAs by applying a next generation sequencing approach. Preliminarily, we performed small RNA (sRNA) sequencing with five biological replicates of leaf samples to attain 207,285,863 reads; data analysis using miRPlant revealed 128 known and 845 novel miRNA candidates. With the objective of seizing their associated hairpin precursors, we accomplished pre-miRNA sequencing to attain 83,269,844 reads. The paired end reads are merged and adaptor trimmed, and the resulting 40–241 nt (nucleotide) sequences were picked out for analysis by using perl scripts from the miRGrep tool and an in-house built shell script for Minimum Fold Energy Index (MFEI) calculation. Applying the stringent criteria of the Dicer cleavage pattern and the perfect stem loop structure, precursors for 57 known miRNAs of 15 families and 18 novel miRNAs were revealed. Quantitative Real Time (qRT) PCR was performed to determine the expression of selected miRNAs.
Collapse
Affiliation(s)
- Kavitha Velayudha Vimala Kumar
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| | - Nagesh Srikakulam
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| | - Priyavathi Padbhanabhan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021,Tamil Nadu, India.
| |
Collapse
|
605
|
Computational Approaches and Related Tools to Identify MicroRNAs in a Species: A Bird’s Eye View. Interdiscip Sci 2017; 10:616-635. [DOI: 10.1007/s12539-017-0223-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/20/2016] [Accepted: 03/09/2017] [Indexed: 12/26/2022]
|
606
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
607
|
Munusamy P, Zolotarov Y, Meteignier LV, Moffett P, Strömvik MV. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci Rep 2017; 7:43861. [PMID: 28276452 PMCID: PMC5343461 DOI: 10.1038/srep43861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023] Open
Abstract
Gene regulation at the transcriptional and translational level leads to diversity in phenotypes and function in organisms. Regulatory DNA or RNA sequence motifs adjacent to the gene coding sequence act as binding sites for proteins that in turn enable or disable expression of the gene. Whereas the known DNA and RNA binding proteins range in the thousands, only a few motifs have been examined. In this study, we have predicted putative regulatory motifs in groups of untranslated regions from genes regulated at the translational level in Arabidopsis thaliana under normal and stressed conditions. The test group of sequences was divided into random subgroups and subjected to three de novo motif finding algorithms (Seeder, Weeder and MEME). In addition to identifying sequence motifs, using an in silico tool we have predicted microRNA target sites in the 3′ UTRs of the translationally regulated genes, as well as identified upstream open reading frames located in the 5′ UTRs. Our bioinformatics strategy and the knowledge generated contribute to understanding gene regulation during stress, and can be applied to disease and stress resistant plant development.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Yevgen Zolotarov
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | | | - Peter Moffett
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
608
|
Mathioni SM, Kakrana A, Meyers BC. Characterization of Plant Small RNAs by Next Generation Sequencing. ACTA ACUST UNITED AC 2017; 2:39-63. [PMID: 31725976 DOI: 10.1002/cppb.20043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant small RNAs are ∼20 to 24 nucleotide noncoding RNAs that typically have repressive regulatory roles in gene expression, functioning at the transcriptional or post-transcriptional level. This influence on regulation of developmental and physiological processes has direct effects on phenotype. High-throughput sequencing technologies have enabled the sequencing of millions of small RNAs. Along with decreased sequencing costs, recent improvements in small RNA library construction have facilitated the ability to use minimal amounts of input RNA for analysis. This unit describes steps to isolate total RNA from limited amounts of plant tissue to construct small RNA libraries and perform small RNA data processing. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Atul Kakrana
- Donald Danforth Plant Science Center, Saint Louis, Missouri
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, Missouri
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
609
|
Gao C, Wang P, Zhao S, Zhao C, Xia H, Hou L, Ju Z, Zhang Y, Li C, Wang X. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics 2017; 18:220. [PMID: 28253861 PMCID: PMC5335773 DOI: 10.1186/s12864-017-3587-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Background As a typical geocarpic plant, peanut embryogenesis and pod development are complex processes involving many gene regulatory pathways and controlled by appropriate hormone level. MicroRNAs (miRNAs) are small non-coding RNAs that play indispensable roles in post-transcriptional gene regulation. Recently, identification and characterization of peanut miRNAs has been described. However, whether miRNAs participate in the regulation of peanut embryogenesis and pod development has yet to be explored. Results In this study, small RNA and degradome libraries from peanut early pod of different developmental stages were constructed and sequenced. A total of 70 known and 24 novel miRNA families were discovered. Among them, 16 miRNA families were legume-specific and 12 families were peanut-specific. 30 known and 10 novel miRNA families were differentially expressed during pod development. In addition, 115 target genes were identified for 47 miRNA families by degradome sequencing. Several new targets that might be specific to peanut were found and further validated by RNA ligase-mediated rapid amplification of 5′ cDNA ends (RLM 5′-RACE). Furthermore, we performed profiling analysis of intact and total transcripts of several target genes, demonstrating that SPL (miR156/157), NAC (miR164), PPRP (miR167 and miR1088), AP2 (miR172) and GRF (miR396) are actively modulated during early pod development, respectively. Conclusions Large numbers of miRNAs and their related target genes were identified through deep sequencing. These findings provided new information on miRNA-mediated regulatory pathways in peanut pod, which will contribute to the comprehensive understanding of the molecular mechanisms that governing peanut embryo and early pod development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3587-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Gao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Pengfei Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Zheng Ju
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China. .,College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
610
|
Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
611
|
Xu J, Li Y, Wang Y, Liu X, Zhu XG. Altered expression profiles of microRNA families during de-etiolation of maize and rice leaves. BMC Res Notes 2017; 10:108. [PMID: 28235420 PMCID: PMC5324284 DOI: 10.1186/s13104-016-2367-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that play important regulatory roles in plants. Although many miRNA families are sequentially and functionally conserved across plant kingdoms (Dezulian et al. in Genome Biol 13, 2005), they still differ in many aspects such as family size, average length, genomic loci etc. (Unver et al. in Int J Plant Genomics, 2009). RESULTS In this study, we investigated changes of miRNA expression profiles during greening process of etiolated seedlings of Oryza sativa (C3) and Zea mays (C4) to explore conserved and species-specific characteristics of miRNAs between these two species. Futhermore, we predicted 47 and 42 candidate novel miRNAs using parameterized monocot specific miRDeep2 pipeline in maize and rice respectively. Potential targets of miRNAs comprising both mRNA and long non-coding RNA (lncRNA) were examined to clarify potential regulation of photosynthesis. Based on our result, two putative positive Kranz regulators reported by Wang et al. (2010) were predicted as potential targets of miR156. A few photosynthesis related genes such as sulfate adenylytransferase (APS3), chlorophyll a/b binding family protein etc. were suggested to be regulated by miRNAs. However, no C4 shuttle genes were predicted to be direct targets of either known or candidate novel miRNAs. CONCLUSIONS This study provided the comprehensive list of miRNA that showed altered expression during the de-etiolation process and a number of candidate miRNAs that might play regulatory roles in C3 and C4 photosynthesis.
Collapse
Affiliation(s)
- Jiajia Xu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yaling Wang
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Liu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
612
|
Shen EM, Singh SK, Ghosh JS, Patra B, Paul P, Yuan L, Pattanaik S. The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Sci Rep 2017; 7:43027. [PMID: 28223695 PMCID: PMC5320439 DOI: 10.1038/srep43027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/18/2017] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro-miRNAs) in C. roseus seedlings. Genome-wide expression analysis revealed that a set of cro-miRNAs are differentially regulated in response to methyl jasmonate (MeJA). In silico target prediction identified 519 potential cro-miRNA targets that include several auxin response factors (ARFs). The presence of cleaved transcripts of miRNA-targeted ARFs in C. roseus cells was confirmed by Poly(A) Polymerase-Mediated Rapid Amplification of cDNA Ends (PPM-RACE). We showed that auxin (indole acetic acid, IAA) repressed the expression of key TIA pathway genes in C. roseus seedlings. Moreover, we demonstrated that a miRNA-regulated ARF, CrARF16, binds to the promoters of key TIA pathway genes and repress their expression. The C. roseus miRNAome reported here provides a comprehensive account of the cro-miRNA populations, as well as their abundance and expression profiles in response to MeJA. In addition, our findings underscore the importance of miRNAs in posttranscriptional control of the biosynthesis of specialized metabolites.
Collapse
Affiliation(s)
- Ethan M Shen
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA.,Math, Science, and Technology Center, Paul Laurence Dunbar High School, 1600 Man o' War Boulevard, Lexington, KY 40513, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Jayadri S Ghosh
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, 1401 University Drive, Lexington, KY 40546, USA
| |
Collapse
|
613
|
Moran Y, Agron M, Praher D, Technau U. The evolutionary origin of plant and animal microRNAs. Nat Ecol Evol 2017; 1:27. [PMID: 28529980 PMCID: PMC5435108 DOI: 10.1038/s41559-016-0027] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) are a unique class of short endogenous RNAs that became known in the last few decades as major players in gene regulation at the post-transcriptional level. Their regulatory roles make miRNAs crucial for normal development and physiology in several distinct groups of eukaryotes including plants and animals. The common notion in the field is that miRNAs have evolved independently in those distinct lineages, but recent evidence from non-bilaterian metazoans, plants, as well as various algae raise the possibility that already the last common ancestor of these lineages might have employed a miRNA pathway for post-transcriptional regulation. In this review we present the commonalities and differences of the miRNA pathways in various eukaryotes and discuss the contrasting scenarios of their possible evolutionary origin and their proposed link to organismal complexity and multicellularity.
Collapse
Affiliation(s)
- Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University Jerusalem, Jerusalem 91904, Israel
| | - Maayan Agron
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University Jerusalem, Jerusalem 91904, Israel
| | - Daniela Praher
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
614
|
miR319, miR390, and miR393 Are Involved in Aluminum Response in Flax ( Linum usitatissimum L.). BIOMED RESEARCH INTERNATIONAL 2017; 2017:4975146. [PMID: 28299328 PMCID: PMC5337325 DOI: 10.1155/2017/4975146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 11/22/2022]
Abstract
Acid soils limit agricultural production worldwide. Major reason of crop losses in acid soils is the toxicity of aluminum (Al). In the present work, we investigated expression alterations of microRNAs in flax (Linum usitatissimum L.) plants under Al stress. Flax seedlings of resistant (TMP1919 and G1071/4_k) and sensitive (Lira and G1071/4_o) to Al cultivars and lines were exposed to AlCl3 solution for 4 and 24 hours. Twelve small RNA libraries were constructed and sequenced using Illumina platform. In total, 97 microRNAs from 18 conserved families were identified. miR319, miR390, and miR393 revealed expression alterations associated with Al treatment of flax plants. Moreover, for miR390 and miR393, the alterations were distinct in sensitive and resistant to Al genotypes. Expression level changes of miR319 and miR390 were confirmed using qPCR analysis. In flax, potential targets of miR319 are TCPs, miR390–TAS3 and GRF5, and miR393–AFB2-coding transcripts. TCPs, TAS3, GRF5, and AFB2 participate in regulation of plant growth and development. The involvement of miR319, miR390, and miR393 in response to Al stress in flax was shown here for the first time. We speculate that these microRNAs play an important role in Al response via regulation of growth processes in flax plants.
Collapse
|
615
|
Machado JPB, Calil IP, Santos AA, Fontes EPB. Translational control in plant antiviral immunity. Genet Mol Biol 2017; 40:292-304. [PMID: 28199446 PMCID: PMC5452134 DOI: 10.1590/1678-4685-gmb-2016-0092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023] Open
Abstract
Due to the limited coding capacity of viral genomes, plant viruses depend extensively on the host cell machinery to support the viral life cycle and, thereby, interact with a large number of host proteins during infection. Within this context, as plant viruses do not harbor translation-required components, they have developed several strategies to subvert the host protein synthesis machinery to produce rapidly and efficiently the viral proteins. As a countermeasure against infection, plants have evolved defense mechanisms that impair viral infections. Among them, the host-mediated translational suppression has been characterized as an efficient mean to restrict infection. To specifically suppress translation of viral mRNAs, plants can deploy susceptible recessive resistance genes, which encode translation initiation factors from the eIF4E and eIF4G family and are required for viral mRNA translation and multiplication. Additionally, recent evidence has demonstrated that, alternatively to the cleavage of viral RNA targets, host cells can suppress viral protein translation to silence viral RNA. Finally, a novel strategy of plant antiviral defense based on suppression of host global translation, which is mediated by the transmembrane immune receptor NIK1 (nuclear shuttle protein (NSP)-Interacting Kinase1), is discussed in this review.
Collapse
Affiliation(s)
- João Paulo B Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Iara P Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Anésia A Santos
- Department of General Biology, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| |
Collapse
|
616
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017. [PMID: 28183327 DOI: 10.1186/s12985-017-0699-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. METHODS VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. RESULTS The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5'-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. CONCLUSIONS SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
617
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017; 14:27. [PMID: 28183327 PMCID: PMC5301327 DOI: 10.1186/s12985-017-0699-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. Methods VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. Results The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5’-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. Conclusions SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0699-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
618
|
Li X, Xie X, Li J, Cui Y, Hou Y, Zhai L, Wang X, Fu Y, Liu R, Bian S. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s. BMC PLANT BIOLOGY 2017; 17:32. [PMID: 28143404 PMCID: PMC5286673 DOI: 10.1186/s12870-017-0983-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/23/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. RESULTS We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. CONCLUSION This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or under abiotic stresses.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Ji Li
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Yanming Hou
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Yanli Fu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Ranran Liu
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
619
|
Pilon M. The copper microRNAs. THE NEW PHYTOLOGIST 2017; 213:1030-1035. [PMID: 27767213 DOI: 10.1111/nph.14244] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/30/2016] [Indexed: 05/23/2023]
Abstract
1030 I. 1030 II. 1030 III. 1031 IV. 1031 V. 1032 VI. 1033 VII. 1034 VIII. 1034 1034 References 1034 SUMMARY: Copper (Cu) microRNAs are upregulated by Cu deficiency and mediate the post-transcriptional downregulation of transcripts that encode Cu proteins, suggesting a role directly related to Cu. However, expression and phenotypic analyses of copper microRNA mutants and over-expressors have suggested roles mainly in tolerance to abiotic stresses. To reconcile available data, a model is proposed which emphasizes the mobile nature of copper microRNA molecules in the regulation of Cu homeostasis. It is proposed that the Cu-microRNA regulatory circuits are further co-opted by plants to regulate both beneficial and pathogenic interactions with microbes. Further exploration of Cu-microRNA functions that account for the cell-to-cell mobility should give novel insight into plant microbe interactions and the integration of micronutrition and development.
Collapse
Affiliation(s)
- Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
620
|
Ordóñez-Baquera PL, González-Rodríguez E, Aguado-Santacruz GA, Rascón-Cruz Q, Conesa A, Moreno-Brito V, Echavarria R, Dominguez-Viveros J. Identification of miRNA from Bouteloua gracilis, a drought tolerant grass, by deep sequencing and their in silico analysis. Comput Biol Chem 2017; 66:26-35. [DOI: 10.1016/j.compbiolchem.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/04/2016] [Accepted: 11/04/2016] [Indexed: 11/26/2022]
|
621
|
Shen C, Huang YY, He CT, Zhou Q, Chen JX, Tan X, Mubeen S, Yuan JG, Yang ZY. Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatica Forsk. cultivars with different cadmium accumulation capacities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:329-339. [PMID: 27992771 DOI: 10.1016/j.plaphy.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/10/2016] [Accepted: 12/11/2016] [Indexed: 05/27/2023]
Abstract
In plants, microRNAs (miRNAs) play regulatory roles in response to various environmental stresses. In order to illustrate the regulation mechanisms of miRNAs involving the different Cd accumulation abilities between a low-shoot-Cd cultivar (QLQ) and a high-shoot-Cd cultivar (T308) of water spinach (Ipomoea aquatic Forsk.), six sRNA libraries at 3 different time points were constructed. Only 5 miRNAs were exclusively regulated in QLQ, among them, miRNA395 was up-regulated, which was supposed to enhance the Cd retention and detoxification in root. Also, the alterations of miRNA5139, miRNA1511 and miRNA8155 contributed to the attenuation of Cd translocation into the shoot of QLQ. More differentially expressed miRNAs were observed in T308, indicating more complex response was adopted by T308 under Cd stress. miRNA397 exclusively regulated in T308 has enhanced the Cd influx of T308 under Cd treatments. Besides, the Cd translocation of T308 was strengthened due to the up-regulation of MATE efflux family, which was targeted by miRNA3627. Our results unraveled the effects of the cultivar-dependent expression of these specific miRNAs on the different Cd accumulation and translocation abilities of QLQ and T308. These findings provide a new perspective for the molecular assisted breeding of low-Cd cultivars for leaf-vegetables.
Collapse
Affiliation(s)
- Chuang Shen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Ying-Ying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Qian Zhou
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Jing-Xin Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Xiao Tan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Jian-Gang Yuan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| |
Collapse
|
622
|
Liu Z, Zhang Y, Ou L, Kang L, Liu Y, Lv J, Wei G, Yang B, Yang S, Chen W, Dai X, Li X, Zhou S, Zhang Z, Ma Y, Zou X. Identification and characterization of novel microRNAs for fruit development and quality in hot pepper (Capsicum annuum L.). Gene 2017; 608:66-72. [PMID: 28122266 DOI: 10.1016/j.gene.2017.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs which play an important regulatory role in various biological processes. Previous studies have reported that miRNAs are involved in fruit development in model plants. However, the miRNAs related to fruit development and quality in hot pepper (Capsicum annuum L.) remains unknown. In this study, small RNA populations from different fruit ripening stages and different varieties were compared using next-generation sequencing technology. Totally, 59 known miRNAs and 310 novel miRNAs were identified from four libraries using miRDeep2 software. For these novel miRNAs, 656 targets were predicted and 402 of them were annotated. GO analysis and KEGG pathways suggested that some of the predicted miRNAs targeted genes involved in starch sucrose metabolism and amino sugar as well as nucleotide sugar metabolism. Quantitative RT-PCR validated the contrasting expression patterns between several miRNAs and their target genes. These results will provide an important foundation for future studies on the regulation of miRNAs involved in fruit development and quality.
Collapse
Affiliation(s)
- Zhoubin Liu
- Longping Branch, Graduate School of Hunan university, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
| | - Yuping Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lijun Ou
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Linyu Kang
- Longping Branch, Graduate School of Hunan university, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
| | - Yuhua Liu
- Longping Branch, Graduate School of Hunan university, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
| | - Junheng Lv
- Longping Branch, Graduate School of Hunan university, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China
| | - Ge Wei
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Bozhi Yang
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Sha Yang
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Wenchao Chen
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Xiongze Dai
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Xuefeng Li
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Shudong Zhou
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Zhuqing Zhang
- Hunan Vegetable Research Institute, Changsha 410125, China.
| | - Yanqing Ma
- Hunan Vegetable Research Institute, Changsha 410125, China.
| | - Xuexiao Zou
- Longping Branch, Graduate School of Hunan university, Changsha 410125, China; Hunan Vegetable Research Institute, Changsha 410125, China.
| |
Collapse
|
623
|
Ling LZ, Zhang SD, Zhao F, Yang JL, Song WH, Guan SM, Li XS, Huang ZJ, Cheng L. Transcriptome-Wide Identification and Prediction of miRNAs and Their Targets in Paris polyphylla var. yunnanensis by High-Throughput Sequencing Analysis. Int J Mol Sci 2017; 18:ijms18010219. [PMID: 28117746 PMCID: PMC5297848 DOI: 10.3390/ijms18010219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Long dormancy period of seeds limits the large-scale artificial cultivation of the scarce Paris polyphylla var. yunnanensis, an important traditional Chinese medicine. Characterizing miRNAs and their targets is crucial to understanding the role of miRNAs during seed dormancy in this species. Considering the limited genome information of this species, we first sequenced and assembled the transcriptome data of dormant seeds and their seed coats as the reference genome. A total of 146,671 unigenes with an average length of 923 bp were identified and showed functional diversity based on different annotation methods. Two small RNA libraries from respective seeds and seed coats were sequenced and the combining data indicates that 263 conserved miRNAs belonging to at least 83 families and 768 novel miRNAs in 1174 transcripts were found. The annotations of the predicted putative targets of miRNAs suggest that these miRNAs were mainly involved in the cell, metabolism and genetic information processing by direct and indirect regulation patterns in dormant seeds of P. polyphylla var. yunnanensis. Therefore, we provide the first known miRNA profiles and their targets, which will assist with further study of the molecular mechanism of seed dormancy in P. polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Li-Zhen Ling
- BGI-Yunnan, Kunming 650106, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.
| | - Shu-Dong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Fan Zhao
- BGI-Yunnan, Kunming 650106, China.
| | | | | | | | | | | | - Le Cheng
- BGI-Yunnan, Kunming 650106, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.
- College of Clinical Medicine, College of Basic Medical Sciences, Dali University, Dali 671000, China.
| |
Collapse
|
624
|
Identification of microRNAs in Response to Drought in Common Wild Rice (Oryza rufipogon Griff.) Shoots and Roots. PLoS One 2017; 12:e0170330. [PMID: 28107426 PMCID: PMC5249095 DOI: 10.1371/journal.pone.0170330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/03/2017] [Indexed: 01/23/2023] Open
Abstract
Background Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. Results In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where ‘R’ indicates the root tissue and ‘L’ indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. Conclusion Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.
Collapse
|
625
|
Wang M, Li C, Lu S. Origin and evolution of MIR1444 genes in Salicaceae. Sci Rep 2017; 7:39740. [PMID: 28071760 PMCID: PMC5223194 DOI: 10.1038/srep39740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/25/2016] [Indexed: 11/30/2022] Open
Abstract
miR1444s are functionally significant miRNAs targeting polyphenol oxidase (PPO) genes for cleavage. MIR1444 genes were reported only in Populus trichocarpa. Through the computational analysis of 215 RNA-seq data, four whole genome sequences of Salicaceae species and deep sequencing of six P. trichocarpa small RNA libraries, we investigated the origin and evolution history of MIR1444s. A total of 23 MIR1444s were identified. Populus and Idesia species contain two MIR1444 genes, while Salix includes only one. Populus and Idesia MIR1444b genes and Salix MIR1444s were phylogenetically separated from Populus and Idesia MIR1444a genes. Ptr-miR1444a and ptr-miR1444b showed sequence divergence. Compared with ptr-miR1444b, ptr-miR1444a started 2 nt upstream of precursor, resulting in differential regulation of PPO targets. Sequence alignments showed that MIR1444 genes exhibited extensive similarity to their PPO targets, the characteristics of MIRs originated from targets through an inverted gene duplication event. Genome sequence comparison showed that MIR1444 genes in Populus and Idesia were expanded through the Salicoid genome duplication event. A copy of MIR1444 gene was lost in Salix through DNA segment deletion during chromosome rearrangements. The results provide significant information for the origin of plant miRNAs and the mechanism of Salicaceae gene evolution and divergence.
Collapse
Affiliation(s)
- Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
626
|
Liu R, Lai B, Hu B, Qin Y, Hu G, Zhao J. Identification of MicroRNAs and Their Target Genes Related to the Accumulation of Anthocyanins in Litchi chinensis by High-Throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 7:2059. [PMID: 28119728 PMCID: PMC5223483 DOI: 10.3389/fpls.2016.02059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Litchi (Litchi chinensis Sonn.) is an important subtropical fruit in southern China and the fruit pericarp has attractive red skin at maturity, which is provided by anthocyanins accumulation. To understand the anthocyanin biosynthesis at post-transcriptional level, we investigated the roles of microRNAs (miRNAs) during fruit coloring. In the present study, four small RNA libraries and a mixed degradome library from pericarps of 'Feizixiao' litchi at different developmental phases were constructed and sequenced by Solexa technology. A total of 78 conserved miRNAs belonging to 35 miRNA families and 41 novel miRNAs were identified via high-throughput sequencing, and 129 genes were identified as their targets by the recently developed degradome sequencing. miR156a and a novel microRNA (NEW41) were found to be differentially expressed during fruit coloring, indicating they might affect anthocyanin biosynthesis through their target genes in litchi. qRT-PCR analysis confirmed the expression changes of miR156a and the novel microRNA (NEW41) were inversely correlated with the expression profiles of their target genes LcSPL1/2 and LcCHI, respectively, suggesting regulatory roles of these miRNAs during anthocyanin biosynthesis. The target genes of miR156a, LcSPL1/2, encode transcription factors, as evidenced by a localization in the nucleus, that might play roles in the regulation of transcription. To further explore the relationship of LcSPL1/2 with the anthocyanin regulatory genes, yeast two-hybrid and BiFC analyses showed that LcSPL1 proteins could interact with LcMYB1, which is the key regulatory gene in anthocyanin biosynthesis in litchi. This study represents a comprehensive expression profiling of miRNAs in anthocyanin biosynthesis during litchi fruit maturity and confirmed that the miR156- SPLs module was conserved in anthocyanin biosynthesis in litchi.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
627
|
Ma X, Han N, Shao C, Meng Y. Transcriptome-Wide Discovery of PASRs (Promoter-Associated Small RNAs) and TASRs (Terminus-Associated Small RNAs) in Arabidopsis thaliana. PLoS One 2017; 12:e0169212. [PMID: 28046132 PMCID: PMC5207706 DOI: 10.1371/journal.pone.0169212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/13/2016] [Indexed: 01/21/2023] Open
Abstract
Hints from animals point to the existence of two novel small RNA (sRNA) species surrounding the transcription start sites (TSSs) and the termini of the genes, respectively. In this study, we performed a comprehensive search for the two sRNA species named promoter-associated sRNAs (PASRs) and terminus-associated sRNAs (TASRs) in Arabidopsis. By using sRNA sequencing data from wild type plants and several mutants related to the sRNA biogenesis, Argonaute (AGO) 1- and AGO4-associated sRNA sequencing data, double-stranded RNA sequencing (dsRNA-seq) data, and DNA methylation profiling data, the biogenesis and action pathways of the PASRs and the TASRs were investigated. PASR and TASR peaks were identified on hundreds of the protein-coding genes. Deep analysis uncovered that some of the sRNA peaks were covered by dsRNA-seq reads, and these peaks were significantly repressed in specific mutants. Besides, certain PASRs and TASRs were preferentially recruited by AGO4, and site-specific DNA methylation signals encompassing the genomic loci of these sRNAs were also detected. Accordingly, we proposed a model that certain PASRs and TASRs were generated through a specific Pol IV-, RDR-, DCL-dependent pathway, and they were associated with AGO4 to perform site-specific DNA methylation on their host genes. The above results indicate the existence of PASRs and TASRs in plants. The proposed biogenesis pathway and action mode of the PASRs and TASRs could facilitate us to perform in-depth functional studies on these novel sRNA species.
Collapse
Affiliation(s)
- Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou, PR China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
- * E-mail:
| |
Collapse
|
628
|
Song Z, Zhang L, Wang Y, Li H, Li S, Zhao H, Zhang H. Constitutive Expression of miR408 Improves Biomass and Seed Yield in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2114. [PMID: 29422907 PMCID: PMC5789609 DOI: 10.3389/fpls.2017.02114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/27/2017] [Indexed: 05/21/2023]
Abstract
miR408 is highly conserved among different plant species and targets transcripts encoding copper-binding proteins. The function of miR408 in reproductive development remains largely unclear despite it being known to play important roles during vegetative development in Arabidopsis. Here, we show that transgenic Arabidopsis plants overexpressing MIR408 have altered morphology including significantly increased leaf area, petiole length, plant height, flower size, and silique length, resulting in enhanced biomass and seed yield. The increase in plant size was primarily due to cell expansion rather than cell proliferation, and was consistent with higher levels of myosin gene expression and gibberellic acid (GA) measured in transgenic plants. In addition, photosynthetic rate was significantly increased in the MIR408-overexpressing plants, as manifested by higher levels of chloroplastic copper content and plastocyanin (PC) expression. In contrast, overexpression of miR408-regulated targets, Plantacyanin and Laccase 13, resulted in reduced biomass production and seed yield. RNA-sequencing revealed that genes involved in primary metabolism and stress response were preferentially enriched in the genes upregulated in MIR408-overexpressing plants. These results indicate that miR408 plays an important role in regulating biomass and seed yield and that MIR408 may be a potential candidate gene involved in the domestication of agricultural crops.
Collapse
|
629
|
Lim MYT, Okamura K. Switches in Dicer Activity During Oogenesis and Early Development. Results Probl Cell Differ 2017; 63:325-351. [PMID: 28779324 DOI: 10.1007/978-3-319-60855-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dicer is a versatile protein regulating diverse biological processes via the production of multiple classes of small regulatory RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs). In this chapter, we will discuss roles for Dicer in driving temporal changes in activity of individual small RNA classes to support oogenesis and early embryogenesis. Genetic strategies that perturb particular functions of Dicer family proteins, such as ablation of individual Dicer paralogs or their binding partners as well as introduction of point mutations to individual domains, allowed the dissection of Dicer functions in diverse small RNA pathways. Evolutionary conservation and divergence of the mechanisms highlight the importance of Dicer versatility in supporting rapid changes in gene expression during oogenesis and early development. Furthermore, we will discuss potential roles of Dicer in transgenerational inheritance of small RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Mandy Yu Theng Lim
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 639798, Singapore.
| |
Collapse
|
630
|
Insect and plant-derived miRNAs in greenbug (Schizaphis graminum) and yellow sugarcane aphid (Sipha flava) revealed by deep sequencing. Gene 2017; 599:68-77. [DOI: 10.1016/j.gene.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
|
631
|
Ge W, Zhang Y, Cheng Z, Hou D, Li X, Gao J. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis). PLANT BIOTECHNOLOGY JOURNAL 2017; 15:82-96. [PMID: 27337661 PMCID: PMC5253477 DOI: 10.1111/pbi.12593] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/12/2016] [Accepted: 06/20/2016] [Indexed: 05/05/2023]
Abstract
Moso bamboo is characterized by infrequent sexual reproduction and erratic flowering habit; however, the molecular biology of flower formation and development is not well studied in this species. We studied the molecular regulation mechanisms of moso bamboo development and flowering by selecting three key regulatory pathways: plant-pathogen interaction, plant hormone signal transduction and protein processing in endoplasmic reticulum at different stages of flowering in moso bamboo. We selected PheDof1, PheMADS14 and six microRNAs involved in the three pathways through KEGG pathway and cluster analysis. Subcellular localization, transcriptional activation, Western blotting, in situ hybridization and qRT-PCR were used to further investigate the expression patterns and regulatory roles of pivotal genes at different flower development stages. Differential expression patterns showed that PheDof1, PheMADS14 and six miRNAs may play vital regulatory roles in flower development and floral transition in moso bamboo. Our research paves way for further studies on metabolic regulatory networks and provides insight into the molecular regulation mechanisms of moso bamboo flowering and senescence.
Collapse
Affiliation(s)
- Wei Ge
- Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry AdministrationInternational Centre for Bamboo and RattanBeijingChina
| | - Ying Zhang
- Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry AdministrationInternational Centre for Bamboo and RattanBeijingChina
- China National Engineering Research Center for Information Technology in AgricultureBeijingChina
| | - Zhanchao Cheng
- Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry AdministrationInternational Centre for Bamboo and RattanBeijingChina
| | - Dan Hou
- Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry AdministrationInternational Centre for Bamboo and RattanBeijingChina
| | - Xueping Li
- Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry AdministrationInternational Centre for Bamboo and RattanBeijingChina
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology of the State Forestry AdministrationInternational Centre for Bamboo and RattanBeijingChina
| |
Collapse
|
632
|
Liu WW, Meng J, Cui J, Luan YS. Characterization and Function of MicroRNA ∗s in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2200. [PMID: 29312425 PMCID: PMC5744440 DOI: 10.3389/fpls.2017.02200] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
MicroRNAs, a group of non-coding RNA molecules, play essential roles in a wide range of cellular processes in different molecules, cells, and organisms. In plants, microRNAs are a class of 20- to 24-nucleotides endogenous small RNAs that repress gene expression. The microRNA guide strand (miRNA) and its complementary strand (miRNA∗) both originate from the miRNA/miRNA∗ duplex. Generally, the guide strands act as post-transcriptional regulators that suppress gene expression by cleaving their target mRNA transcripts, whereas the complementary strands were thought to be degraded as 'passenger strands.' However, the complementary strand has been confirmed to possess significant biological functionality in recent reports. In this review, we summarized the binding characteristics of the miRNA∗ strands with ARGONAUTE proteins, their tissue-specific accumulations and their biological functions, illustrating the essential roles of miRNA∗s in biological processes and therefore providing directions for further exploration.
Collapse
Affiliation(s)
- Wei-wei Liu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, China
- *Correspondence: Jun Meng, Yu-shi Luan,
| | - Jun Cui
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yu-shi Luan
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
- *Correspondence: Jun Meng, Yu-shi Luan,
| |
Collapse
|
633
|
Abstract
Cells have evolved intricate RNA-directed mechanisms that destroy viruses, silence transposons, and regulate gene expression. These nucleic acid surveillance and gene silencing mechanisms rely upon the selective base-pairing of ~19-25 nt small RNAs to complementary RNA targets. This chapter describes northern blot hybridization techniques for the detection of such small RNAs. Blots spiked with synthetic standards are used to illustrate the detection specificity and sensitivity of DNA oligonucleotide probes. Known endogenous small RNAs are then analyzed in samples prepared from several model plants, including Arabidopsis thaliana, Nicotiana benthamiana, Oryza sativa, Zea mays, and Physcomitrella patens, as well as from the animals Drosophila melanogaster and Mus musculus. Finally, the value of northern blotting for dissecting small RNA biogenesis is shown using an example of virus infection in A. thaliana.
Collapse
Affiliation(s)
- Todd Blevins
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS) UPR2357, 12 rue du Général Zimmer, Strasbourg Cedex, 67084, USA.
| |
Collapse
|
634
|
Zhang L, Qin C, Mei J, Chen X, Wu Z, Luo X, Cheng J, Tang X, Hu K, Li SC. Identification of MicroRNA Targets of Capsicum spp. Using MiRTrans-a Trans-Omics Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:495. [PMID: 28443105 PMCID: PMC5385386 DOI: 10.3389/fpls.2017.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/21/2017] [Indexed: 05/11/2023]
Abstract
The microRNA (miRNA) can regulate the transcripts that are involved in eukaryotic cell proliferation, differentiation, and metabolism. Especially for plants, our understanding of miRNA targets, is still limited. Early attempts of prediction on sequence alignments have been plagued by enormous false positives. It is helpful to improve target prediction specificity by incorporating the other data sources such as the dependency between miRNA and transcript expression or even cleaved transcripts by miRNA regulations, which are referred to as trans-omics data. In this paper, we developed MiRTrans (Prediction of MiRNA targets by Trans-omics data) to explore miRNA targets by incorporating miRNA sequencing, transcriptome sequencing, and degradome sequencing. MiRTrans consisted of three major steps. First, the target transcripts of miRNAs were predicted by scrutinizing their sequence characteristics and collected as an initial potential targets pool. Second, false positive targets were eliminated if the expression of miRNA and its targets were weakly correlated by lasso regression. Third, degradome sequencing was utilized to capture the miRNA targets by examining the cleaved transcripts that regulated by miRNAs. Finally, the predicted targets from the second and third step were combined by Fisher's combination test. MiRTrans was applied to identify the miRNA targets for Capsicum spp. (i.e., pepper). It can generate more functional miRNA targets than sequence-based predictions by evaluating functional enrichment. MiRTrans identified 58 miRNA-transcript pairs with high confidence from 18 miRNA families conserved in eudicots. Most of these targets were transcription factors; this lent support to the role of miRNA as key regulator in pepper. To our best knowledge, this work is the first attempt to investigate the miRNA targets of pepper, as well as their regulatory networks. Surprisingly, only a small proportion of miRNA-transcript pairs were shared between degradome sequencing and expression dependency predictions, suggesting that miRNA targets predicted by a single technology alone may be prone to report false negatives.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science, City University of Hong KongHong Kong, China
| | - Cheng Qin
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical UniversityZunyi, China
| | | | - Xiaocui Chen
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Zhiming Wu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and EngineeringGuangzhou, China
| | - Xirong Luo
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Xiangqun Tang
- Pepper Institute, Zunyi Academy of Agricultural SciencesZunyi, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Kailin Hu
| | - Shuai C. Li
- Department of Computer Science, City University of Hong KongHong Kong, China
- Shuai Cheng Li
| |
Collapse
|
635
|
Liu W, Zhou Y, Li X, Wang X, Dong Y, Wang N, Liu X, Chen H, Yao N, Cui X, Jameel A, Wang F, Li H. Tissue-Specific Regulation of Gma-miR396 Family on Coordinating Development and Low Water Availability Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1112. [PMID: 28694817 PMCID: PMC5483475 DOI: 10.3389/fpls.2017.01112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Previously, it was reported that miR396s interact with growth-regulating factors (GRFs) to modulate plant growth, development, and stress resistance. In soybean, 11 gma-miR396 precursors (Pre-miR396a-k) were found, and 24 GmGRFs were predicted as targets of seven mature gma-miR396s (gma-miR396a/b/c/e/h/i/k). To explore the roles of the miR396-GRF module in low water availability response of soybean, we analyzed the expression of Pre-miR396a-k, and found that Pre-miR396a/i/bdgk/e/h were up-regulated in leaves and down-regulated in roots; on the contrary, GmGRF5/6/7/8/15/17/21 were down-regulated in leaves and GmGRF1/2/17/18/19/20/21/22/23/24 were up-regulated in roots of low water potential stressed soybean. Any one of gma-miR396a/b/c/e/h/i/k was able to interact with 20 GmGRFs (GmGRF1/2/6-11/13-24), confirming that this module represents a multi-to-multi network interaction. We generated Arabidopsis plants over-expressing each of the 11 gma-miR396 precursors (Pre-miR396a-k), and seven of them (miR396a/b/c/e/h/i/k-OE transgenic Arabidopsis) showed altered development. The low water availability of miR396a/b/c/e/h/i/k-OE was enhanced in leaves but reduced in seeds and roots. Contrary to previous reports, miR396a/b/c/i-OE seedlings showed lower survival rate than WT when recovering after rewatering under soil drying. In general, we believe our findings are valuable to understand the role of gma-miR396 family in coordinating development and low water availability responses, and can provide potential strategies and directions for soybean breeding programs to improve seed yield and plant drought tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haiyan Li
- *Correspondence: Fawei Wang, Haiyan Li,
| |
Collapse
|
636
|
Gao X, Cui Q, Cao QZ, Liu Q, He HB, Zhang DM, Jia GX. Transcriptome-Wide Analysis of Botrytis elliptica Responsive microRNAs and Their Targets in Lilium Regale Wilson by High-Throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:753. [PMID: 28572808 PMCID: PMC5435993 DOI: 10.3389/fpls.2017.00753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 05/07/2023]
Abstract
MicroRNAs, as master regulators of gene expression, have been widely identified and play crucial roles in plant-pathogen interactions. A fatal pathogen, Botrytis elliptica, causes the serious folia disease of lily, which reduces production because of the high susceptibility of most cultivated species. However, the miRNAs related to Botrytis infection of lily, and the miRNA-mediated gene regulatory networks providing resistance to B. elliptica in lily remain largely unexplored. To systematically dissect B. elliptica-responsive miRNAs and their target genes, three small RNA libraries were constructed from the leaves of Lilium regale, a promising Chinese wild Lilium species, which had been subjected to mock B. elliptica treatment or B. elliptica infection for 6 and 24 h. By high-throughput sequencing, 71 known miRNAs belonging to 47 conserved families and 24 novel miRNA were identified, of which 18 miRNAs were downreguleted and 13 were upregulated in response to B. elliptica. Moreover, based on the lily mRNA transcriptome, 22 targets for 9 known and 1 novel miRNAs were identified by the degradome sequencing approach. Most target genes for elliptica-responsive miRNAs were involved in metabolic processes, few encoding different transcription factors, including ELONGATION FACTOR 1 ALPHA (EF1a) and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 2 (TCP2). Furthermore, the expression patterns of a set of elliptica-responsive miRNAs and their targets were validated by quantitative real-time PCR. This study represents the first transcriptome-based analysis of miRNAs responsive to B. elliptica and their targets in lily. The results reveal the possible regulatory roles of miRNAs and their targets in B. elliptica interaction, which will extend our understanding of the mechanisms of this disease in lily.
Collapse
Affiliation(s)
- Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qi Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qin-Zheng Cao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Qiang Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Heng-Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Dong-Mei Zhang
- Shanghai Academy of Landscape Architecture Science and PlanningShanghai, China
- Shanghai Engineering Research Center of Landscaping on Challenging Urban SitesShanghai, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
- *Correspondence: Gui-Xia Jia
| |
Collapse
|
637
|
Xiao L, Quan M, Du Q, Chen J, Xie J, Zhang D. Allelic Interactions among Pto-MIR475b and Its Four Target Genes Potentially Affect Growth and Wood Properties in Populus. FRONTIERS IN PLANT SCIENCE 2017; 8:1055. [PMID: 28680433 PMCID: PMC5478899 DOI: 10.3389/fpls.2017.01055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/31/2017] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in plant growth and development, but few studies have illuminated the allelic interactions among miRNAs and their targets in perennial plants. Here, we combined analysis of expression patterns and single-nucleotide polymorphism (SNP)-based association studies to explore the interactions between Pto-MIR475b and its four target genes (Pto-PPR1, Pto-PPR2, Pto-PPR3, and Pto-PPR4) in 435 unrelated individuals of Populus tomentosa. Expression patterns showed a significant negative correlation (r = -0.447 to -0.411, P < 0.01) between Pto-MIR475b and its four targets in eight tissues of P. tomentosa, suggesting that Pto-miR475b may negatively regulate the four targets. Single SNP-based association studies identified 93 significant associations (P < 0.01, Q < 0.1) representing associations of 80 unique SNPs in Pto-MIR475b and its four targets with nine traits, revealing their potential roles in tree growth and wood formation. Moreover, one common SNP in the precursor region significantly altered the secondary structure of the pre-Pto-miR475b and changed the expression level of Pto-MIR475b. Analysis of epistatic interactions identified 115 significant SNP-SNP associations (P < 0.01) representing 45 unique SNPs from Pto-MIR475b and its four targets for 10 traits, revealing that genetic interactions between Pto-MIR475b and its targets influence quantitative traits of perennial plants. Our study provided a feasible strategy to study population genetics in forest trees and enhanced our understanding of miRNAs by dissecting the allelic interactions between this miRNA and its targets in P. tomentosa.
Collapse
Affiliation(s)
- Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jinhui Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Deqiang Zhang,
| |
Collapse
|
638
|
Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ. Differential expression of microRNAs and potential targets under drought stress in barley. PLANT, CELL & ENVIRONMENT 2017; 40:11-24. [PMID: 27155357 DOI: 10.1111/pce.12764] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 05/04/2023]
Abstract
Drought is a crucial environmental constraint limiting crop production in many parts of the world. microRNA (miRNA) based gene regulation has been shown to act in several pathways, including crop response to drought stress. Sequence based profiling and computational analysis have revealed hundreds of miRNAs and their potential targets in different plant species under various stress conditions, but few have been biologically verified. In this study, 11 candidate miRNAs were tested for their expression profiles in barley. Differences in accumulation of only four miRNAs (Ath-miR169b, Osa-miR1432, Hv-miRx5 and Hv-miR166b/c) were observed between drought-treated and well-watered barley in four genotypes. miRNA targets were predicted using degradome analysis of two, different genotypes, and genotype-specific target cleavage was observed. Inverse correlation of mature miRNA accumulation with miRNA target transcripts was also genotype dependent under drought treatment. Drought-responsive miRNAs accumulated predominantly in mesophyll tissues. Our results demonstrate genotype-specific miRNA regulation under drought stress and evidence for their role in mediating expression of target genes for abiotic stress response in barley.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Juan Carlos Sanchez-Ferrero
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Linda Milne
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jamil Chowdhury
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Cell Walls, PMB1, Glen Osmond, SA, 5064, Australia
| | - Chris Brien
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Penny J Tricker
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
639
|
Wang M, Deng Y, Shao F, Liu M, Pang Y, Li C, Lu S. ARGONAUTE Genes in Salvia miltiorrhiza: Identification, Characterization, and Genetic Transformation. Methods Mol Biol 2017; 1640:173-189. [PMID: 28608342 DOI: 10.1007/978-1-4939-7165-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Small RNA-mediated gene silencing is a vital regulatory mechanism in eukaryotes that requires ARGONAUTE (AGO) proteins. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant. Therefore, it is important to characterize S. miltiorrhiza AGO family genes as they may be involved in multiple metabolic pathways. This chapter introduces the detailed protocol for SmAGO gene prediction and molecular cloning. In addition, an Agrobacterium-mediated genetic transformation method for S. miltiorrhiza is presented. These methodologies can be used to functionally study SmAGO genes as well as other genes of interest in S. miltiorrhiza.
Collapse
Affiliation(s)
- Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Yuxing Deng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Miaomiao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Yongqi Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
640
|
Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A. Contemporary Understanding of miRNA-Based Regulation of Secondary Metabolites Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:374. [PMID: 28424705 PMCID: PMC5372812 DOI: 10.3389/fpls.2017.00374] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/03/2017] [Indexed: 05/20/2023]
Abstract
Plant's secondary metabolites such as flavonoids, terpenoids, and alkaloids etc. are known for their role in the defense against various insects-pests of plants and for medicinal benefits in human. Due to the immense biological importance of these phytochemicals, understanding the regulation of their biosynthetic pathway is crucial. In the recent past, advancement in the molecular technologies has enabled us to better understand the proteins, enzymes, genes, etc. involved in the biosynthetic pathway of the secondary metabolites. miRNAs are magical, tiny, non-coding ribonucleotides that function as critical regulators of gene expression in eukaryotes. Despite the accumulated knowledge of the miRNA-mediated regulation of several processes, the involvement of miRNAs in regulating secondary plant product biosynthesis is still poorly understood. Here, we summarize the recent progress made in the area of identification and characterizations of miRNAs involved in regulating the biosynthesis of secondary metabolites in plants and discuss the future perspectives for designing the viable strategies for their targeted manipulation.
Collapse
Affiliation(s)
- Om P. Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley ResearchKarnal, India
- *Correspondence: Om P. Gupta
| | - Suhas G. Karkute
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable ResearchVaranasi, India
| | - Sagar Banerjee
- Division of Biochemistry, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Nand L. Meena
- Division of Basic Sciences, ICAR-Indian Institute of Millets ResearchHyderabad, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| |
Collapse
|
641
|
Tomari Y, Iwakawa HO. In Vitro Analysis of ARGONAUTE-Mediated Target Cleavage and Translational Repression in Plants. Methods Mol Biol 2017; 1640:55-71. [PMID: 28608334 DOI: 10.1007/978-1-4939-7165-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs, which negatively regulate expression of complementary target genes at the post-transcriptional level. In plants, miRNAs are mainly loaded onto ARGONAUTE1 to form RNA-induced silencing complexes (RISCs), which mediate target mRNA cleavage as well as translational repression. The cell-free system derived from tobacco BY-2 protoplasts has become a powerful tool not only for the analysis of RISC assembly mechanism but also for mechanistic dissection of plant RISC functions. Here we describe the detailed protocols for the preparation of BY-2 cell lysate and the procedure to analyze the dual function of plant RISC-target cleavage and translational repression-in vitro.
Collapse
Affiliation(s)
- Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hiro-Oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
642
|
Li G, Deng Y, Geng Y, Zhou C, Wang Y, Zhang W, Song Z, Gao L, Yang J. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats. FRONTIERS IN PLANT SCIENCE 2017; 8:2078. [PMID: 29259617 PMCID: PMC5723390 DOI: 10.3389/fpls.2017.02078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/21/2017] [Indexed: 05/10/2023]
Abstract
Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5' RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.
Collapse
Affiliation(s)
- Gengyun Li
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ying Deng
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yupeng Geng
- Institute of Ecology and Geobotany, Yunnan University, Kunming, China
| | - Chengchuan Zhou
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Yuguo Wang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Wenju Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Zhiping Song
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
| | - Lexuan Gao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| | - Ji Yang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- *Correspondence: Lexuan Gao, Ji Yang,
| |
Collapse
|
643
|
Abstract
The secondary structure of an RNA molecule represents the base-pairing interactions within the molecule and fundamentally determines its overall structure. In this chapter, we overview the main approaches and existing tools for predicting RNA secondary structures, as well as methods for identifying noncoding RNAs from genomic sequences or RNA sequencing data. We then focus on the identification of a well-known class of small noncoding RNAs, namely microRNAs, which play very important roles in many biological processes through regulating post-transcriptionally the expression of genes and which dysregulation has been shown to be involved in several human diseases.
Collapse
Affiliation(s)
- Fariza Tahi
- IBISC, UEVE/Genopole, 23 bv. de France, 91000, Evry, France.
- IPS2, University of Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Van Du T Tran
- Vital-IT group, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Anouar Boucheham
- IBISC, UEVE/Genopole, 23 bv. de France, 91000, Evry, France
- College of NTIC, Constantine University 2, Constantine, Algeria
| |
Collapse
|
644
|
Aravind J, Rinku S, Pooja B, Shikha M, Kaliyugam S, Mallikarjuna MG, Kumar A, Rao AR, Nepolean T. Identification, Characterization, and Functional Validation of Drought-responsive MicroRNAs in Subtropical Maize Inbreds. FRONTIERS IN PLANT SCIENCE 2017; 8:941. [PMID: 28626466 PMCID: PMC5454542 DOI: 10.3389/fpls.2017.00941] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MicroRNA-mediated gene regulation plays a crucial role in controlling drought tolerance. In the present investigation, 13 drought-associated miRNA families consisting of 65 members and regulating 42 unique target mRNAs were identified from drought-associated microarray expression data in maize and were subjected to structural and functional characterization. The largest number of members (14) was found in the zma-miR166 and zma-miR395 families, with several targets. However, zma-miR160, zma-miR390, zma-miR393, and zma-miR2275 each showed a single target. Twenty-three major drought-responsive cis-regulatory elements were found in the upstream regions of miRNAs. Many drought-related transcription factors, such as GAMYB, HD-Zip III, and NAC, were associated with the target mRNAs. Furthermore, two contrasting subtropical maize genotypes (tolerant: HKI-1532 and sensitive: V-372) were used to understand the miRNA-assisted regulation of target mRNA under drought stress. Approximately 35 and 31% of miRNAs were up-regulated in HKI-1532 and V-372, respectively. The up-regulation of target mRNAs was as high as 14.2% in HKI-1532 but was only 2.38% in V-372. The expression patterns of miRNA-target mRNA pairs were classified into four different types: Type I- up-regulation, Type II- down-regulation, Type III- neutral regulation, and Type IV- opposite regulation. HKI-1532 displayed 46 Type I, 13 Type II, and 23 Type III patterns, whereas V-372 had mostly Type IV interactions (151). A low level of negative regulations of miRNA associated with a higher level of mRNA activity in the tolerant genotype helped to maintain crucial biological functions such as ABA signaling, the auxin response pathway, the light-responsive pathway and endosperm expression under stress conditions, thereby leading to drought tolerance. Our study identified candidate miRNAs and mRNAs operating in important pathways under drought stress conditions, and these candidates will be useful in the development of drought-tolerant maize hybrids.
Collapse
Affiliation(s)
- Jayaraman Aravind
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
- Division of Germplasm Conservation, National Bureau of Plant Genetic ResourcesNew Delhi, India
| | - Sharma Rinku
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
- Department of Life Sciences, Shiv Nadar UniversityGautam Buddha Nagar, India
| | - Banduni Pooja
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Mittal Shikha
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | - Shiriga Kaliyugam
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | | | - Arun Kumar
- National Phytotron Facility, Indian Agricultural Research InstituteNew Delhi, India
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research InstituteNew Delhi, India
| | - Thirunavukkarasu Nepolean
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Thirunavukkarasu Nepolean ;
| |
Collapse
|
645
|
Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. FRONTIERS IN PLANT SCIENCE 2017; 8:565. [PMID: 28446918 PMCID: PMC5388764 DOI: 10.3389/fpls.2017.00565] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/29/2017] [Indexed: 05/14/2023]
Abstract
Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions.
Collapse
Affiliation(s)
- Abdul F. A. Samad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
| | - Muhammad Sajad
- Department of Plant Breeding and Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, PunjabPakistan
- Centre of Plant Biotechnology, Institute of Systems Biology, National University of Malaysia, SelangorMalaysia
| | - Nazaruddin Nazaruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda AcehIndonesia
| | - Izzat A. Fauzi
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
| | - Abdul M. A. Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
| | - Zamri Zainal
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
- Centre of Plant Biotechnology, Institute of Systems Biology, National University of Malaysia, SelangorMalaysia
| | - Ismanizan Ismail
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
- Centre of Plant Biotechnology, Institute of Systems Biology, National University of Malaysia, SelangorMalaysia
- *Correspondence: Ismanizan Ismail,
| |
Collapse
|
646
|
Wang Y, Wang Q, Gao L, Zhu B, Ju Z, Luo Y, Zuo J. Parsing the Regulatory Network between Small RNAs and Target Genes in Ethylene Pathway in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:527. [PMID: 28443119 PMCID: PMC5387102 DOI: 10.3389/fpls.2017.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/24/2017] [Indexed: 05/11/2023]
Abstract
Small RNAs are a class of short non-coding endogenous RNAs that play essential roles in many biological processes. Recent studies have reported that microRNAs (miRNAs) are also involved in ethylene signaling in plants. LeERF1 is one of the ethylene response factors (ERFs) in tomato that locates in the downstream of ethylene signal transduction pathway. To elucidate the intricate regulatory roles of small RNAs in ethylene signaling pathway in tomato, the deep sequencing and bioinformatics methods were combined to decipher the small RNAs landscape in wild and sense-/antisense-LeERF1 transgenic tomato fruits. Except for the known miRNAs, 36 putative novel miRNAs, 6 trans-acting short interfering RNAs (ta-siRNAs), and 958 natural antisense small interfering RNAs (nat-siRNAs) were also found in our results, which enriched the tomato small RNAs repository. Among these small RNAs, 9 miRNAs, and 12 nat-siRNAs were differentially expressed between the wild and transgenic tomato fruits significantly. A large amount of target genes of the small RNAs were identified and some of them were involved in ethylene pathway, including AP2 TFs, auxin response factors, F-box proteins, ERF TFs, APETALA2-like protein, and MADS-box TFs. Degradome sequencing further confirmed the targets of miRNAs and six novel targets were also discovered. Furthermore, a regulatory model which reveals the regulation relationships between the small RNAs and their targets involved in ethylene signaling was set up. This work provides basic information for further investigation of the function of small RNAs in ethylene pathway and fruit ripening.
Collapse
Affiliation(s)
- Yunxiang Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Lipu Gao
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Benzhong Zhu
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Zheng Ju
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Yunbo Luo
- Laboratory of Postharvest Molecular Biology of Fruits and Vegetables, Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Jinhua Zuo
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- *Correspondence: Jinhua Zuo
| |
Collapse
|
647
|
Mohorianu I, Stocks MB, Applegate CS, Folkes L, Moulton V. The UEA Small RNA Workbench: A Suite of Computational Tools for Small RNA Analysis. Methods Mol Biol 2017; 1580:193-224. [PMID: 28439835 DOI: 10.1007/978-1-4939-6866-4_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA silencing (RNA interference, RNAi) is a complex, highly conserved mechanism mediated by short, typically 20-24 nt in length, noncoding RNAs known as small RNAs (sRNAs). They act as guides for the sequence-specific transcriptional and posttranscriptional regulation of target mRNAs and play a key role in the fine-tuning of biological processes such as growth, response to stresses, or defense mechanism.High-throughput sequencing (HTS) technologies are employed to capture the expression levels of sRNA populations. The processing of the resulting big data sets facilitated the computational analysis of the sRNA patterns of variation within biological samples such as time point experiments, tissue series or various treatments. Rapid technological advances enable larger experiments, often with biological replicates leading to a vast amount of raw data. As a result, in this fast-evolving field, the existing methods for sequence characterization and prediction of interaction (regulatory) networks periodically require adapting or in extreme cases, a complete redesign to cope with the data deluge. In addition, the presence of numerous tools focused only on particular steps of HTS analysis hinders the systematic parsing of the results and their interpretation.The UEA small RNA Workbench (v1-4), described in this chapter, provides a user-friendly, modular, interactive analysis in the form of a suite of computational tools designed to process and mine sRNA datasets for interesting characteristics that can be linked back to the observed phenotypes. First, we show how to preprocess the raw sequencing output and prepare it for downstream analysis. Then we review some quality checks that can be used as a first indication of sources of variability between samples. Next we show how the Workbench can provide a comparison of the effects of different normalization approaches on the distributions of expression, enhanced methods for the identification of differentially expressed transcripts and a summary of their corresponding patterns. Finally we describe individual analysis tools such as PAREsnip, for the analysis of PARE (degradome) data or CoLIde for the identification of sRNA loci based on their expression patterns and the visualization of the results using the software. We illustrate the features of the UEA sRNA Workbench on Arabidopsis thaliana and Homo sapiens datasets.
Collapse
Affiliation(s)
- Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Computing Sciences, University of East Anglia, Norwich, UK
| | | | | | | | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
648
|
Xie Q, Liu X, Zhang Y, Tang J, Yin D, Fan B, Zhu L, Han L, Song G, Li D. Identification and Characterization of microRNA319a and Its Putative Target Gene, PvPCF5, in the Bioenergy Grass Switchgrass ( Panicum virgatum). FRONTIERS IN PLANT SCIENCE 2017; 8:396. [PMID: 28424710 PMCID: PMC5371612 DOI: 10.3389/fpls.2017.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/08/2017] [Indexed: 05/20/2023]
Abstract
Due to its high biomass yield, low environmental impact, and widespread adaptability to poor soils and harsh conditions, switchgrass (Panicum virgatum L.), a warm-region perennial herbaceous plant, has attracted much attention in recent years. However, little is known about microRNAs (miRNAs) and their functions in this bioenergy grass. Here, we identified and characterized a miRNA gene, Pvi-MIR319a, encoding microRNA319a in switchgrass. Transgenic rice lines generated by overexpressing the Pvi-MIR319a precursor gene exhibited broader leaves and delayed flowering compared with the control. Gene expression analysis indicated at least four putative target genes were downregulated. Additionally, we cloned a putative target gene (PvPCF5) of Pvi-MIR319a from switchgrass. PvPCF5, a TCP transcription factor, is a nuclear-localized protein with transactivation activity and control the development of leaf. Our results suggest that Pvi-MIR319a and its target genes may be used as potential genetic regulators for future switchgrass genetic improvement.
Collapse
Affiliation(s)
- Qi Xie
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Yinbing Zhang
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Bo Fan
- ShenZhen Guo Yi Park Developments Co. LtdShenzhen, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Liebao Han
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
| | - Guilong Song
- Institute of Turfgrass Science, College of Forestry, Beijing Forestry UniversityBeijing, China
- *Correspondence: Guilong Song, Dayong Li,
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Guilong Song, Dayong Li,
| |
Collapse
|
649
|
|
650
|
Wen M, Xie M, He L, Wang Y, Shi S, Tang T. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa). Genome Biol Evol 2016; 8:3529-3544. [PMID: 27797952 PMCID: PMC5203789 DOI: 10.1093/gbe/evw252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence.
Collapse
Affiliation(s)
- Ming Wen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Munan Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Yushuai Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|