601
|
Abstract
Natural compartmentalization makes proteome analysis of the cell, cell organelles and organelle subfractions possible. Protein complexes are the basis for the next level of compartmentalization that can be addressed well with proteomic technology. Protein complexes organize and maintain the cellular and organelle functions on all levels of complexity in time and space. Cell development and division, transcription and translation, respiration and photosynthesis, transport and metabolism can be defined by the activity of protein complexes. Since a large part of the protein complexes of the cell body are inserted in lipid membrane phases, isolation, separation and protein subunit identification were difficult to address. Blue native polyacrylamide gel electrophoresis (BN-PAGE) provides us with the technology for high resolution separation of membrane protein complexes. Here, we show that high resolution separation of protein complexes by BN-PAGE requires the establishment of a detailed solubilisation strategy. We show that BN/SDS-PAGE provides the scientist with a high resolution array of protein subunits which allows analysis of the specific subunit stoichiometry of a protein complex as well as the assembly of protein complexes by standard protein detection methodology like DIGE, gelblot analysis and mass spectrometry. We envision BN-PAGE to precede classical 2D IEF/SDS-analysis for detailed characterization of membrane proteomes.
Collapse
|
602
|
Chen J, Barry BA. Ultraviolet Resonance Raman Microprobe Spectroscopy of Photosystem II. Photochem Photobiol 2008; 84:815-8. [DOI: 10.1111/j.1751-1097.2008.00298.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
603
|
Liu F, Concepcion JJ, Jurss JW, Cardolaccia T, Templeton JL, Meyer TJ. Mechanisms of Water Oxidation from the Blue Dimer to Photosystem II. Inorg Chem 2008; 47:1727-52. [DOI: 10.1021/ic701249s] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feng Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599-3290
| | - Javier J. Concepcion
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599-3290
| | - Jonah W. Jurss
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599-3290
| | - Thomas Cardolaccia
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599-3290
| | - Joseph L. Templeton
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599-3290
| | - Thomas J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
604
|
Amunts A, Nelson N. Functional organization of a plant Photosystem I: evolution of a highly efficient photochemical machine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:228-37. [PMID: 18272382 DOI: 10.1016/j.plaphy.2007.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Indexed: 05/05/2023]
Abstract
Despite its enormous complexity, a plant Photosystem I (PSI) is arguably the most efficient nano-photochemical machine in Nature. It emerged as a homodimeric structure containing several chlorophyll molecules over 3.5 billion years ago, and has perfected its photoelectric properties ever since. The recently determined structure of plant PSI, which is at the top of the evolutionary tree of this kind of complexes, provided the first relatively high-resolution structural model of the supercomplex containing a reaction center (RC) and a peripheral antenna (LHCI) complexes. The RC is highly homologous to that of the cyanobacterial PSI and maintains the position of most transmembrane helices and chlorophylls during 1.5 years of separate evolution. The LHCI is composed of four nuclear gene products (Lhca1-Lhca4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and their assembly into dimers. In this respect, we describe structural elements, which establish the biological significance of a plant PSI and discuss structural variance from the cyanobacterial version. The present comprehensive structural analysis summarizes our current state of knowledge, providing the first glimpse at the architecture of this highly efficient photochemical machine at the atomic level.
Collapse
Affiliation(s)
- Alexey Amunts
- Biochemistry Department, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Sherman Building, Room 531, Tel Aviv 69978, Israel.
| | | |
Collapse
|
605
|
Jiang ZJ, Goedel WA. Fluorescence properties of systems with multiple Förster transfer pairs. Phys Chem Chem Phys 2008; 10:4584-93. [DOI: 10.1039/b717210a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
606
|
Enthalpy changes during photosynthetic water oxidation tracked by time-resolved calorimetry using a photothermal beam deflection technique. Biophys J 2007; 94:1890-903. [PMID: 17993488 DOI: 10.1529/biophysj.107.117085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn(4)Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, DeltaH, coupled to the formation of the radical pair Y(Z)(.+)Q(A)(-) (where Y(Z) is Tyr-161 of the D1 subunit of PSII) is estimated as -820 +/- 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be -400 +/- 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent DeltaV of about -13 A(3)). For the first time, the enthalpy change of the O(2)-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of DeltaH(S(3)-->S(0)) of -210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent DeltaV of about +42 A(3)) may reflect O(2) and proton release from the manganese complex, but also reorganization of the protein matrix.
Collapse
|
607
|
Semin BK, Davletshina LN, Bulychev AA, Ivanov II, Seibert M, Rubin AB. Effect of calcium chelators on the formation and oxidation of the slowly relaxing reduced plastoquinone pool in calcium-depleted PSII membranes. Investigation of the F0 yield. BIOCHEMISTRY (MOSCOW) 2007; 72:1205-15. [DOI: 10.1134/s0006297907110065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
608
|
Fu A, He Z, Cho HS, Lima A, Buchanan BB, Luan S. A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2007; 104:15947-52. [PMID: 17909185 PMCID: PMC2000425 DOI: 10.1073/pnas.0707851104] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic light reactions rely on the proper function of large protein complexes (including photosystems I and II) that reside in the thylakoid membrane. Although their composition, structure, and function are known, the repertoire of assembly and maintenance factors is still being determined. Here we show that an immunophilin of the cyclophilin type, CYP38, plays a critical role in the assembly and maintenance of photosystem II (PSII) supercomplexes (SCs) in Arabidopsis. Mutant plants with the CYP38 gene interrupted by T-DNA insertion showed stunted growth and were hypersensitive to high light. Leaf chlorophyll fluorescence analysis and thylakoid membrane composition indicated that cyp38 mutant plants had defects in PSII SCs. Sucrose supplementation enabled the rescue of the mutant phenotype under low-light conditions, but failed to mitigate hypersensitivity to high-light stress. Protein radiolabeling assays showed that, although individual thylakoid proteins were synthesized equally in mutant and wild type, the assembly of the PSII SC was impaired in the mutant. In addition, the D1 and D2 components of the mutant PSII had a short half-life under high-light stress. The results provide evidence that CYP38 is necessary for the assembly and stabilization of PSII.
Collapse
Affiliation(s)
- Aigen Fu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Zengyong He
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Hye Sun Cho
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Amparo Lima
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Bob B. Buchanan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
609
|
Ihnatowicz A, Pesaresi P, Leister D. The E subunit of photosystem I is not essential for linear electron flow and photoautotrophic growth in Arabidopsis thaliana. PLANTA 2007; 226:889-95. [PMID: 17503073 DOI: 10.1007/s00425-007-0534-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 04/20/2007] [Indexed: 05/15/2023]
Abstract
PSI-E is part of the stromal side of photosystem I (PSI). In Arabidopsis thaliana, the two nuclear genes PsaE1 and PsaE2 code for PSI-E, and transcripts of PsaE1 are markedly more abundant than PsaE2 transcripts. Stable null alleles of the two PsaE genes, psae1-3 and psae2-1, were identified and characterised. The psae2-1 mutant exhibited wild-type like PSI-E abundance and photosynthetic performance, whereas in the psae1-3 mutant PSI-E accumulation was decreased by 85%, together with an impaired thylakoid electron flow and plant growth rate. The psae1-3 psae2-1 double mutant totally lacked PSI-E but was still able to grow photoautotrophically, implying that PSI-E is not essential for PSI accumulation and thylakoid electron flow.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Abteilung für Pflanzenzüchtung und Genetik, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | | | |
Collapse
|
610
|
Yi X, Hargett SR, Liu H, Frankel LK, Bricker TM. The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J Biol Chem 2007; 282:24833-41. [PMID: 17604269 DOI: 10.1074/jbc.m705011200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of photosystem II (PS II). A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Chlorophyll fluorescence induction and Q(A)(-) decay kinetics analyses were performed. Decreasing amounts of expressed PsbP protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(V)/F(M)). This was primarily due to the loss of the J to I transition. Analysis of the fast fluorescence rise kinetics indicated no significant change in the number of PS II(beta) centers present in the mutants. Analysis of Q(A)(-) decay kinetics in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea indicated a defect in electron transfer from Q(A)(-) to Q(B), whereas experiments performed in the presence of this herbicide indicated that charge recombination between Q(A)(-) and the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the PsbP protein. These results demonstrate that the amount of functional PS II reaction centers is compromised in the plants that exhibited intermediate and low amounts of the PsbP protein. Plants that lacked detectable PsbP were unable to survive in the absence of sucrose, indicating that the PsbP protein is required for photoautotrophy. Immunological analysis of the PS II protein complement indicated that significant losses of the CP47 and D2 proteins, and intermediate losses of the CP43 and D1 proteins, occurred in the absence of the PsbP protein. This demonstrates that the extrinsic protein PsbP is required for PS II core assembly/stability.
Collapse
Affiliation(s)
- Xiaoping Yi
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
611
|
Croce R, Chojnicka A, Morosinotto T, Ihalainen JA, van Mourik F, Dekker JP, Bassi R, van Grondelle R. The low-energy forms of photosystem I light-harvesting complexes: spectroscopic properties and pigment-pigment interaction characteristics. Biophys J 2007; 93:2418-28. [PMID: 17545247 PMCID: PMC1965455 DOI: 10.1529/biophysj.107.106955] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Biophysical Chemistry, Groningen Bimolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
612
|
Krivanek R, Kern J, Zouni A, Dau H, Haumann M. Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:520-7. [PMID: 17397795 DOI: 10.1016/j.bbabio.2007.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/13/2007] [Accepted: 02/19/2007] [Indexed: 11/25/2022]
Abstract
The recent crystallographic structure at 3.0 A resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone Q(B). The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O(2) evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of Q(A) and Q(B) were found in the crystallized PSII. We propose that the extra quinones are located in the Q(B) cavity and serve as a PSII intrinsic pool of electron acceptors.
Collapse
Affiliation(s)
- Roland Krivanek
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
613
|
Amunts A, Drory O, Nelson N. The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature 2007; 447:58-63. [PMID: 17476261 DOI: 10.1038/nature05687] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/19/2007] [Indexed: 11/09/2022]
Abstract
All higher organisms on Earth receive energy directly or indirectly from oxygenic photosynthesis performed by plants, green algae and cyanobacteria. Photosystem I (PSI) is a supercomplex of a reaction centre and light-harvesting complexes. It generates the most negative redox potential in nature, and thus largely determines the global amount of enthalpy in living systems. We report the structure of plant PSI at 3.4 A resolution, revealing 17 protein subunits. PsaN was identified in the luminal side of the supercomplex, and most of the amino acids in the reaction centre were traced. The crystal structure of PSI provides a picture at near atomic detail of 11 out of 12 protein subunits of the reaction centre. At this level, 168 chlorophylls (65 assigned with orientations for Q(x) and Q(y) transition dipole moments), 2 phylloquinones, 3 Fe(4)S(4) clusters and 5 carotenoids are described. This structural information extends the understanding of the most efficient nano-photochemical machine in nature.
Collapse
Affiliation(s)
- Alexey Amunts
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
614
|
Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV. Structure, function and regulation of plant photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:335-52. [PMID: 17442259 DOI: 10.1016/j.bbabio.2007.03.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/03/2007] [Accepted: 03/06/2007] [Indexed: 12/20/2022]
Abstract
Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the functioning of the PSI complex, like the protein composition of the complex in the plant Arabidopsis thaliana, the function of these subunits and the mechanism by which nuclear-encoded subunits can be inserted into or transported through the thylakoid membrane. Furthermore, the structure of the native PSI complex in several oxygenic photosynthetic organisms and the role of the chlorophylls and carotenoids in the antenna complexes in light harvesting and photoprotection are reviewed. The special role of the 'red' chlorophylls (chlorophyll molecules that absorb at longer wavelength than the primary electron donor P700) is assessed. The physiology and mechanism of the association of the major light-harvesting complex of photosystem II (LHCII) with PSI during short term adaptation to changes in light quality and quantity is discussed in functional and structural terms. The mechanism of excitation energy transfer between the chlorophylls and the mechanism of primary charge separation is outlined and discussed. Finally, a number of regulatory processes like acclimatory responses and retrograde signalling is reviewed with respect to function of the thylakoid membrane. We finish this review by shortly discussing the perspectives for future research on PSI.
Collapse
Affiliation(s)
- Poul Erik Jensen
- Plant Biochemistry Laboratory, Department of Plant Biology, Faculty of Life Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
615
|
Lichtenthaler HK. Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. PHOTOSYNTHESIS RESEARCH 2007; 92:163-79. [PMID: 17634750 DOI: 10.1007/s11120-007-9204-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/24/2007] [Indexed: 05/03/2023]
Abstract
The localization of isoprenoid lipids in chloroplasts, the accumulation of particular isoprenoids under high irradiance conditions, and channelling of photosynthetically fixed carbon into plastidic thylakoid isoprenoids, volatile isoprenoids, and cytosolic sterols are reviewed. During leaf and chloroplast development in spring plastidic isoprenoid biosynthesis provides primarily thylakoid carotenoids, the phytyl side-chain of chlorophylls and the electron carriers phylloquinone K1, alpha-tocoquinone and alpha-tocopherol, as well as the nona-prenyl side-chain of plastoquinone-9. Under high irradiance, plants develop sun leaves and high light (HL) leaves with sun-type chloroplasts that possess, besides higher photosynthetic CO2 assimilation rates, different quantitative levels of pigments and prenylquinones as compared to shade leaves and low light (LL) leaves. After completion of chloroplast thylakoid synthesis plastidic isoprenoid biosynthesis continues at high irradiance conditions, constantly accumulating alpha-tocopherol (alpha-T) and the reduced form of plastoquinone-9 (PQ-9H2) deposited in the steadily enlarging osmiophilic plastoglobuli, the lipid reservoir of the chloroplast stroma. In sun leaves of beech (Fagus) and in 3-year-old sunlit Ficus leaves the level of alpha-T and PQ-9 can exceed that of chlorophyll b. Most plants respond to HL conditions (sun leaves, leaves suddenly lit by the sun) with a 1.4-2-fold increase of xanthophyll cycle carotenoids (violaxanthin, zeaxanthin, neoxanthin), an enhanced operation of the xanthophyll cycle and an increase of beta-carotene levels. This is documented by significantly lower values for the weight ratio chlorophylls to carotenoids (range: 3.6-4.6) as compared to shade and LL leaves (range: 4.8-7.0). Many plant leaves emit under HL and high temperature conditions at high rates the volatile compounds isoprene (broadleaf trees) or methylbutenol (American ponderosa pines), both of which are formed via the plastidic 1-deoxy-D: -xylulose-phosphate/2-C-methylerythritol 5-phosphate (DOXP/MEP) pathway. Other plants by contrast, accumulate particular mono- and diterpenes. Under adequate photosynthetic conditions the chloroplastidic DOXP/MEP isoprenoid pathway essentially contributes, with its C5 isoprenoid precusors, to cytosolic sterol biosynthesis. The possible cross-talk between the two cellular isoprenoid pathways, the acetate/MVA and the DOXP/MEP pathways, that preferentially proceeds in a plastid-to-cytosol direction, is shortly discussed.
Collapse
Affiliation(s)
- Hartmut K Lichtenthaler
- Botanisches Institut (Molecular Biology and Biochemistry of Plants), University of Karlsruhe, Kaiserstr. 12, 76133 Karlsruhe, Germany.
| |
Collapse
|
616
|
Hong SJ, Lee CG. Evaluation of central metabolism based on a genomic database ofSynechocystis PCC6803. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf03028644] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
617
|
Umate P, Schwenkert S, Karbat I, Bosco CD, Mlcòchová L, Volz S, Zer H, Herrmann RG, Ohad I, Meurer J. Deletion of PsbM in tobacco alters the QB site properties and the electron flow within photosystem II. J Biol Chem 2007; 282:9758-9767. [PMID: 17261590 DOI: 10.1074/jbc.m608117200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II, the oxygen-evolving complex of photosynthetic organisms, includes an intriguingly large number of low molecular weight polypeptides, including PsbM. Here we describe the first knock-out of psbM using a transplastomic, reverse genetics approach in a higher plant. Homoplastomic Delta psbM plants exhibit photoautotrophic growth. Biochemical, biophysical, and immunological analyses demonstrate that PsbM is not required for biogenesis of higher order photosystem II complexes. However, photosystem II is highly light-sensitive, and its activity is significantly decreased in Delta psbM, whereas kinetics of plastid protein synthesis, reassembly of photosystem II, and recovery of its activity are comparable with the wild type. Unlike wild type, phosphorylation of the reaction center proteins D1 and D2 is severely reduced, whereas the redox-controlled phosphorylation of photosystem II light-harvesting complex is reversely regulated in Delta psbM plants because of accumulation of reduced plastoquinone in the dark and a limited photosystem II-mediated electron transport in the light. Charge recombination in Delta psbM measured by thermoluminescence oscillations significantly differs from the 2/6 patterns in the wild type. A simulation program of thermoluminescence oscillations indicates a higher Q(B)/Q(-)(B) ratio in dark-adapted mutant thylakoids relative to the wild type. The interaction of the Q(A)/Q(B) sites estimated by shifts in the maximal thermoluminescence emission temperature of the Q band, induced by binding of different herbicides to the Q(B) site, is changed indicating alteration of the activation energy for back electron flow. We conclude that PsbM is primarily involved in the interaction of the redox components important for the electron flow within, outward, and backward to photosystem II.
Collapse
Affiliation(s)
- Pavan Umate
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Serena Schwenkert
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Izhar Karbat
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Ramat-Aviv, Tel-Aviv, Israel
| | - Cristina Dal Bosco
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Lada Mlcòchová
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Stefanie Volz
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Hagit Zer
- Minerva Avron, Even-Ari Center of Photosynthesis Research, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Reinhold G Herrmann
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Itzhak Ohad
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Jörg Meurer
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany.
| |
Collapse
|
618
|
An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina. FEBS Lett 2007; 581:1567-71. [PMID: 17382323 DOI: 10.1016/j.febslet.2007.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.
Collapse
|
619
|
Albertsson PÅ, Köhnke R, Emek S, Mei J, Rehfeld J, Åkerlund HE, Erlanson-Albertsson C. Chloroplast membranes retard fat digestion and induce satiety: effect of biological membranes on pancreatic lipase/co-lipase. Biochem J 2007; 401:727-33. [PMID: 17044813 PMCID: PMC1770847 DOI: 10.1042/bj20061463] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human obesity is a global epidemic, which causes a rapidly increased frequency of diabetes and cardiovascular disease. One reason for obesity is the ready availability of refined food products with high caloric density, an evolutionarily new event, which makes over-consumption of food inevitable. Fat is a food product with high caloric density. The mechanism for regulation of fat intake has therefore been studied to a great extent. Such studies have shown that, as long as fat stays in the intestine, satiety is promoted. This occurs through the fat-released peptide hormones, the best known being CCK (cholecystokinin), which is released by fatty acids. Hence, retarded fat digestion with prolonged time for delivery of fatty acids promotes satiety. Pancreatic lipase, together with its protein cofactor, co-lipase, is the main enzymatic system responsible for intestinal fat digestion. We found that biological membranes, isolated from plants, animals or bacteria, inhibit the lipase/co-lipase-catalysed hydrolysis of triacylglycerols even in the presence of bile salt. We propose that the inhibition is due to binding of lipase/co-lipase to the membranes and adsorption of the membranes to the aqueous/triacylglycerol interface, thereby hindering lipase/co-lipase from acting on its lipid substrate. We also found that chloroplast membranes (thylakoids), when added to refined food, suppressed food intake in rats, lowered blood lipids and raised the satiety hormones, CCK and enterostatin. Consequently, the mechanism for satiety seems to be retardation of fat digestion allowing the fat products to stay longer in the intestine.
Collapse
Affiliation(s)
- Per-Åke Albertsson
- *Department of Biochemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Rickard Köhnke
- †Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, BMC (Biomedical Center), F13, Lund University, Lund, Sweden
| | - Sinan C. Emek
- *Department of Biochemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Jie Mei
- †Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, BMC (Biomedical Center), F13, Lund University, Lund, Sweden
| | - Jens F. Rehfeld
- ‡Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Hans-Erik Åkerlund
- *Department of Biochemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Charlotte Erlanson-Albertsson
- †Section for Diabetes, Metabolism and Endocrinology, Department of Experimental Medical Science, BMC (Biomedical Center), F13, Lund University, Lund, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|
620
|
Song J, Lee MS, Carlberg I, Vener AV, Markley JL. Micelle-induced folding of spinach thylakoid soluble phosphoprotein of 9 kDa and its functional implications. Biochemistry 2006; 45:15633-43. [PMID: 17176085 PMCID: PMC2533273 DOI: 10.1021/bi062148m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thylakoid soluble phosphoprotein of 9 kDa (TSP9) has been identified as a plant-specific protein in the photosynthetic thylakoid membrane (Carlberg et al. (2003) Proc. Natl. Acad. Sci. 100, 757-762). Nonphosphorylated TSP9 is associated with the membrane, whereas, after light-induced phosphorylation, a fraction of the phosphorylated TSP9 is released into the aqueous stroma. By NMR spectroscopy, we have determined the structural features of nonphosphorylated TSP9 both in aqueous solution and in membrane mimetic micelles. The results show that both wild type nonphosphorylated TSP9 and a triple-mutant (T46E + T53E + T60E) mimic of the triphosphorylated form of TSP9 are disordered under aqueous conditions, but adopt an ordered conformation in the presence of detergent micelles. The micelle-induced structural features, which are similar in micelles either of SDS or dodecylphosphocholine (DPC), consist of an N-terminal alpha-helix, which may represent the primary site of interaction between TSP9 and binding partners, and a less structured helical turn near the C-terminus. These structured elements contain mainly hydrophobic residues. NMR relaxation data for nonphosphorylated TSP9 in SDS micelles indicated that the molecule is highly flexible with the highest order in the N-terminal alpha-helix. Intermolecular NOE signals, as well as spin probe-induced broadening of NMR signals, demonstrated that the SDS micelles contact both the structured and a portion of the unstructured regions of TSP9, in particular, those containing the three phosphorylation sites (T46, T53, and T60). This interaction may explain the selective dissociation of phosphorylated TSP9 from the membrane. Our study presents a structural model for the role played by the structured and unstructured regions of TSP9 in its membrane association and biological function.
Collapse
Affiliation(s)
| | | | | | | | - John L Markley
- * To whom correspondence should be addressed: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706. Telephone: (608) 263-9349. Fax: (608) 262-3759. E-mail:
| |
Collapse
|
621
|
Lima A, Lima S, Wong JH, Phillips RS, Buchanan BB, Luan S. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2006; 103:12631-6. [PMID: 16894144 PMCID: PMC1567930 DOI: 10.1073/pnas.0605452103] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII) catalyzes the first of two photosynthetic reactions that convert sunlight into chemical energy. Native PSII is a supercomplex consisting of core and light-harvesting chlorophyll proteins. Although the structure of PSII has been resolved by x-ray crystallography, the mechanism underlying its assembly is poorly understood. Here, we report that an immunophilin of the chloroplast thylakoid lumen is required for accumulation of the PSII supercomplex in Arabidopsis thaliana. The immunophilin, FKBP20-2, belongs to the FK-506 binding protein (FKBP) subfamily that functions as peptidyl-prolyl isomerases (PPIases) in protein folding. FKBP20-2 has a unique pair of cysteines at the C terminus and was found to be reduced by thioredoxin (Trx) (itself reduced by NADPH by means of NADP-Trx reductase). The FKBP20-2 protein, which contains only two of the five amino acids required for catalysis, showed a low level of PPIase activity that was unaffected on reduction by Trx. Genetic disruption of the FKBP20-2 gene resulted in reduced plant growth, consistent with the observed lower rate of PSII activity determined by fluorescence (using leaves) and oxygen evolution (using isolated chloroplasts). Analysis of isolated thylakoid membranes with blue native gels and immunoblots showed that accumulation of the PSII supercomplex was compromised in mutant plants, whereas the levels of monomer and dimer building blocks were elevated compared with WT. The results provide evidence that FKBP20-2 participates specifically in the accumulation of the PSII supercomplex in the chloroplast thylakoid lumen by means of a mechanism that has yet to be determined.
Collapse
Affiliation(s)
- Amparo Lima
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| | | | - Joshua H. Wong
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| | - Robert S. Phillips
- Chemistry and
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Bob B. Buchanan
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| | - Sheng Luan
- *Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and Departments of
| |
Collapse
|