651
|
Meena NP, Zhu G, Mittelstadt PR, Giardino Torchia ML, Pourcelot M, Arnoult D, Ashwell JD, Munitic I. The TBK1-binding domain of optineurin promotes type I interferon responses. FEBS Lett 2016; 590:1498-508. [PMID: 27086836 DOI: 10.1002/1873-3468.12176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 01/24/2023]
Abstract
Pathogen-associated molecular pattern (PAMP) recognition leads to TANK-binding kinase (TBK1) polyubiquitination and activation by transautophosphorylation, resulting in IFN-β production. Here, we describe a mouse model of optineurin insufficiency (OptnΔ(157) ) in which the TBK1-interacting N-terminus of optineurin was deleted. PAMP-stimulated cells from OptnΔ(157) mice had reduced TBK1 activity, no phosphorylation of optineurin Ser(187) , and mounted low IFN-β responses. In contrast to pull-down assays where the presence of N-terminus was sufficient for TBK1 binding, both the N-terminal and the ubiquitin-binding regions of optineurin were needed for PAMP-induced binding. This report establishes optineurin as a positive regulator TBK1 via a bipartite interaction between these molecules.
Collapse
Affiliation(s)
- Netra Pal Meena
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guozhi Zhu
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul R Mittelstadt
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France.,Université Paris-Saclay, Villejuif, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France.,Université Paris-Saclay, Villejuif, France
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivana Munitic
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, Croatia
| |
Collapse
|
652
|
Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M, Ruffenach F, Page A, Ciura S, Kabashi E, Charlet-Berguerand N. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J 2016; 35:1276-97. [PMID: 27103069 DOI: 10.15252/embj.201593350] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD.
Collapse
Affiliation(s)
- Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Maria-Letizia Campanari
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Camille Julie Corbier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Angeline Gaucherot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Adeline Page
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Sorana Ciura
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Edor Kabashi
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, Unité Mixte 75, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013, Paris, France
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| |
Collapse
|
653
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
Affiliation(s)
- Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
654
|
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 2016; 113:4039-44. [PMID: 27035970 DOI: 10.1073/pnas.1523926113] [Citation(s) in RCA: 566] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective autophagy of damaged mitochondria requires autophagy receptors optineurin (OPTN), NDP52 (CALCOCO2), TAX1BP1, and p62 (SQSTM1) linking ubiquitinated cargo to autophagic membranes. By using quantitative proteomics, we show that Tank-binding kinase 1 (TBK1) phosphorylates all four receptors on several autophagy-relevant sites, including the ubiquitin- and LC3-binding domains of OPTN and p62/SQSTM1 as well as the SKICH domains of NDP52 and TAX1BP1. Constitutive interaction of TBK1 with OPTN and the ability of OPTN to bind to ubiquitin chains are essential for TBK1 recruitment and kinase activation on mitochondria. TBK1 in turn phosphorylates OPTN's UBAN domain at S473, thereby expanding the binding capacity of OPTN to diverse Ub chains. In combination with phosphorylation of S177 and S513, this posttranslational modification promotes recruitment and retention of OPTN/TBK1 on ubiquitinated, damaged mitochondria. Moreover, phosphorylation of OPTN on S473 enables binding to pS65 Ub chains and is also implicated in PINK1-driven and Parkin-independent mitophagy. Thus, TBK1-mediated phosphorylation of autophagy receptors creates a signal amplification loop operating in selective autophagy of damaged mitochondria.
Collapse
|
655
|
Maday S. Mechanisms of neuronal homeostasis: Autophagy in the axon. Brain Res 2016; 1649:143-150. [PMID: 27038755 DOI: 10.1016/j.brainres.2016.03.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022]
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway that removes damaged organelles and protein aggregates from the cytoplasm. Being post-mitotic, neurons are particularly vulnerable to the accumulation of proteotoxins and are thus heavily dependent on autophagy to maintain homeostasis. In fact, CNS-specific and neuron-specific loss of autophagy is sufficient to cause neurodegeneration in mice. Further, mutations in genes that encode PINK1 and Parkin, proteins that selectively remove damaged mitochondria, cause Parkinson's disease, linking defective autophagy with neurodegenerative disease in humans. This review provides an overview of the mechanisms of autophagy in the axon and the role of neuronal autophagy in axonal homeostasis and degeneration. The pathway for autophagosome biogenesis and maturation along the axon will be discussed as well as several key insights revealing the diverse functions of axonal autophagy. Evidence linking altered autophagy with axonal degeneration and neuronal death will be presented. Appropriate manipulation of autophagy may lead to promising therapeutics for neurodegenerative diseases. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
656
|
Mancias JD, Kimmelman AC. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J Mol Biol 2016; 428:1659-80. [PMID: 26953261 DOI: 10.1016/j.jmb.2016.02.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/04/2023]
Abstract
Selective autophagy is critical for regulating cellular homeostasis by mediating lysosomal turnover of a wide variety of substrates including proteins, aggregates, organelles, and pathogens via a growing class of molecules termed selective autophagy receptors. The molecular mechanisms of selective autophagy receptor action and regulation are complex. Selective autophagy receptors link their bound cargo to the autophagosomal membrane by interacting with lipidated ATG8 proteins (LC3/GABARAP) that are intimately associated with the autophagosome membrane. The cargo signals that selective autophagy receptors recognize are diverse but their recognition can be broadly grouped into two classes, ubiquitin-dependent cargo recognition versus ubiquitin-independent. The roles of post-translational modification of selective autophagy receptors in regulating these pathways in response to stimuli are an active area of research. Here we will review recent advances in the identification of selective autophagy receptors and their regulatory mechanisms. Given its importance in maintaining cellular homeostasis, disruption of autophagy can lead to disease including neurodegeneration and cancer. The role of autophagy in cancer is complex as autophagy can mediate promotion or inhibition of tumorigenesis. Here we will also review the importance of autophagy in cancer with a specific focus on the role of selective autophagy receptors.
Collapse
Affiliation(s)
- Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
657
|
Edens BM, Miller N, Ma YC. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration. Front Cell Neurosci 2016; 10:44. [PMID: 26973461 PMCID: PMC4776126 DOI: 10.3389/fncel.2016.00044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration.
Collapse
Affiliation(s)
- Brittany M. Edens
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Nimrod Miller
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Yong-Chao Ma
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| |
Collapse
|
658
|
Abstract
Ubiquitin plays an essential role in modulating protein functions, and deregulation of the ubiquitin system leads to the development of multiple human diseases. Owing to its molecular features, ubiquitin can form various homo- and heterotypic polymers on substrate proteins, thereby provoking distinct cellular responses. The concept of multifaceted ubiquitin chains encoding different functions has been substantiated in recent years. It has been established that all possible ubiquitin linkage types are utilized for chain assembly and propagation of specific signals in vivo. In addition, branched ubiquitin chains and phosphorylated ubiquitin molecules have been put under the spotlight recently. The development of novel technologies has provided detailed insights into the structure and function of previously poorly understood ubiquitin signals. In this Cell Science at a Glance article and accompanying poster, we provide an update on the complexity of ubiquitin chains and their physiological relevance.
Collapse
Affiliation(s)
- Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| | - Ivan Dikic
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| | - Anja Bremm
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
659
|
Zaffagnini G, Martens S. Mechanisms of Selective Autophagy. J Mol Biol 2016; 428:1714-24. [PMID: 26876603 PMCID: PMC4871809 DOI: 10.1016/j.jmb.2016.02.004] [Citation(s) in RCA: 443] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
Abstract
Selective autophagy contributes to intracellular homeostasis by mediating the degradation of cytoplasmic material such as aggregated proteins, damaged or over-abundant organelles, and invading pathogens. The molecular machinery for selective autophagy must ensure efficient recognition and sequestration of the cargo within autophagosomes. Cargo specificity can be mediated by autophagic cargo receptors that specifically bind the cargo material and the autophagosomal membrane. Here we review the recent insights into the mechanisms that enable cargo receptors to confer selectivity and exclusivity to the autophagic process. We also discuss their different roles during starvation-induced and selective autophagy. We propose to classify autophagic events into cargo-independent and cargo-induced autophagosome formation events. Cargo receptors mediate selective autophagy. High-avidity interactions with Atg8 proteins target the receptors to isolation membranes. Dependent on the stimulus, cargo receptors act prior or after isolation membrane generation.
Collapse
Affiliation(s)
- Gabriele Zaffagnini
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
660
|
Yamano K, Matsuda N, Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 2016; 17:300-16. [PMID: 26882551 DOI: 10.15252/embr.201541486] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early-onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin-/PINK1-mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
661
|
Matsuda N. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade. J Biochem 2016; 159:379-85. [PMID: 26839319 DOI: 10.1093/jb/mvv125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 11/12/2022] Open
Abstract
Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
662
|
Knuppertz L, Osiewacz HD. Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 2016; 153:30-40. [PMID: 26814678 DOI: 10.1016/j.mad.2016.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Autophagy is best known as a mechanism involved in cellular recycling of biomolecules during periods of nutritional starvation. More recently, an additional function of autophagy emerged: the selective degradation of functionally impaired or surplus proteins, organelles and invading bacteria. With this function autophagy is integrated in a network of pathways involved in molecular and cellular quality control with a key impact on development and aging. Impairments in the autophagic machinery lead to accelerated aging and the development of diseases. Here we focus on the role of nonselective autophagy and mitophagy, the selective autophagic degradation of mitochondria, on aging and lifespan of biological systems.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
663
|
Zhang CW, Hang L, Yao TP, Lim KL. Parkin Regulation and Neurodegenerative Disorders. Front Aging Neurosci 2016; 7:248. [PMID: 26793099 PMCID: PMC4709595 DOI: 10.3389/fnagi.2015.00248] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Parkin is a unique, multifunctional ubiquitin ligase whose various roles in the cell, particularly in neurons, are widely thought to be protective. The pivotal role that Parkin plays in maintaining neuronal survival is underscored by our current recognition that Parkin dysfunction represents not only a predominant cause of familial parkinsonism but also a formal risk factor for the more common, sporadic form of Parkinson’s disease (PD). Accordingly, keen research on Parkin over the past decade has led to an explosion of knowledge regarding its physiological roles and its relevance to PD. However, our understanding of Parkin is far from being complete. Indeed, surprises emerge from time to time that compel us to constantly update the paradigm of Parkin function. For example, we now know that Parkin’s function is not confined to mere housekeeping protein quality control (QC) roles but also includes mitochondrial homeostasis and stress-related signaling. Furthermore, emerging evidence also suggest a role for Parkin in several other major neurodegenerative diseases including Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Yet, it remains truly amazing to note that a single enzyme could serve such multitude of functions and cellular roles. Clearly, its activity has to be tightly regulated. In this review, we shall discuss this and how dysregulated Parkin function may precipitate neuronal demise in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Cheng-Wu Zhang
- Neurodegeneration Research Laboratory, National Neuroscience InstituteSingapore, Singapore; Institute of Advanced Materials, Nanjing Tech UniversityNanjing, People's Republic of China
| | - Liting Hang
- Department of Physiology, National University of Singapore Singapore, Singapore
| | - Tso-Pang Yao
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center Durham, NC, USA
| | - Kah-Leong Lim
- Neurodegeneration Research Laboratory, National Neuroscience InstituteSingapore, Singapore; Institute of Advanced Materials, Nanjing Tech UniversityNanjing, People's Republic of China; Department of Physiology, National University of SingaporeSingapore, Singapore; Duke-NUS Graduate Medical School, National University of SingaporeSingapore, Singapore
| |
Collapse
|
664
|
Abstract
In this issue of Molecular Cell, Heo et al. (2015) uncover a new mechanism of signal amplification during mitophagy through cooperative regulation of the TBK1 kinase and autophagy receptors.
Collapse
Affiliation(s)
- Andrew G Manford
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
665
|
Abstract
This year's signaling breakthroughs highlight insights into the pathogenesis or treatment of cancer, malaria, and neurodegenerative disorders; reveal molecular insights into cell death; and identify signals that could be leveraged to prevent plant parasitism or engineer bacteria as microbial fuel cells.
Collapse
|
666
|
The Function of Autophagy in Neurodegenerative Diseases. Int J Mol Sci 2015; 16:26797-812. [PMID: 26569220 PMCID: PMC4661849 DOI: 10.3390/ijms161125990] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, is a bulk degradation process performed by lysosomes in which aggregated and altered proteins as well as dysfunctional organelles are decomposed. Autophagy is a basic cellular process that maintains homeostasis and is crucial for postmitotic neurons. Thus, impaired autophagic processes in neurons lead to improper homeostasis and neurodegeneration. Recent studies have suggested that impairments of the autophagic process are associated with several neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and static encephalopathy of childhood with neurodegeneration in adulthood. In this review, we focus on the recent findings regarding the autophagic process and the involvement of autophagy in neurodegenerative diseases.
Collapse
|
667
|
Williams JA, Ding WX. Targeting Pink1-Parkin-mediated mitophagy for treating liver injury. Pharmacol Res 2015; 102:264-9. [PMID: 26655101 DOI: 10.1016/j.phrs.2015.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease and acetaminophen overdose are common causes of severe liver disease and liver failure in the United States for which there is no cure. Therefore, development of new therapeutic strategies for treatment of liver injury caused by acetaminophen and alcohol is needed. We demonstrated that autophagy protects against alcohol and acetaminophen-induced liver injuries by removing damaged mitochondria via mitophagy, which is a selective form of autophagy specific for degradation of damaged mitochondria. Parkin is well-known to be required for mitophagy induction in in vitro models, and we previously showed that the Parkin-mediated mitophagy pathway likely plays a protective role against alcohol and acetaminophen-induced liver injuries. Therefore, pharmacological upregulation of the Parkin-mediated mitophagy pathway in the liver may provide a novel and effective therapeutic option for treatment of acetaminophen and alcohol-induced liver injuries. In this review, we discuss regulation of Parkin-mediated mitophagy and possible therapeutic targets of intervention in this pathway.
Collapse
Affiliation(s)
- Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|