651
|
Paredes R, Clotet B. Clinical management of HIV-1 resistance. Antiviral Res 2009; 85:245-65. [PMID: 19808056 DOI: 10.1016/j.antiviral.2009.09.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 09/28/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022]
Abstract
Antiretroviral drug resistance is a fundamental survival strategy for the virus that stems from its vast capacity to generate diversity. With the recent availability of new ARV drugs and classes, it is now possible to prescribe fully active ART to most HIV-infected subjects and achieve viral suppression even in those with multidrug-resistant HIV. It is uncertain, however, if this scenario will endure. Given that ART must be given for life, and new compounds other than second-generation integrase inhibitors may not reach the clinic soon, all efforts must be done to avoid the development of resistance to the new agents. Here, we discuss relevant aspects for the clinical management of antiretroviral drug resistance, leaving detailed explanations of mechanisms and mutation patterns to other articles in this issue. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010.
Collapse
Affiliation(s)
- Roger Paredes
- Institut de Recerca de SIDA - irsiCaixa & Fundació Lluita contra SIDA, Servei de Medicina Interna, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain.
| | | |
Collapse
|
652
|
Montagnier L. 25 years after HIV discovery: prospects for cure and vaccine (Nobel lecture). Angew Chem Int Ed Engl 2009; 48:5815-26. [PMID: 19618403 DOI: 10.1002/anie.200902130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Luc Montagnier
- World Foundation AIDS Research and Prevention, UNESCO, Paris, France
| |
Collapse
|
653
|
Yang HC, Xing S, Shan L, O'Connell K, Dinoso J, Shen A, Zhou Y, Shrum CK, Han Y, Liu JO, Zhang H, Margolick JB, Siliciano RF. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 2009; 119:3473-86. [PMID: 19805909 DOI: 10.1172/jci39199] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/29/2009] [Indexed: 11/17/2022] Open
Abstract
The development of highly active antiretroviral therapy (HAART) to treat individuals infected with HIV-1 has dramatically improved patient outcomes, but HAART still fails to cure the infection. The latent viral reservoir in resting CD4+ T cells is a major barrier to virus eradication. Elimination of this reservoir requires reactivation of the latent virus. However, strategies for reactivating HIV-1 through nonspecific T cell activation have clinically unacceptable toxicities. We describe here the development of what we believe to be a novel in vitro model of HIV-1 latency that we used to search for compounds that can reverse latency. Human primary CD4+ T cells were transduced with the prosurvival molecule Bcl-2, and the resulting cells were shown to recapitulate the quiescent state of resting CD4+ T cells in vivo. Using this model system, we screened small-molecule libraries and identified a compound that reactivated latent HIV-1 without inducing global T cell activation, 5-hydroxynaphthalene-1,4-dione (5HN). Unlike previously described latency-reversing agents, 5HN activated latent HIV-1 through ROS and NF-kappaB without affecting nuclear factor of activated T cells (NFAT) and PKC, demonstrating that TCR pathways can be dissected and utilized to purge latent virus. Our study expands the number of classes of latency-reversing therapeutics and demonstrates the utility of this in vitro model for finding strategies to eradicate HIV-1 infection.
Collapse
Affiliation(s)
- Hung-Chih Yang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
654
|
Singh A, Weinberger LS. Stochastic gene expression as a molecular switch for viral latency. Curr Opin Microbiol 2009; 12:460-6. [PMID: 19595626 PMCID: PMC2760832 DOI: 10.1016/j.mib.2009.06.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/22/2009] [Accepted: 06/22/2009] [Indexed: 11/24/2022]
Abstract
Stochastic 'noise' arises from random thermal fluctuations in the concentration of protein, RNA, or other molecules within the cell and is an unavoidable aspect of life at the single-cell level. Evidence is accumulating that this biochemical noise crucially influences cellular auto-regulatory circuits and can 'flip' genetic switches to drive probabilistic fate decisions in bacteria, viruses, cancer, and stem cells. Here, we review how stochastic gene expression in key auto-regulatory proteins can control fate determination between latency and productive replication in both phage-lambda and HIV-1. We highlight important new studies that synthetically manipulate auto-regulatory circuitry and noise, to bias HIV-1's ability to enter proviral latency. We argue that an appreciation of noise in gene expression may shed light on the mystery of animal virus latency and that strategies to manipulate noise may have impact on anti-viral therapeutics.
Collapse
Affiliation(s)
- Abhyudai Singh
- Dept. of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA 92093-0314
| | - Leor S. Weinberger
- Dept. of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA 92093-0314
| |
Collapse
|
655
|
Van Rompay KKA. Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Res 2009; 85:159-75. [PMID: 19622373 DOI: 10.1016/j.antiviral.2009.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 01/07/2023]
Abstract
Animal models of HIV infection have played an important role in the development of antiretroviral drugs. Although each animal model has its limitations and never completely mimics HIV infection of humans, a carefully designed study allows experimental approaches that are not feasible in humans, but that can help to better understand disease pathogenesis and to provide proof-of-concept of novel intervention strategies. While rodent and feline models are useful for initial screening, further testing is best done in non-human primate models, such as simian immunodeficiency virus (SIV) infection of macaques, because they share more similarities with HIV infection of humans. In the early years of the HIV pandemic, non-human primate models played a relatively minor role in the antiretroviral drug development process. Since then, a better understanding of the disease and the development of better drugs and assays to monitor antiviral efficacy have increased the usefulness of the animal models. In particular, non-human primate models have provided proof-of-concept for (i) the benefits of chemoprophylaxis and early treatment, (ii) the preclinical efficacy of novel drugs such as tenofovir, (iii) the virulence and clinical significance of drug-resistant viral mutants, and (iv) the role of antiviral immune responses during drug therapy. Ongoing comparison of results obtained in animal models with those observed in human studies will further validate and improve these animal models so they can continue to help advance our scientific knowledge and to guide clinical trials. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
656
|
Montagnier L. 25 Jahre nach der Entdeckung von HIV: Chancen auf Heilung und Impfung (Nobel-Vortrag). Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
657
|
Abstract
More than 25 years after the licensure of aciclovir and then penciclovir, followed by their respective prodrugs valaciclovir and famciclovir, cases of clinically relevant resistance to these drugs in immunocompetent individuals remain very rare. The aim of this review is to focus on the mechanism of action of these anti HSV drugs and then briefly compare this favourable outcome with that of CMV, HIV, HBV and influenza. A central theme is that resistance is an epiphenomenon of failure to suppress virus replication, so that improved potency and selectivity should be prioritised when developing new drugs rather than activity against resistant strains per se.
Collapse
Affiliation(s)
- Paul D Griffiths
- Centre for Virology, UCL Medical School, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
658
|
Abstract
HIV has been studied extensively over the past 25 years. Insights into the different stages of the virus' replication cycle and its interaction with host-cell proteins have led to the development of an armamentarium of effective antiretroviral medications. These antiviral drugs have dramatically changed the prognosis for HIV-infected subjects from an inevitable march towards death to a chronic disease with a potentially normal lifespan. Even with these successes, there is a continuing need to provide new drugs, especially those effective against drug-resistant viruses, to devise optimal strategies to prevent adverse events from either immunosuppression or the antiretroviral medications, and to develop treatments aimed at eliminating virus replication in the absence of antiviral drugs. In this review, how these important issues are being addressed will be highlighted, emphasizing clinical implications from some recent basic science studies and demonstrating how they could change the face of HIV therapeutics over the next 5-10 years.
Collapse
Affiliation(s)
- Manish Sagar
- Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Room 447, Cambridge, MA 02139, USA, Tel.: +1 617 768 8372; ;
| |
Collapse
|
659
|
Rong L, Perelson AS. Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol 2009; 260:308-31. [PMID: 19539630 DOI: 10.1016/j.jtbi.2009.06.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 04/20/2009] [Accepted: 06/08/2009] [Indexed: 02/02/2023]
Abstract
HIV-1 eradication from infected individuals has not been achieved with the prolonged use of highly active antiretroviral therapy (HAART). The cellular reservoir for HIV-1 in resting memory CD4(+) T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time but is able to release replication-competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed in patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling has helped improve our understanding of HIV-1 dynamics in patients on HAART and of the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.
Collapse
Affiliation(s)
- Libin Rong
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
660
|
Savarino A, Mai A, Norelli S, El Daker S, Valente S, Rotili D, Altucci L, Palamara AT, Garaci E. "Shock and kill" effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology 2009; 6:52. [PMID: 19486542 PMCID: PMC2697151 DOI: 10.1186/1742-4690-6-52] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/02/2009] [Indexed: 12/31/2022] Open
Abstract
Latently infected, resting memory CD4+ T cells and macrophages represent a major obstacle to the eradication of HIV-1. For this purpose, "shock and kill" strategies have been proposed (activation of HIV-1 followed by stimuli leading to cell death). Histone deacetylase inhibitors (HDACIs) induce HIV-1 activation from quiescence, yet class/isoform-selective HDACIs are needed to specifically target HIV-1 latency. We tested 32 small molecule HDACIs for their ability to induce HIV-1 activation in the ACH-2 and U1 cell line models. In general, potent activators of HIV-1 replication were found among non-class selective and class I-selective HDACIs. However, class I selectivity did not reduce the toxicity of most of the molecules for uninfected cells, which is a major concern for possible HDACI-based therapies. To overcome this problem, complementary strategies using lower HDACI concentrations have been explored. We added to class I HDACIs the glutathione-synthesis inhibitor buthionine sulfoximine (BSO), in an attempt to create an intracellular environment that would facilitate HIV-1 activation. The basis for this strategy was that HIV-1 replication decreases the intracellular levels of reduced glutathione, creating a pro-oxidant environment which in turn stimulates HIV-1 transcription. We found that BSO increased the ability of class I HDACIs to activate HIV-1. This interaction allowed the use of both types of drugs at concentrations that were non-toxic for uninfected cells, whereas the infected cell cultures succumbed more readily to the drug combination. These effects were associated with BSO-induced recruitment of HDACI-insensitive cells into the responding cell population, as shown in Jurkat cell models for HIV-1 quiescence. The results of the present study may contribute to the future design of class I HDACIs for treating HIV-1. Moreover, the combined effects of class I-selective HDACIs and the glutathione synthesis inhibitor BSO suggest the existence of an Achilles' heel that could be manipulated in order to facilitate the "kill" phase of experimental HIV-1 eradication strategies.
Collapse
Affiliation(s)
- Andrea Savarino
- Dept of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
661
|
HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology 2009; 6:51. [PMID: 19486514 PMCID: PMC2697150 DOI: 10.1186/1742-4690-6-51] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/01/2009] [Indexed: 11/10/2022] Open
Abstract
HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis.
Collapse
|