651
|
Li C, Teixeira AF, Zhu HJ, Ten Dijke P. Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer 2021; 20:154. [PMID: 34852849 PMCID: PMC8638446 DOI: 10.1186/s12943-021-01463-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
To identify novel cancer therapies, the tumor microenvironment (TME) has received a lot of attention in recent years in particular with the advent of clinical successes achieved by targeting immune checkpoint inhibitors (ICIs). The TME consists of multiple cell types that are embedded in the extracellular matrix (ECM), including immune cells, endothelial cells and cancer associated fibroblasts (CAFs), which communicate with cancer cells and each other during tumor progression. CAFs are a dominant and heterogeneous cell type within the TME with a pivotal role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis and chemotherapy resistance. CAFs mediate their effects in part by remodeling the ECM and by secreting soluble factors and extracellular vesicles. Exosomes are a subtype of extracellular vesicles (EVs), which contain various biomolecules such as nucleic acids, lipids, and proteins. The biomolecules in exosomes can be transmitted from one to another cell, and thereby affect the behavior of the receiving cell. As exosomes are also present in circulation, their contents can also be explored as biomarkers for the diagnosis and prognosis of cancer patients. In this review, we concentrate on the role of CAFs-derived exosomes in the communication between CAFs and cancer cells and other cells of the TME. First, we introduce the multiple roles of CAFs in tumorigenesis. Thereafter, we discuss the ways CAFs communicate with cancer cells and interplay with other cells of the TME, and focus in particular on the role of exosomes. Then, we elaborate on the mechanisms by which CAFs-derived exosomes contribute to cancer progression, as well as and the clinical impact of exosomes. We conclude by discussing aspects of exosomes that deserve further investigation, including emerging insights into making treatment with immune checkpoint inhibitor blockade more efficient.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
652
|
Sun N, Trajkovic-Arsic M, Li F, Wu Y, Münch C, Kunzke T, Feuchtinger A, Steiger K, Schlitter AM, Weichert W, Esposito I, Siveke JT, Walch A. Native glycan fragments detected by MALDI mass spectrometry imaging are independent prognostic factors in pancreatic ductal adenocarcinoma. EJNMMI Res 2021; 11:120. [PMID: 34851463 PMCID: PMC8636555 DOI: 10.1186/s13550-021-00862-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies to date. The impressively developed stroma that surrounds and modulates the behavior of cancer cells is one of the main factors regulating the PDAC growth, metastasis and therapy resistance. Here, we postulate that stromal and cancer cell compartments differentiate in protein/lipid glycosylation patterns and analyze differences in glycan fragments in those compartments with clinicopathologic correlates.
Results We analyzed native glycan fragments in 109 human FFPE PDAC samples using high mass resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometric imaging (MALDI-FT-ICR-MSI). Our method allows detection of native glycan fragments without previous digestion with PNGase or any other biochemical reaction. With this method, 8 and 18 native glycans were identified as uniquely expressed in only stromal or only cancer cell compartment, respectively. Kaplan–Meier survival model identified glycan fragments that are expressed in cancer cell or stromal compartment and significantly associated with patient outcome. Among cancer cell region-specific glycans, 10 predicted better and 6 worse patient survival. In the stroma, 1 glycan predicted good and 4 poor patient survival. Using factor analysis as a dimension reduction method, we were able to group the identified glycans in 2 factors. Multivariate analysis revealed that these factors can be used as independent survival prognostic elements with regard to the established Union for International Cancer Control (UICC) classification both in tumor and stroma regions.
Conclusion Our method allows in situ detection of naturally occurring glycans in FFPE samples of human PDAC tissue and highlights the differences among glycans found in stromal and cancer cell compartment offering a basis for further exploration on the role of specific glycans in cancer–stroma communication.
Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00862-y.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, 45147, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Fengxia Li
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Yin Wu
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Corinna Münch
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, 45147, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Member of the German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Anna Melissa Schlitter
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Member of the German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Member of the German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Irene Esposito
- Institute for Pathology, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, 45147, Essen, Germany. .,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764, Neuherberg, Germany.
| |
Collapse
|
653
|
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 2021; 18:792-804. [PMID: 34489603 PMCID: PMC8791784 DOI: 10.1038/s41571-021-00546-5] [Citation(s) in RCA: 632] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) found in primary and metastatic tumours are highly versatile, plastic and resilient cells that are actively involved in cancer progression through complex interactions with other cell types in the tumour microenvironment. As well as generating extracellular matrix components that contribute to the structure and function of the tumour stroma, CAFs undergo epigenetic changes to produce secreted factors, exosomes and metabolites that influence tumour angiogenesis, immunology and metabolism. Because of their putative pro-oncogenic functions, CAFs have long been considered an attractive therapeutic target; however, clinical trials of treatment strategies targeting CAFs have mostly ended in failure and, in some cases, accelerated cancer progression and resulted in inferior survival outcomes. Importantly, CAFs are heterogeneous cells and their characteristics and interactions with other cell types might change dynamically as cancers evolve. Studies involving single-cell RNA sequencing and novel mouse models have increased our understanding of CAF diversity, although the context-dependent roles of different CAF populations and their interchangeable plasticity remain largely unknown. Comprehensive characterization of the tumour-promoting and tumour-restraining activities of CAF subtypes, including how these complex bimodal functions evolve and are subjugated by neoplastic cells during cancer progression, might facilitate the development of novel diagnostic and therapeutic approaches. In this Review, the clinical relevance of CAFs is summarized with an emphasis on their value as prognosis factors and therapeutic targets.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
654
|
Jia M, Zhang D, Zhang C, Li C. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy. J Nanobiotechnology 2021; 19:384. [PMID: 34809634 PMCID: PMC8607729 DOI: 10.1186/s12951-021-01134-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant tumors with a low survival rate, partly because the tumor microenvironment (TME), which consists of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), immune cells, and vascular systems, prevents effective drug delivery and chemoradiotherapy. Thus, modulating the microenvironment of pancreatic cancer is considered a promising therapeutic approach. Since nanoparticles are one of the most effective cancer treatment strategies, several nano-delivery platforms have been developed to regulate the TME and enhance treatment. Here, we summarize the latest advances in nano-delivery systems that alter the TME in pancreatic cancer by depleting ECM, inhibiting CAFs, reversing immunosuppression, promoting angiogenesis, or improving the hypoxic environment. We also discuss promising new targets for such systems. This review is expected to improve our understanding of how to modulate the pancreatic cancer microenvironment and guide the development of new therapies.
Collapse
Affiliation(s)
- Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China
| | - Dan Zhang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No.1, Section 1, Xianglin Road, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
655
|
Zheng S, Wang J, Ding N, Chen W, Chen H, Xue M, Chen F, Ni J, Wang Z, Lin Z, Jiang H, Liu X, Wang L. Prodrug polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer. J Nanobiotechnology 2021; 19:381. [PMID: 34802453 PMCID: PMC8607732 DOI: 10.1186/s12951-021-01127-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background The prognosis of patients with advanced gastric cancer (GC) remains unsatisfactory owing to distant metastasis and resistance to concurrent systemic therapy. Cancer-associated fibroblasts (CAFs), as essential participators in the tumor microenvironment (TME), play a vital role in tumor progression. Thus, CAFs-targeting therapy is appealing for remodeling TME and sensitizing GC to conventional systemic therapy. Methods Amphiphilic SN38 prodrug polymeric micelles (PSN38) and encapsulated the hydrophobic esterase-responsive prodrug of Triptolide (TPL), triptolide-naphthalene sulfonamide (TPL-nsa), were synthesized to form PSN38@TPL-nsa nanoparticles. Then, CAFs were isolated from fresh GC tissues and immortalized. TPL at low dose concentration was used to investigate its effect on CAFs and CAFs-induced GC cells proliferation and migration. The synergistic mechanism and antitumor efficiency of SN38 and TPL co-delivery nanoparticle were investigated both in vitro and in vivo. Results Fibroblast activation protein (FAP), a marker of CAFs, was highly expressed in GC tissues and indicated poorer prognosis. TPL significantly reduced CAFs activity and inhibited CAFs-induced proliferation, migration and chemotherapy resistance of GC cells. In addition, TPL sensitized GC cells to SN38 treatment through attenuated NF-κB activation in both CAFs and GC cells. PSN38@TPL-nsa treatment reduced the expression of collagen, FAP, and α-smooth muscle actin (α-SMA) in tumors. Potent inhibition of primary tumor growth and vigorous anti-metastasis effect were observed after systemic administration of PSN38@TPL-nsa to CAFs-rich peritoneal disseminated tumor and patient-derived xenograft (PDX) model of GC. Conclusion TPL suppressed CAFs activity and CAFs-induced cell proliferation, migration and chemotherapy resistance to SN38 of GC. CAFs-targeted TPL and SN38 co-delivery nanoparticles exhibited potent efficacy of antitumor and reshaping TME, which was a promising strategy to treat advanced GC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01127-5.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiafeng Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hongda Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Fei Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiaojiao Ni
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhuo Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghua Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
656
|
Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT, Wu N. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Front Immunol 2021; 12:782775. [PMID: 34790207 PMCID: PMC8591168 DOI: 10.3389/fimmu.2021.782775] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has exhibited a substantial clinical response in hematological malignancies, including B-cell leukemia, lymphoma, and multiple myeloma. Therefore, the feasibility of using CAR-T cells to treat solid tumors is actively evaluated. Currently, multiple basic research projects and clinical trials are being conducted to treat lung cancer with CAR-T cell therapy. Although numerous advances in CAR-T cell therapy have been made in hematological tumors, the technology still entails considerable challenges in treating lung cancer, such as on−target, of−tumor toxicity, paucity of tumor-specific antigen targets, T cell exhaustion in the tumor microenvironment, and low infiltration level of immune cells into solid tumor niches, which are even more complicated than their application in hematological tumors. Thus, progress in the scientific understanding of tumor immunology and improvements in the manufacture of cell products are advancing the clinical translation of these important cellular immunotherapies. This review focused on the latest research progress of CAR-T cell therapy in lung cancer treatment and for the first time, demonstrated the underlying challenges and future engineering strategies for the clinical application of CAR-T cell therapy against lung cancer.
Collapse
Affiliation(s)
- Bu-Fan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Ge Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin-Run Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
657
|
Wang J, Rattner A, Nathans J. A transcriptome atlas of the mouse iris at single-cell resolution defines cell types and the genomic response to pupil dilation. eLife 2021; 10:e73477. [PMID: 34783308 PMCID: PMC8594943 DOI: 10.7554/elife.73477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The iris controls the level of retinal illumination by controlling pupil diameter. It is a site of diverse ophthalmologic diseases and it is a potential source of cells for ocular auto-transplantation. The present study provides foundational data on the mouse iris based on single nucleus RNA sequencing. More specifically, this work has (1) defined all of the major cell types in the mouse iris and ciliary body, (2) led to the discovery of two types of iris stromal cells and two types of iris sphincter cells, (3) revealed the differences in cell type-specific transcriptomes in the resting vs. dilated states, and (4) identified and validated antibody and in situ hybridization probes that can be used to visualize the major iris cell types. By immunostaining for specific iris cell types, we have observed and quantified distortions in nuclear morphology associated with iris dilation and clarified the neural crest contribution to the iris by showing that Wnt1-Cre-expressing progenitors contribute to nearly all iris cell types, whereas Sox10-Cre-expressing progenitors contribute only to stromal cells. This work should be useful as a point of reference for investigations of iris development, disease, and pharmacology, for the isolation and propagation of defined iris cell types, and for iris cell engineering and transplantation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
658
|
Hao N, Zhou Y, Li Y, Zhang H, Wang B, Liu X, Ren Y, He J, Zhou C, Tang X. Clinical Value and Potential Mechanisms of Oxysterol-Binding Protein Like 3 (OSBPL3) in Human Tumors. Front Mol Biosci 2021; 8:739978. [PMID: 34738015 PMCID: PMC8560696 DOI: 10.3389/fmolb.2021.739978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer remains one of the top culprits causing disease-related deaths. A lack of effective multi-cancer therapeutic targets has limited the prolongation of cancer patients’ survival. Therefore, it is important to explore novel oncogenic genes or versatile targets and perform a comprehensive analysis to assess their roles in the process of tumorigenesis. OSBPL3 protein is an intracellular lipid receptor of the oxysterol-binding protein superfamily, which participates in some pathological and physiological processes in tumor progression. However, its clinical roles and potential mechanisms in cancers remain unknown. Thus, we aimed to systematic explore the potential oncogenic roles of OSBPL3 across thirty-three tumors using multiple web-based and publicly available tools, including the Cancer Genome Atlas, Gene Expression Omnibus, Genotype-Tissue Expression, cBioPortal, and Human Protein Atlas database. OSBPL3 is highly expressed in major subtypes of cancers, distinctly associated with the prognosis of tumor patients. We observed X676_splice/V676G alteration in the oxysterol domain and frequent mutations of OSBPL3 involve cell survival in skin cutaneous melanoma. We also first presented that the expression of OSBPL3 was associated with tumor mutational burden (TMB) in nine cancer types. Additionally, OSBPL3 shows an enhanced phosphorylation level at S426, S251, and S273 loci within the pleckstrin homology domain in multiple tumors, such as breast cancer or lung adenocarcinoma. And OSBPL3 expression was associated with active immune cells (CD8+ T cells) and cancer-associated fibroblasts in breast cancer, colon adenocarcinoma, and kidney renal clear cell carcinoma and immune checkpoint genes in more than 30 tumors, but weakly associated with immune suppressive cells (myeloid-derived suppressor cells, T regulatory cells). Moreover, protein processing and mRNA metabolic signaling pathways were involved in the functional mechanisms of OSBPL3. Our study first demonstrated that a novel agent OSBPL3 plays an important role in tumorigenesis from the perspective of publicly available databases and clinical tumor samples in various cancers, which comprehensively provide insights into its biological functions and may be helpful for further investigation.
Collapse
Affiliation(s)
- Na Hao
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yudong Zhou
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yijun Li
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Zhang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaona Liu
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Ren
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Can Zhou
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojiang Tang
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
659
|
Dufrusine B, Damiani V, Capone E, Pieragostino D, Dainese E, De Marco M, Reppucci F, Turco MC, Rosati A, Marzullo L, Sala G, Sallese M, De Laurenzi V. BAG3 induces fibroblasts to release key cytokines involved in pancreatic cell migration. J Cell Biochem 2021; 123:65-76. [PMID: 34741485 PMCID: PMC9297949 DOI: 10.1002/jcb.30172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
Abstract
Pancreatic ductal adenoma carcinoma (PDAC) is considered one of the deadliest solid cancers as it is usually diagnosed in advanced stages and has a poor response to treatment. The enormous effort made in the last 2 decades in the oncology field has not led to significant progress in improving early diagnosis or therapy for PDAC. The stroma of PDAC plays an active role in tumour initiation and progression and includes immune cells and stromal cells. We previously reported that Bcl2-associated athanogene (BAG3) secreted by PDAC cells activates tumour-associated macrophages to promote tumour growth. The disruption of this tumour-stroma axis by the anti-BAG3 H2L4 therapeutic antibody is sufficient to delay tumour growth and limit metastatic spreading in different PDAC preclinical models. In the present study, we examined the role of BAG3 to activate human fibroblasts (HF) in releasing cytokines capable of supporting tumour progression. Treatment of fibroblasts with recombinant BAG3 induced important changes in the organisation of the cytoskeleton of these cells and stimulated the production of interleukin-6, monocyte chemoattractant protein-1/C-C motif chemokine ligand 2, and hepatocyte growth factor. Specifically, we observed that BAG3 triggered a depolymerisation of microtubules at the periphery of the cell while they were conserved in the perinuclear area. Conversely, the vimentin-based intermediate filaments increased and spread to the edges of the cells. Finally, the conditioned medium (CM) collected from BAG3-treated HF promoted the survival, proliferation, and migration of the PDAC cells. Blocking of the PDAC-fibroblast axis by the H2L4 therapeutic anti-BAG3 antibody, resulted in inhibition of cytokine release and, consequently, the inhibition of the migratory phenotype conferred by the CM to PDAC cells.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,R&D Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Francesca Reppucci
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,R&D Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Alessandra Rosati
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,R&D Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,R&D Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
660
|
Xu H, Pan Y. A prognostic fibroblast-related risk signature in colorectal cancer. Aging (Albany NY) 2021; 13:24251-24270. [PMID: 34735373 PMCID: PMC8610139 DOI: 10.18632/aging.203677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. The accessibility of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus data allows the prognostic evaluation of CRC. Fibroblasts play a key role in the development and progression of tumors while fibroblast-related risk signature in CRC patients has rarely been mentioned. In this study, TCGA data was classified into high-fibroblast and low-fibroblast groups according to the median of fibroblast content. Among 3845 differentially expressed genes between two groups, 14 prognostic genes commonly expressed in GSE39582 and TCGA were identified by LASSO-COX analysis. Then we established a fibroblast-related risk signature in TCGA training group and validated in the GSE39582 testing group. The risk score was significantly associated with the overall survival (OS), and the poor prognosis of patients in high-risk group might relate to the immune cell infiltration in the tumor microenvironment, epithelial-mesenchymal transition, and extracellular matrix related processes. Overall, we proved that the fibroblast-related signature could predict the prognosis of patients which might shed light on the treatment of CRC.
Collapse
Affiliation(s)
- Hao Xu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, People's Republic of China.,Translational Cancer Research Center, Peking University First Hospital, Peking University, Beijing 100034, People's Republic of China
| | - Yisheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, People's Republic of China
| |
Collapse
|
661
|
De P, Aske J, Dey N. Cancer-Associated Fibroblast Functions as a Road-Block in Cancer Therapy. Cancers (Basel) 2021; 13:5246. [PMID: 34680395 PMCID: PMC8534063 DOI: 10.3390/cancers13205246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/02/2023] Open
Abstract
The journey of a normal resident fibroblast belonging to the tumor microenvironment (TME) from being a tumor pacifier to a tumor patron is fascinating. We introduce cancer-associated fibroblast (CAF) as a crucial component of the TME. Activated-CAF partners with tumor cells and all components of TME in an established solid tumor. We briefly overview the origin, activation, markers, and overall functions of CAF with a particular reference to how different functions of CAF in an established tumor are functionally connected to the development of resistance to cancer therapy in solid tumors. We interrogate the role of CAF in mediating resistance to different modes of therapies. Functional diversity of CAF in orchestrating treatment resistance in solid tumors portrays CAF as a common orchestrator of treatment resistance; a roadblock in cancer therapy.
Collapse
Affiliation(s)
| | | | - Nandini Dey
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA; (P.D.); (J.A.)
| |
Collapse
|
662
|
Li X, Yang Y, Huang Q, Deng Y, Guo F, Wang G, Liu M. Crosstalk Between the Tumor Microenvironment and Cancer Cells: A Promising Predictive Biomarker for Immune Checkpoint Inhibitors. Front Cell Dev Biol 2021; 9:738373. [PMID: 34692696 PMCID: PMC8529050 DOI: 10.3389/fcell.2021.738373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the landscape of cancer treatment and are emerging as promising curative treatments in different type of cancers. However, only a small proportion of patients have benefited from ICIs and there is an urgent need to find robust biomarkers for individualized immunotherapy and to explore the causes of immunotherapy resistance. In this article, we review the roles of immune cells in the tumor microenvironment (TME) and discuss the effects of ICIs on these cell populations. We discuss the potential of the functional interaction between the TME and cancer cells as a predictive biomarker for ICIs. Furthermore, we outline the potential personalized strategies to improve the effectiveness of ICIs with precision.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yueyao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Qian Huang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Deng
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
663
|
Novel 3D µtissues Mimicking the Fibrotic Stroma in Pancreatic Cancer to Study Cellular Interactions and Stroma-Modulating Therapeutics. Cancers (Basel) 2021; 13:cancers13195006. [PMID: 34638490 PMCID: PMC8508009 DOI: 10.3390/cancers13195006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent and aggressive type of pancreatic cancer with a low 5-year survival rate of only 8%. The cellular arrangement plays a crucial role in PDAC, which is characterized by a highly fibrotic environment around the tumor cells, preventing treatments from reaching their target. For the development of novel drug candidates, it is crucial to mimic this cellular arrangement in a laboratory environment. We successfully developed a reproducible three-dimensional cell culture model that demonstrates the PDAC characteristic arrangement and showed a PDAC relevant gene profile when comparing with the genetic profile of PDAC patients. We finally demonstrated the use of the model for the evaluation of novel anti-fibrotic therapy against PDAC by studying drug-induced reduction of fibrosis in PDAC enabling nanoparticles to penetrate and reach the tumor cells. This model is useful for the evaluation of novel treatments against PDAC in a biologically relevant manner. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor type with low patient survival due to the low efficacy of current treatment options. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) create a dense fibrotic environment around the tumor cells, preventing therapies from reaching their target. Novel 3D in vitro models are needed that mimic this fibrotic barrier for the development of therapies in a biologically relevant environment. Here, novel PDAC microtissues (µtissues) consisting of pancreatic cancer cell core surrounded by a CAF-laden collagen gel are presented, that is based on the cells own contractility to form a hard-to-penetrate barrier. The contraction of CAFs is demonstrated facilitating the embedding of tumor cells in the center of the µtissue as observed in patients. The µtissues displayed a PDAC-relevant gene expression by comparing their gene profile with transcriptomic patient data. Furthermore, the CAF-dependent proliferation of cancer cells is presented, as well as the suitability of the µtissues to serve as a platform for the screening of CAF-modulating therapies in combination with other (nano)therapies. It is envisioned that these PDAC µtissues can serve as a high-throughput platform for studying cellular interactions in PDAC and for evaluating different treatment strategies in the future.
Collapse
|
664
|
Watt DM, Morton JP. Heterogeneity in Pancreatic Cancer Fibroblasts-TGFβ as a Master Regulator? Cancers (Basel) 2021; 13:4984. [PMID: 34638468 PMCID: PMC8508541 DOI: 10.3390/cancers13194984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive disease for which there are very few available therapies. It is notable for its high degree of tumour complexity, with the tumour microenvironment often accounting for the majority of the tumour volume. Until recently, the biology of the stroma was poorly understood, particularly in terms of heterogeneity. Recent research, however, has shed light on the intricacy of signalling within the stroma and particularly the molecular and functional heterogeneity of the cancer associated fibroblasts. In this review, we summarise the recent improvements in our understanding of the different fibroblast populations within PDAC, with a focus on the role TGFβ plays to dictate their formation and function. These studies have highlighted some of the reasons for the failure of trials targeting the tumour stroma, however, there are still considerable gaps in our knowledge, and more work is needed to make effective fibroblast targeting a reality in the clinic.
Collapse
Affiliation(s)
- Dale M. Watt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK;
| | - Jennifer P. Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
665
|
The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer Metastasis Rev 2021; 40:675-689. [PMID: 34591240 DOI: 10.1007/s10555-021-09988-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies and is characterized by a unique tumor microenvironment (TME) consisting of an abundant stromal component. Many features contained with the PDAC stroma contribute to resistance to cytotoxic and immunotherapeutic regimens, as well as the propensity for this tumor to metastasize. At the cellular level, PDAC cells crosstalk with a complex mixture of non-neoplastic cell types including fibroblasts, endothelial cells, and immune cells. These intricate interactions fuel the progression and therapeutic resistance of this aggressive cancer. Moreover, data suggest the polarization of these cell types, in particular immune and fibroblast populations, dictate how PDAC tumors grow, metastasize, and respond to therapy. As a result, current research is focused on how to best target these populations to render tumors responsive to treatment. Herein, we summarize the cell populations implicated in providing a supporting role for the development and progression of PDAC. We focus on stromal fibroblasts and immune subsets that have been widely researched. We discuss factors which govern the phenotype of these populations and provide insight on how they have been targeted therapeutically. This review provides an overview of the tumor microenvironment and postulates that cellular and soluble factors within the microenvironment can be specifically targeted to improve patient outcomes.
Collapse
|
666
|
Role of non-coding RNAs in tumor progression and metastasis in pancreatic cancer. Cancer Metastasis Rev 2021; 40:761-776. [PMID: 34591242 PMCID: PMC8556175 DOI: 10.1007/s10555-021-09995-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer with an overall 5-year survival rate of less than 10%. The 1-year survival rate of patients with locally advanced or metastatic disease is abysmal. The aggressive nature of cancer cells, hypovascularization, extensive desmoplastic stroma, and immunosuppressive tumor microenvironment (TME) endows PDAC tumors with multiple mechanisms of drug resistance. With no obvious genetic mutation(s) driving tumor progression or metastatic transition, the challenges for understanding the biological mechanism(s) of these processes are paramount. A better understanding of the molecular and cellular mechanisms of these processes could lead to new diagnostic tools for patient management and new targets for therapeutic intervention. microRNAs (miRNAs) are an evolutionarily conserved gene class of short non-coding regulatory RNAs. miRNAs are an extensive regulatory layer that controls gene expression at the posttranscriptional level. This review focuses on preclinical models that functionally dissect miRNA activity in tumor progression or metastatic processes in PDAC. Collectively, these studies suggest an influence of miRNAs and RNA-RNA networks in the processes of epithelial to mesenchymal cell transition and cancer cell stemness. At a cell-type level, some miRNAs mainly influence cancer cell–intrinsic processes and pathways, whereas other miRNAs predominantly act in distinct cellular compartments of the TME to regulate fibroblast and immune cell functions and/or influence other cell types’ function via cell-to-cell communications by transfer of extracellular vesicles. At a molecular level, the influence of miRNA-mediated regulation often converges in core signaling pathways, including TGF-β, JAK/STAT, PI3K/AKT, and NF-κB.
Collapse
|
667
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
668
|
Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, Oon C, Bhattacharyya S, Sanford-Crane H, Horton W, Finan JM, Sattler A, Makar R, Dawson DW, Xia Z, Hingorani SR, Sherman MH. Mesenchymal Lineage Heterogeneity Underlies Non-Redundant Functions of Pancreatic Cancer-Associated Fibroblasts. Cancer Discov 2021; 12:484-501. [PMID: 34548310 DOI: 10.1158/2159-8290.cd-21-0601] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblast (CAF) heterogeneity is increasingly appreciated, but the origins and functions of distinct CAF subtypes remain poorly understood. The abundant and transcriptionally diverse CAF population in pancreatic ductal adenocarcinoma (PDAC) is thought to arise from a common cell of origin, pancreatic stellate cells (PSCs), with diversification resulting from cytokine and growth factor gradients within the tumor microenvironment. Here we analyzed the differentiation and function of PSCs during tumor progression in vivo. Contrary to expectations, we found that PSCs give rise to a numerically minor subset of PDAC CAFs. Targeted ablation of PSC-derived CAFs within their host tissue revealed non-redundant functions for this defined CAF population in shaping the PDAC microenvironment, including production of specific extracellular matrix components and tissue stiffness regulation. Together, these findings link stromal evolution from distinct cells of origin to transcriptional heterogeneity among PDAC CAFs, and demonstrate unique functions for CAFs of a defined cellular origin.
Collapse
Affiliation(s)
| | - Mark W Berry
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | | | | | - Duanchen Sun
- Computational biology, Oregon Health & Science University
| | | | - Chet Oon
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Sohinee Bhattacharyya
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Hannah Sanford-Crane
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| | - Wesley Horton
- Computational Biology, Oregon Health & Science University
| | - Jennifer M Finan
- Cell, Developmental and Cancer Biology, Oregon Health and Science University
| | - Ariana Sattler
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University
| | - Rosemary Makar
- Knight BioLibrary, Oregon Health & Science University School of Medicine
| | - David W Dawson
- Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA)
| | - Zheng Xia
- Computational Biology Program; Knight Cancer Institute, Oregon Health & Science University
| | | | - Mara H Sherman
- Cell, Developmental & Cancer Biology, Oregon Health & Science University School of Medicine
| |
Collapse
|
669
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
670
|
Zarin B, Rafiee L, Daneshpajouhnejad P, Haghjooy Javanmard S. A review on the role of CAFs and CAF-derived exosomes in progression and metastasis of digestive system cancers. Tumour Biol 2021; 43:141-157. [PMID: 34420992 DOI: 10.3233/tub-200075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancers evolve as a result of the accelerated proliferation of cancer cells in a complicated, enriched, and active microenvironment. Tumor microenvironment (TME) components are the master regulators of any step of cancer development. The tumor microenvironment is composed of many cellular and noncellular components that contribute to the evolution of cancer cells. Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the TME that implicate in tumor progression and metastasis dissemination through secretion of oncogenic factors which are carried to the secondary metastatic sites through exosomes. In this review, we aimed to assess the role of CAF-derived exosomes in TME construction and pre-metastatic niche formation in different cancers of the digestive system in order to better understand some important mechanisms of metastasis and provide possible targets for clinical intervention. This review article is divided into two thematic parts explaining the general mechanisms of pre-metastatic niche formation and metastasis and the role of CAF-derived exosomes in different digestive system cancers including colorectal, gastric, esophageal, pancreatic, and liver cancers.
Collapse
Affiliation(s)
- Bahare Zarin
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of physiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
671
|
Cancer-Associated Fibroblasts in Conversation with Tumor Cells in Endometrial Cancers: A Partner in Crime. Int J Mol Sci 2021; 22:ijms22179121. [PMID: 34502029 PMCID: PMC8430936 DOI: 10.3390/ijms22179121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/28/2022] Open
Abstract
A tumor cell carrying characteristic genomic alteration(s) exists within its host’s microenvironment. The tumor microenvironment (TME) renders holistic support to the tumor via cross-talk between tumor cells and three components of TME, immune components, vascular components, and fibroblast components. The tempero-spatial interaction of tumor cells with its microenvironment is the deterministic factor for tumor growth, progression, resistance to therapy, and its outcome in clinics. TME (1) facilitates proliferation, and the ensuing metastasis-associated phenotypes, (2) perturbs immune surveillance and supports tumor cells in their effort to evade immune recognition, and (3) actively participates in developing drug-induced resistance in cancer cells. Cancer-Associated Fibroblast (CAF) is a unique component of TME. CAF is the host mesenchyme immediately surrounding the tumor cells in solid tumors. It facilitates tumor growth and progression and participates in developing drug resistance in tumor cells by playing a critical role in all the ways mentioned above. The clinical outcome of a disease is thus critically contributed to by the CAF component of TME. Although CAFs have been identified historically, the functional relevance of CAF-tumor cell cross-talk and their influence on angiogenic and immune-components of TME are yet to be characterized in solid tumors, especially in endometrial cancers. Currently, the standard of care for the treatment of endometrial cancers is primarily guided by therapies directed towards the disease’s tumor compartment and immune compartments. Unfortunately, in the current state of therapies, a complete response (CR) to the therapy is still limited despite a more commonly achieved partial response (PR) and stable disease (SD) in patients. Acknowledging the limitations of the current sets of therapies based on only the tumor and immune compartments of the disease, we sought to put forward this review based on the importance of the cross-talk between CAF of the tumor microenvironment and tumor cells. The premise of the review is to recognize the critical role of CAF in disease progression. This manuscript presents a systemic review of the role of CAF in endometrial cancers. We critically interrogated the active involvement of CAF in the tumor compartment of endometrial cancers. Here we present the functional characteristics of CAF in the context of endometrial cancers. We review (1) the characteristics of CAF, (2) their evolution from being anti-tumor to pro-tumor, (3) their involvement in regulating growth and several metastasis-associated phenotypes of tumor cells, (4) their participation in perturbing immune defense and evading immune surveillance, and (5) their role in mediating drug resistance via tumor-CAF cross-talk with particular reference to endometrial cancers. We interrogate the functional characteristics of CAF in the light of its dialogue with tumor cells and other components of TME towards developing a CAF-based strategy for precision therapy to supplement tumor-based therapy. The purpose of the review is to present a new vision and initiate a thought process which recognizes the importance of CAF in a tumor, thereby resulting in a novel approach to the design and management of the disease in endometrial cancers.
Collapse
|
672
|
Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 2021; 14:125. [PMID: 34404434 PMCID: PMC8369706 DOI: 10.1186/s13045-021-01134-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
B-cell lymphoma is a group of hematological malignancies with high clinical and biological heterogeneity. The pathogenesis of B-cell lymphoma involves a complex interaction between tumor cells and the tumor microenvironment (TME), which is composed of stromal cells and extracellular matrix. Although the roles of the TME have not been fully elucidated, accumulating evidence implies that TME is closely relevant to the origination, invasion and metastasis of B-cell lymphoma. Explorations of the TME provide distinctive insights for cancer therapy. Here, we epitomize the recent advances of TME in B-cell lymphoma and discuss its function in tumor progression and immune escape. In addition, the potential clinical value of targeting TME in B-cell lymphoma is highlighted, which is expected to pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yingyue Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
673
|
Su SF, Ho H, Li JH, Wu MF, Wang HC, Yeh HY, Kuo SW, Chen HW, Ho CC, Li KC. DNA methylome and transcriptome landscapes of cancer-associated fibroblasts reveal a smoking-associated malignancy index. J Clin Invest 2021; 131:e139552. [PMID: 34228648 DOI: 10.1172/jci139552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unlike the better-studied aberrant epigenome in the tumor, the clinicopathologic impact of DNA methylation in the tumor microenvironment (TME), especially the contribution from cancer-associated fibroblasts (CAFs), remains elusive. CAFs exhibit profound patient-to-patient tumorigenic heterogeneity. We asked whether such heterogeneity may be exploited to quantify the level of TME malignancy. We developed a robust and efficient methylome/transcriptome co-analytical system for CAFs and paired normal fibroblasts (NFs) from non-small-cell lung cancer patients. We found 14,781 CpG sites of CAF/NF differential methylation, of which 3,707 sites showed higher methylation changes in ever-smokers than in nonsmokers. Concomitant CAF/NF differential gene expression analysis pointed to a subset of 54 smoking-associated CpG sites with strong methylation-regulated gene expression. A methylation index that summarizes the β values of these CpGs was built for NF/CAF discrimination (MIND) with high sensitivity and specificity. The potential of MIND in detecting premalignancy across individual patients was shown. MIND succeeded in predicting tumor recurrence in multiple lung cancer cohorts without reliance on patient survival data, suggesting that the malignancy level of TME may be effectively graded by this index. Precision TME grading may provide additional pathological information to guide cancer prognosis and open up more options in personalized medicine.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University, College of Medicine, Taipei, Taiwan.,YongLin Institute of Health, National Taiwan University, Taipei, Taiwan
| | - Hao Ho
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Jia-Hua Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ming-Fang Wu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsu-Chieh Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Shuenn-Wen Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Department of Statistics, UCLA, Los Angeles, California, USA
| |
Collapse
|
674
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
675
|
Liu X, Yao L, Qu J, Liu L, Lu N, Wang J, Zhang J. Cancer-associated fibroblast infiltration in gastric cancer: the discrepancy in subtypes pathways and immunosuppression. J Transl Med 2021; 19:325. [PMID: 34332586 PMCID: PMC8325313 DOI: 10.1186/s12967-021-03012-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background General role of cancer-associated fibroblast (CAF) and its infiltration characteristics in gastric cancer remains to be unknown. Methods We estimate CAF infiltration in bulk tumor tissue with RNA-seq data and analyzed its relationship with gastric cancer subtype, survival and immune microenvironment. Results We revealed CAF intend to have higher infiltration in diffuse, genomically stable, and advanced gastric cancer. CAF is associated with immunosuppressive microenvironment. Wide transcriptomics alterations occur in high CAF infiltrated gastric cancer, PI3K/AKT, TGFB and Hedgehog pathway are remarkable in this procedure. We utilized receptor tyrosine kinases and TGFB pathway ligands to construct risk score system that can predict survival. Conclusion Thus, CAF is associated with aggressive phenotype of gastric cancer and risk score based on RTK and TGFB pathway ligands expression is a promising tool for assessment of gastric cancer survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03012-z.
Collapse
Affiliation(s)
- Xu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Li Yao
- Department of Neurology, Xi'an XD Group Hospital, 97 North Fengdeng Road, Xi'an, Shaanxi, China
| | - Jingkun Qu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, 48 West Fenghao Road, Xi'an, Shaanxi, China
| | - Jiansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China.
| | - Jia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China.
| |
Collapse
|
676
|
Gunaydin G. CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Front Oncol 2021; 11:668349. [PMID: 34336660 PMCID: PMC8317617 DOI: 10.3389/fonc.2021.668349] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other's functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
677
|
Liu X, Gündel B, Li X, Liu J, Wright A, Löhr M, Arvidsson G, Heuchel R. 3D heterospecies spheroids of pancreatic stroma and cancer cells demonstrate key phenotypes of pancreatic ductal adenocarcinoma. Transl Oncol 2021; 14:101107. [PMID: 33946033 PMCID: PMC8111319 DOI: 10.1016/j.tranon.2021.101107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, partly due to the dense desmoplasia and a lack of suitable model systems to study. In the present work, we developed a 3D heterospecies spheroid model to study the microenvironmental interactions between tumor cells and stellate cells which can also be employed to test therapeutic regimens. We set up monospheroids and heterospheroids made up from murine pancreatic stellate cells (mPSCs) and human PDAC cells (Panc1), which allowed for direct isolation of mRNA from a mixed cell population followed by an in silico separation of the RNA-seq reads. Global transcript level changes for cells in heterospheroids versus monospheroids were calculated, followed by gene set enrichment analysis and molecular subtype analysis. We observed an apparent shift of Panc1 from the classical to the squamous/basal-like phenotype upon co-culture with mPSCs. Moreover, mPSCs acquired a different cancer-associated fibroblast-related phenotype upon co-culture with Panc1. We analyzed the tumor cell-specific chemosensitivities towards gemcitabine, paclitaxel and SN38 and compared these to published pharmacotranscriptomic signatures. In conclusion, our heterospecies spheroid model reflected key aspects of PDAC and facilitated the study of intercellular interactions between tumor and stroma while additionally proving to be a good model for studying therapeutic responses.
Collapse
Affiliation(s)
- Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Xidan Li
- Department of Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Jianping Liu
- Department of Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Anthony Wright
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Gustav Arvidsson
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 86, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology, (CLINTEC), Karolinska Institutet, Huddinge SE 141 86, Sweden.
| |
Collapse
|
678
|
Turner KM, Yeo SK, Holm TM, Shaughnessy E, Guan JL. Heterogeneity within molecular subtypes of breast cancer. Am J Physiol Cell Physiol 2021; 321:C343-C354. [PMID: 34191627 DOI: 10.1152/ajpcell.00109.2021] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer is the quintessential example of how molecular characterization of tumor biology guides therapeutic decisions. From the discovery of the estrogen receptor to current clinical molecular profiles to evolving single-cell analytics, the characterization and compartmentalization of breast cancer into divergent subtypes is clear. However, competing with this divergent model of breast cancer is the recognition of intratumoral heterogeneity, which acknowledges the possibility that multiple different subtypes exist within a single tumor. Intratumoral heterogeneity is driven by both intrinsic effects of the tumor cells themselves as well as extrinsic effects from the surrounding microenvironment. There is emerging evidence that these intratumoral molecular subtypes are not static; rather, plasticity between divergent subtypes is possible. Interconversion between seemingly different subtypes within a tumor drives tumor progression, metastases, and treatment resistance. Therapeutic strategies must, therefore, contend with changing phenotypes in an individual patient's tumor. Identifying targetable drivers of molecular heterogeneity may improve treatment durability and disease progression.
Collapse
Affiliation(s)
- Kevin M Turner
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tammy M Holm
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Elizabeth Shaughnessy
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
679
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
680
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Cell-based immunotherapy approaches for colorectal cancer: main achievements and challenges. Future Oncol 2021; 17:3253-3270. [PMID: 34156258 DOI: 10.2217/fon-2020-1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is becoming as a major treatment modality for multiple types of solid tumors, including subsets of colorectal cancers (CRCs). The successes with immunotherapy alone has largely been achieved in patients with advanced-stage mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H) CRCs. However, the benefits of immunotherapy have not been demonstrated to be effective in patients with proficient mismatch repair (pMMR) CRC, who are microsatellite-stable (MSS) or have low levels of microsatellite instability (MSI-L). Here, we provide a comprehensive review on the immune microenvironment of CRC tumors and describe the rapid pace of scientific changes. We discuss the tremendous promise of cell-based immunotherapy strategies that are under preclinical studies/clinical trials or being used in therapeutic paradigms.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran.,Department of Biological & Chemical Engineering Immunological Biotechnology, Aarhus University, Inge Lehmanns Gade 10, 8000 Aarhus C, Aarhus, Denmark
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Shahid fahmideh boulevard, 6517838687, Hamadan, Iran
| |
Collapse
|
681
|
Ahmad RS, Eubank TD, Lukomski S, Boone BA. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules 2021; 11:biom11060901. [PMID: 34204306 PMCID: PMC8234537 DOI: 10.3390/biom11060901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.
Collapse
Affiliation(s)
- Ramiz S. Ahmad
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Brian A. Boone
- Department of Surgery, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; (T.D.E.); (S.L.)
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
682
|
Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, Decker A, Worley J, Caviglia JM, Yu L, Yin D, Saito Y, Savage T, Wells RG, Mack M, Zender L, Arpaia N, Remotti HE, Rabadan R, Sims P, Leblond AL, Weber A, Riener MO, Stockwell BR, Gaublomme J, Llovet JM, Kalluri R, Michalopoulos GK, Seki E, Sia D, Chen X, Califano A, Schwabe RF. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell 2021; 39:866-882.e11. [PMID: 33930309 PMCID: PMC8241235 DOI: 10.1016/j.ccell.2021.03.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.
Collapse
Affiliation(s)
- Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ajay Nair
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Brundu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Michitaka Matsuda
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90024, USA
| | - LiKang Chin
- Department of Medicine, Penn Physical Sciences in Oncology Center PSOC@Penn, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Wen Wen
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94158, USA
| | - Aubrianna Decker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Lexing Yu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yoshinobu Saito
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Thomas Savage
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rebecca G Wells
- Department of Medicine, Penn Physical Sciences in Oncology Center PSOC@Penn, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, 72076 Tuebingen, Germany; German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; iFIT Cluster of Excellence EXC 2180, University of Tuebingen, 72076 Tuebingen, Germany
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Helen E Remotti
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Sims
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Anne-Laure Leblond
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Achim Weber
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Marc-Oliver Riener
- Department for Pathology and Molecular Pathology, Zürich University Hospital, 8091 Zürich, Switzerland
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jellert Gaublomme
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Josep M Llovet
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Ekihiro Seki
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90024, USA
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA 94158, USA
| | - Andrea Califano
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
683
|
Camargo S, Gofrit ON, Assis A, Mitrani E. Paracrine Signaling from a Three-Dimensional Model of Bladder Carcinoma and from Normal Bladder Switch the Phenotype of Stromal Fibroblasts. Cancers (Basel) 2021; 13:2972. [PMID: 34198488 PMCID: PMC8231763 DOI: 10.3390/cancers13122972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
We present a three-dimensional model based on acellular scaffolds to recreate bladder carcinoma in vitro that closely describes the in vivo behavior of carcinoma cells. The integrity of the basement membrane and protein composition of the bladder scaffolds were examined by Laminin immunostaining and LC-MS/MS. Human primary bladder carcinoma cells were then grown on standard monolayer cultures and also seeded on the bladder scaffolds. Apparently, carcinoma cells adhered to the scaffold basement membrane and created a contiguous one-layer epithelium (engineered micro-carcinomas (EMCs)). Surprisingly, the gene expression pattern displayed by EMCs was similar to the profile expressed by the carcinoma cells cultured on plastic. However, the pattern of secreted growth factors was significantly different, as VEGF, FGF, and PIGF were secreted at higher levels by EMCs. We found that only the combination of factors secreted by EMCs, but not the carcinoma cells grown on plastic dishes, was able to induce either the pro-inflammatory phenotype or the myofibroblast phenotype depending on the concentration of the secreted factors. We found that the pro-inflammatory phenotype could be reversed. We propose a unique platform that allows one to decipher the paracrine signaling of bladder carcinoma and how this molecular signaling can switch the phenotypes of fibroblasts.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| | - Ofer N. Gofrit
- Department of Urology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Assaf Assis
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; (S.C.); (A.A.)
| |
Collapse
|
684
|
Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, Filliol A, Chin L, Savage TM, Yin D, Wirsik NM, Mehal A, Arpaia N, Seki E, Mack M, Zhu D, Sims PA, Kalluri R, Stanger BZ, Olive KP, Schmidt T, Wells RG, Mederacke I, Schwabe RF. Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest 2021; 131:146987. [PMID: 33905375 PMCID: PMC8159701 DOI: 10.1172/jci146987] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) may exert tumor-promoting and tumor-suppressive functions, but the mechanisms underlying these opposing effects remain elusive. Here, we sought to understand these potentially opposing functions by interrogating functional relationships among CAF subtypes, their mediators, desmoplasia, and tumor growth in a wide range of tumor types metastasizing to the liver, the most common organ site for metastasis. Depletion of hepatic stellate cells (HSC), which represented the main source of CAF in mice and patients in our study, or depletion of all CAF decreased tumor growth and mortality in desmoplastic colorectal and pancreatic metastasis but not in nondesmoplastic metastatic tumors. Single-cell RNA-Seq in conjunction with CellPhoneDB ligand-receptor analysis, as well as studies in immune cell-depleted and HSC-selective knockout mice, uncovered direct CAF-tumor interactions as a tumor-promoting mechanism, mediated by myofibroblastic CAF-secreted (myCAF-secreted) hyaluronan and inflammatory CAF-secreted (iCAF-secreted) HGF. These effects were opposed by myCAF-expressed type I collagen, which suppressed tumor growth by mechanically restraining tumor spread, overriding its own stiffness-induced mechanosignals. In summary, mechanical restriction by type I collagen opposes the overall tumor-promoting effects of CAF, thus providing a mechanistic explanation for their dual functions in cancer. Therapeutic targeting of tumor-promoting CAF mediators while preserving type I collagen may convert CAF from tumor promoting to tumor restricting.
Collapse
Affiliation(s)
| | - Florian Hamberger
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hanover, Germany
| | | | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Ajay Nair
- Department of Medicine, Columbia University, New York, New York, USA
| | - Silvia Affo
- Department of Medicine, Columbia University, New York, New York, USA
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, New York, USA
| | - LiKang Chin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas M. Savage
- Department of Microbiology and Immunology, Columbia University, New York, New York, USA
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, New York, USA
| | - Naita Maren Wirsik
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Adam Mehal
- Department of Medicine, Columbia University, New York, New York, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Ekihiro Seki
- Department of Medicine, Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Di Zhu
- Department of Pharmacology, Minhang Hospital and School of Pharmacy, Fudan University, Shanghai, China
| | - Peter A. Sims
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Raghu Kalluri
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ben Z. Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth P. Olive
- Department of Medicine, Columbia University, New York, New York, USA
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Rebecca G. Wells
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ingmar Mederacke
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hanover, Germany
| | - Robert F. Schwabe
- Department of Medicine, Columbia University, New York, New York, USA
- Institute of Human Nutrition, Columbia University, New York, New York, USA
| |
Collapse
|
685
|
Cai W, Sun X, Jin F, Xiao D, Li H, Sun H, Wang Y, Lu Y, Liu J, Huang C, Wang X, Gao S, Wang H, Gao C, Zhao T, Hao J. PERK-eIF2α-ERK1/2 axis drives mesenchymal-endothelial transition of cancer-associated fibroblasts in pancreatic cancer. Cancer Lett 2021; 515:86-95. [PMID: 34052329 DOI: 10.1016/j.canlet.2021.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by remarkable desmoplasia, usually driven by cancer-associated fibroblasts (CAFs), influencing patient prognosis. CAFs are a group of plastic cells responsible for tumor growth and metastasis. Fibroblasts have been reported to directly contribute to angiogenesis by undergoing mesenchymal-endothelial transition (MEndoT) after ischemic injury in the heart, brain, and hindlimbs. However, whether CAFs can undergo similar transdifferentiation in the hostile tumor microenvironment and directly contribute to tumor angiogenesis remains unclear. Herein, we provide evidence that CAFs can adopt an endothelial cell-like phenotype and directly contribute to tumor angiogenesis in vitro and in vivo. Furthermore, this program is regulated by the PERK-eIF2α-ERK1/2 axis. Pharmacological inhibition of PERK with GSK2606414 limited the phenotypic transition of CAFs. In conclusion, our results suggest that CAFs contribute to tumor angiogenesis by undergoing the MEndoT, thus representing therapeutic targets for improving PDAC prognosis.
Collapse
Affiliation(s)
- Wenrun Cai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xugang Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Fanjie Jin
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Di Xiao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Lu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chuntao Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
686
|
Kokkinos J, Jensen A, Sharbeen G, McCarroll JA, Goldstein D, Haghighi KS, Phillips PA. Does the Microenvironment Hold the Hidden Key for Functional Precision Medicine in Pancreatic Cancer? Cancers (Basel) 2021; 13:cancers13102427. [PMID: 34067833 PMCID: PMC8156664 DOI: 10.3390/cancers13102427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and no significant improvement in patient survival has been seen in the past three decades. Treatment options are limited and selection of chemotherapy in the clinic is usually based on the performance status of a patient rather than the biology of their disease. In recent years, research has attempted to unlock a personalised treatment strategy by identifying actionable molecular targets in tumour cells or using preclinical models to predict the effectiveness of chemotherapy. However, these approaches rely on the biology of PDAC tumour cells only and ignore the importance of the microenvironment and fibrotic stroma. In this review, we highlight the importance of the microenvironment in driving the chemoresistant nature of PDAC and the need for preclinical models to mimic the complex multi-cellular microenvironment of PDAC in the precision medicine pipeline. We discuss the potential for ex vivo whole-tissue culture models to inform precision medicine and their role in developing novel therapeutic strategies that hit both tumour and stromal compartments in PDAC. Thus, we highlight the critical role of the tumour microenvironment that needs to be addressed before a precision medicine program for PDAC can be implemented.
Collapse
Affiliation(s)
- John Kokkinos
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Anya Jensen
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
| | - Joshua A. McCarroll
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Prince of Wales Clinical School, Prince of Wales Hospital, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Koroush S. Haghighi
- Prince of Wales Clinical School, Prince of Wales Hospital, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, School of Medical Sciences, Faculty of Medicine & Health, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (J.K.); (G.S.); (D.G.)
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia;
- Correspondence:
| |
Collapse
|
687
|
Hamanaka RB, Mutlu GM. The role of metabolic reprogramming and de novo amino acid synthesis in collagen protein production by myofibroblasts: implications for organ fibrosis and cancer. Amino Acids 2021; 53:1851-1862. [PMID: 33963932 DOI: 10.1007/s00726-021-02996-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022]
Abstract
Fibrosis is a pathologic condition resulting from aberrant wound healing responses that lead to excessive accumulation of extracellular matrix components, distortion of organ architecture, and loss of organ function. Fibrotic disease can affect every organ system; moreover, fibrosis is an important microenvironmental component of many cancers, including pancreatic, cervical, and hepatocellular cancers. Fibrosis is also an independent risk factor for cancer. Taken together, organ fibrosis contributes to up to 45% of all deaths worldwide. There are no approved therapies that halt or reverse fibrotic disease, highlighting the great need for novel therapeutic targets. At the heart of almost all fibrotic disease is the TGF-β-mediated differentiation of fibroblasts into myofibroblasts, the primary cell type responsible for the production of collagen and other matrix proteins and distortion of tissue architecture. Recent advances, particularly in the field of lung fibrosis, have highlighted the role that metabolic reprogramming plays in the pathogenic phenotype of myofibroblasts, particularly the induction of de novo amino acid synthesis pathways that are required to support collagen matrix production by these cells. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, focusing on the de novo production of glycine and proline, two amino acids which compose over half of the primary structure of collagen protein. We will also discuss the important role that synthesis of these amino acids plays in regulating cellular redox balance and epigenetic state.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC6026, Chicago, IL, 60637, USA.
| |
Collapse
|
688
|
Winograd R, Simeone DM, Bar-Sagi D. A novel target for combination immunotherapy in pancreatic cancer: IL-1β mediates immunosuppression in the tumour microenvironment. Br J Cancer 2021; 124:1754-1756. [PMID: 33758330 PMCID: PMC8144204 DOI: 10.1038/s41416-021-01303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
Immune checkpoint blockade (ICB) has demonstrated efficacy in multiple cancers, offering the potential of long-term disease control not achievable with cytotoxic or targeted therapies. However, the field has not yet achieved the crucial next steps - the expansion of the response rate and achievement of clinical efficacy in so-called "cold tumours". Mechanistic studies of tumour-type specific immunosuppressive pathways can reveal underlying biological hurdles to immunotherapy and offer new therapeutic insights. Our finding that tumour-derived IL-1β mediates immunosuppression in pancreatic cancer has precipitated a new clinical trial.
Collapse
Affiliation(s)
- Rafael Winograd
- Department of Hematology and Oncology, NYU Langone Health, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Diane M Simeone
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Surgery, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
689
|
Abstract
INTRODUCTION The high failure rate in drug discovery remains a costly and time-consuming challenge. Improving the odds of success in the early steps of drug development requires disease models with high biological relevance for biomarker discovery and drug development. The adoption of three-dimensional (3D) cell culture systems over traditional monolayers in cell-based assays is considered a promising step toward improving the success rate in drug discovery. AREAS COVERED In this article, the author focuses on new technologies for 3D cell culture and their applications in cancer drug discovery. Besides the most common 3D cell-culture systems for tumor cells, the article emphasizes the need for 3D cell culture technologies that can mimic the complex tumor microenvironment and cancer stem cell niche. EXPERT OPINION There has been a rapid increase in 3D cell culture technologies in recent years in an effort to more closely mimic in vivo physiology. Each 3D cell culture system has its own strengths and weaknesses with regard to in vivo tumor growth and the tumor microenvironment. This requires careful consideration of which 3D cell culture system is chosen for drug discovery and should be based on factors like drug target and tumor origin.
Collapse
Affiliation(s)
- Sigrid A Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE
| |
Collapse
|
690
|
Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis 2021; 12:334. [PMID: 33782384 PMCID: PMC8007632 DOI: 10.1038/s41419-021-03574-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) contribute to malignant progression and chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, little is known about the underlying mechanism. In this study, we investigated the potential role and mechanisms of activating transcription factor 4 (ATF4) in CAFs-induced malignancy and gemcitabine resistance. We demonstrated that ATF4 is overexpressed in PDAC and associated with a poor prognosis. Silencing ATF4 expression decreased proliferation, colony formation, migration, gemcitabine sensitivity, and sphere formation. Subsequently, we revealed that CAFs secrete TGF-β1 to upregulate the expression of ATF4 in PDAC cells via the SMAD2/3 pathway and induce cancer progression, cancer stemness, and gemcitabine resistance. Furthermore, we demonstrated that ATF4 directly binds to the ABCC1 promoter region to activate transcription. In summary, these data demonstrate that CAFs contribute to malignancy and gemcitabine resistance in PDAC by upregulating the expression of ATF4 via the TGF-β1/SMAD2/3 axis and highlight that ATF4 is an attractive therapeutic target for combating gemcitabine resistance in PDAC.
Collapse
|
691
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
692
|
Hahn WC, Bader JS, Braun TP, Califano A, Clemons PA, Druker BJ, Ewald AJ, Fu H, Jagu S, Kemp CJ, Kim W, Kuo CJ, McManus M, B Mills G, Mo X, Sahni N, Schreiber SL, Talamas JA, Tamayo P, Tyner JW, Wagner BK, Weiss WA, Gerhard DS. An expanded universe of cancer targets. Cell 2021; 184:1142-1155. [PMID: 33667368 PMCID: PMC8066437 DOI: 10.1016/j.cell.2021.02.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/05/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
The characterization of cancer genomes has provided insight into somatically altered genes across tumors, transformed our understanding of cancer biology, and enabled tailoring of therapeutic strategies. However, the function of most cancer alleles remains mysterious, and many cancer features transcend their genomes. Consequently, tumor genomic characterization does not influence therapy for most patients. Approaches to understand the function and circuitry of cancer genes provide complementary approaches to elucidate both oncogene and non-oncogene dependencies. Emerging work indicates that the diversity of therapeutic targets engendered by non-oncogene dependencies is much larger than the list of recurrently mutated genes. Here we describe a framework for this expanded list of cancer targets, providing novel opportunities for clinical translation.
Collapse
Affiliation(s)
- William C Hahn
- Dana-Farber Cancer Institute, Department of Medical Oncology, 450 Brookline Avenue, Boston, MA, USA.
| | - Joel S Bader
- Department of Biomedical Engineering and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Theodore P Braun
- Knight Cancer Institute and Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Andrea Califano
- Department of Systems Biology, Biomedical Informatics, Biochemistry and Molecular Biophysics, and Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Brian J Druker
- Knight Cancer Institute and Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Andrew J Ewald
- Department of Cell Biology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Subhashini Jagu
- Office of Cancer Genomics, Center for Cancer Genomics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William Kim
- Moores Cancer Center, Center for Novel Therapeutics and Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Calvin J Kuo
- Hematology Division, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gordon B Mills
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | | | - Jessica A Talamas
- Dana-Farber Cancer Institute, Department of Medical Oncology, 450 Brookline Avenue, Boston, MA, USA
| | - Pablo Tamayo
- Moores Cancer Center, Center for Novel Therapeutics and Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University and Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | | | - William A Weiss
- Departments of Neurology, Neurological Surgery, Pediatrics, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, Center for Cancer Genomics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
693
|
Domen A, Quatannens D, Zanivan S, Deben C, Van Audenaerde J, Smits E, Wouters A, Lardon F, Roeyen G, Verhoeven Y, Janssens A, Vandamme T, van Dam P, Peeters M, Prenen H. Cancer-Associated Fibroblasts as a Common Orchestrator of Therapy Resistance in Lung and Pancreatic Cancer. Cancers (Basel) 2021; 13:987. [PMID: 33673405 PMCID: PMC7956441 DOI: 10.3390/cancers13050987] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer arises from mutations accruing within cancer cells, but the tumor microenvironment (TME) is believed to be a major, often neglected, factor involved in therapy resistance and disease progression. Cancer-associated fibroblasts (CAFs) are prominent and key components of the TME in most types of solid tumors. Extensive research over the past decade revealed their ability to modulate cancer metastasis, angiogenesis, tumor mechanics, immunosuppression, and drug access through synthesis and remodeling of the extracellular matrix and production of growth factors. Thus, they are considered to impede the response to current clinical cancer therapies. Therefore, targeting CAFs to counteract these protumorigenic effects, and overcome the resistance to current therapeutic options, is an appealing and emerging strategy. In this review, we discuss how CAFs affect prognosis and response to clinical therapy and provide an overview of novel therapies involving CAF-targeting agents in lung and pancreatic cancer.
Collapse
Affiliation(s)
- Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Sara Zanivan
- Cancer Research UK, Beatson Institute, Glasgow G611BD, UK;
- Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Hepatobiliary Transplantation and Endocrine Surgery, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
| | - Annelies Janssens
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium;
| | - Timon Vandamme
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Gynaecologic Oncology Unit, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, B2610 Antwerp, Belgium; (A.D.); (D.Q.); (C.D.); (J.V.A.); (E.S.); (A.W.); (F.L.); (G.R.); (Y.V.); (T.V.); (P.v.D.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| |
Collapse
|
694
|
Alexander JI, Vendramini-Costa DB, Francescone R, Luong T, Franco-Barraza J, Shah N, Gardiner JC, Nicolas E, Raghavan KS, Cukierman E. Palladin isoforms 3 and 4 regulate cancer-associated fibroblast pro-tumor functions in pancreatic ductal adenocarcinoma. Sci Rep 2021; 11:3802. [PMID: 33589694 PMCID: PMC7884442 DOI: 10.1038/s41598-021-82937-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/27/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has a five-year survival under 10%. Treatment is compromised due to a fibrotic-like stromal remodeling process, known as desmoplasia, which limits therapeutic perfusion, supports tumor progression, and establishes an immunosuppressive microenvironment. These processes are driven by cancer-associated fibroblasts (CAFs), functionally activated through transforming growth factor beta1 (TGFβ1). CAFs produce a topographically aligned extracellular matrix (ECM) that correlates with reduced overall survival. Paradoxically, ablation of CAF populations results in a more aggressive disease, suggesting CAFs can also restrain PDAC progression. Thus, unraveling the mechanism(s) underlying CAF functions could lead to therapies that reinstate the tumor-suppressive features of the pancreatic stroma. CAF activation involves the f-actin organizing protein palladin. CAFs express two palladin isoforms (iso3 and iso4) which are up-regulated in response to TGFβ1. However, the roles of iso3 and iso4 in CAF functions remain elusive. Using a CAF-derived ECM model, we uncovered that iso3/iso4 are required to sustain TGFβ1-dependent CAF activation, secrete immunosuppressive cytokines, and produce a pro-tumoral ECM. Findings demonstrate a novel role for CAF palladin and suggest that iso3/iso4 regulate both redundant and specific tumor-supportive desmoplastic functions. This study highlights the therapeutic potential of targeting CAFs to restore fibroblastic anti-tumor activity in the pancreatic microenvironment.
Collapse
Affiliation(s)
- J I Alexander
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular, Cellular Biology and Genetics Program, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - D B Vendramini-Costa
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - R Francescone
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - T Luong
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - J Franco-Barraza
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - N Shah
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - J C Gardiner
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - E Nicolas
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - K S Raghavan
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular, Cellular Biology and Genetics Program, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - E Cukierman
- Cancer Biology and the Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
695
|
Ritchie S, Reed DA, Pereira BA, Timpson P. The cancer cell secretome drives cooperative manipulation of the tumour microenvironment to accelerate tumourigenesis. Fac Rev 2021; 10:4. [PMID: 33659922 PMCID: PMC7894270 DOI: 10.12703/r/10-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular secretions are a fundamental aspect of cell-cell and cell-matrix interactions in vivo. In malignancy, cancer cells have an aberrant secretome compared to their non-malignant counterparts, termed the "cancer cell secretome". The cancer cell secretome can influence every stage of the tumourigenic cascade. At the primary site, cancer cells can secrete a multitude of factors that facilitate invasion into surrounding tissue, allowing interaction with the local tumour microenvironment (TME), driving tumour development and progression. In more advanced disease, the cancer cell secretome can be involved in extravasation and metastasis, including metastatic organotropism, pre-metastatic niche (PMN) preparation, and metastatic outgrowth. In this review, we will explore the latest advances in the field of cancer cell secretions, including its dynamic and complex role in activating the TME and potentiating invasion and metastasis, with comments on how these secretions may also promote therapy resistance.
Collapse
Affiliation(s)
- Shona Ritchie
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Daniel A Reed
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
696
|
Yan T, Qiu W, Weng H, Fan Y, Zhou G, Yang Z. Single-Cell Transcriptomic Analysis of Ecosystems in Papillary Thyroid Carcinoma Progression. Front Endocrinol (Lausanne) 2021; 12:729565. [PMID: 34790166 PMCID: PMC8591202 DOI: 10.3389/fendo.2021.729565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/12/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Despite extensive research, the papillary thyroid carcinoma (PTC) ecosystem is poorly characterized and, in particular, locoregional progression. Available evidence supports that single-cell transcriptome sequencing (Sc-RNA seq) can dissect tumor ecosystems. METHODS Tissue samples from one PTC patient, including matched primary tumor (Ca), lymph node (LN) metastasis, and paracancerous tissue (PCa), were subjected to Sc-RNA seq with 10×Genomics. Dual-label immunofluorescence and immunohistochemistry were used to confirm the existence of cell subtypes in a separate cohort. RESULTS 11,805 cell transcriptomes were profiled, cell landscapes of PTC were composed of malignant follicular epithelial cells (MFECs), CD8+ and CD4+ T cells, B cells, vascular endothelial cells, fibroblasts and cancer-associated fibroblasts (CAFs). Between Ca and LN ecosystems, the proportions of MFEC and interstitial cells were similar, less than 1/25(229/6,694, 361/3,895), while the proportion of normal follicular epithelial cells (NFECs) and interstitial cells was > 2 in PCa (455/171). NFECs in PCa formed a separate cluster, while MFECs in Ca and LN exhibited a profound transcriptional overlap, and the interstitial cells among these samples had an overall concordance in their identity and representation, albeit with some distinctions in terms of the cell percentage per subset. A fraction of the B cell subpopulation in Ca expressed inhibitory receptors, while their respective ligand genes were clearly transcribed in T cell and malignant epithelial cell clusters, while some CD8+ T cells in both Ca and LN produced high levels of inhibitory receptors whose respective ligands were overexpressed in some CD4+ T cells. Three CAF subtypes in Ca and LN were identified, which may be due to mutual transitions. CONCLUSIONS Our data provide new insights into the PTC ecosystem and highlight the differences in ecosystems in PTC progression, which updates our understanding of PTC biology and will improve individualized patient treatment.
Collapse
Affiliation(s)
- Ting Yan
- Department of Thyroid, Parathyroid, Breast and Hernia Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wangwang Qiu
- Department of Thyroid, Parathyroid, Breast and Hernia Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huaiyu Weng
- Department of Thyroid, Parathyroid, Breast and Hernia Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Youben Fan
- Department of Thyroid, Parathyroid, Breast and Hernia Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Guangwen Zhou
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Guangwen Zhou, ; Zhili Yang,
| | - Zhili Yang
- Department of Thyroid, Parathyroid, Breast and Hernia Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Guangwen Zhou, ; Zhili Yang,
| |
Collapse
|
697
|
Sunami Y, Häußler J, Kleeff J. Cellular Heterogeneity of Pancreatic Stellate Cells, Mesenchymal Stem Cells, and Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123770. [PMID: 33333727 PMCID: PMC7765115 DOI: 10.3390/cancers12123770] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is projected to become the second deadliest cancer by 2030 in the United States, and the overall five-year survival rate stands still at around 9%. The stroma compartment can make up more than 90% of the pancreatic tumor mass, contributing to the hypoxic tumor microenvironment. The dense stroma with extracellular matrix proteins can be a physical and metabolic barrier reducing therapeutic efficacy. Cancer-associated fibroblasts are a source of extracellular matrix proteins. Therefore, targeting these cells, or extracellular matrix proteins, have been considered as therapeutic strategies. However, several studies show that deletion of cancer-associated fibroblasts may have tumor-promoting effects. Cancer-associated fibroblasts are derived from a variety of different cell types, such as pancreatic stellate cells and mesenchymal stem cells, and constitute a diverse cell population consisting of several functionally heterogeneous subtypes. Several subtypes of cancer-associated fibroblasts exhibit a tumor-restraining function. This review article summarizes recent findings regarding origin and functional heterogeneity of tumor-promoting as well as tumor-restraining cancer-associated fibroblasts. A better understanding of cancer-associated fibroblast heterogeneity could provide more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
|
698
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
699
|
Lee YT, Tan YJ, Falasca M, Oon CE. Cancer-Associated Fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers (Basel) 2020; 12:E2949. [PMID: 33066013 PMCID: PMC7600259 DOI: 10.3390/cancers12102949] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of cells in the solid tumour microenvironment. These cells are positively linked to breast cancer progression. Breast CAFs can be categorised into distinct subtypes according to their roles in breast carcinogenesis. Epigenetic modifications change gene expression patterns as a consequence of altered chromatin configuration and DNA accessibility to transcriptional machinery, without affecting the primary structure of DNA. Epigenetic dysregulation in breast CAFs may enhance breast cancer cell survival and ultimately lead to therapeutic resistance. A growing body of evidence has described epigenetic modulators that target histones, DNA, and miRNA as a promising approach to treat cancer. This review aims to summarise the current findings on the mechanisms involved in the epigenetic regulation in breast CAFs and discusses the potential therapeutic strategies via targeting these factors.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| |
Collapse
|
700
|
Melissari MT, Chalkidi N, Sarris ME, Koliaraki V. Fibroblast Reprogramming in Gastrointestinal Cancer. Front Cell Dev Biol 2020; 8:630. [PMID: 32760726 PMCID: PMC7373725 DOI: 10.3389/fcell.2020.00630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancers are a significant cause of cancer mortality worldwide and have been strongly linked with chronic inflammation. Current therapies focus on epithelial/cancer cells; however, the importance of the tumor microenvironment in the development and treatment of the disease is also now well established. Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment, and are actively participating in tumor initiation, promotion and metastasis. They structurally and functionally affect cancer cell proliferation, tumor immunity, angiogenesis, extracellular matrix remodeling and metastasis through a variety of signaling pathways. CAFs originate predominantly from resident mesenchymal cells, which are activated and reprogrammed in response to cues from cancer cells. In recent years, chronic inflammation of the gastrointestinal tract has also proven an important driver of mesenchymal cell activation and subsequent CAF development, which in turn are capable of regulating the transition from acute to chronic inflammation and cancer. In this review, we will provide a concise overview of the mechanisms that drive fibroblast reprogramming in cancer and the recent advances on the downstream signaling pathways that regulate the functional properties of the activated mesenchyme. This new mechanistic insight could pave the way for new therapeutic strategies and better prognosis for cancer patients.
Collapse
Affiliation(s)
- Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Michalis E Sarris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| |
Collapse
|