651
|
Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H, Trojanowski JQ, Blennow K. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease. Exp Neurol 2009; 223:334-46. [PMID: 19815015 DOI: 10.1016/j.expneurol.2009.09.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 09/21/2009] [Accepted: 09/26/2009] [Indexed: 12/15/2022]
Abstract
Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer's disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.
Collapse
Affiliation(s)
- Harald Hampel
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Laboratory of Neuroimaging and Biomarker Research, Trinity College Dublin, Trinity Centre for Health Sciences, The Adelaide and Meath Hospital Incorporating The National Children's Hospital (AMiNCH), Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
652
|
Boridy S, Takahashi H, Akiyoshi K, Maysinger D. The binding of pullulan modified cholesteryl nanogels to Aβ oligomers and their suppression of cytotoxicity. Biomaterials 2009; 30:5583-91. [DOI: 10.1016/j.biomaterials.2009.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/08/2009] [Indexed: 01/09/2023]
|
653
|
Donev R, Kolev M, Millet B, Thome J. Neuronal death in Alzheimer's disease and therapeutic opportunities. J Cell Mol Med 2009; 13:4329-48. [PMID: 19725918 PMCID: PMC4515050 DOI: 10.1111/j.1582-4934.2009.00889.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects approximately 24 million people worldwide. A number of different risk factors have been implicated in AD; however, neuritic (amyloid) plaques are considered as one of the defining risk factors and pathological hallmarks of the disease. In the past decade, enormous efforts have been devoted to understand the genetics and molecular pathogenesis leading to neuronal death in AD, which has been transferred into extensive experimental approaches aimed at reversing disease progression. Modern medicine is facing an increasing number of treatments available for vascular and neurodegenerative brain diseases, but no causal or neuroprotective treatment has yet been established. Almost all neurological conditions are characterized by progressive neuronal dysfunction, which, regardless of the pathogenetic mechanism, finally leads to neuronal death. The particular emphasis of this review is on risk factors and mechanisms resulting in neuronal loss in AD and current and prospective opportunities for therapeutic interventions. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rossen Donev
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
654
|
Golde TE, Petrucelli L, Lewis J. Targeting Abeta and tau in Alzheimer's disease, an early interim report. Exp Neurol 2009; 223:252-66. [PMID: 19716367 DOI: 10.1016/j.expneurol.2009.07.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/25/2009] [Accepted: 07/23/2009] [Indexed: 12/28/2022]
Abstract
The amyloid beta (Abeta) and tau proteins, which misfold, aggregate, and accumulate in the Alzheimer's disease (AD) brain, are implicated as central factors in a complex neurodegenerative cascade. Studies of mutations that cause early onset AD and promote Abeta accumulation in the brain strongly support the notion that inhibiting Abeta aggregation will prevent AD. Similarly, genetic studies of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17 MAPT) showing that mutations in the MAPT gene encoding tau lead to abnormal tau accumulation and neurodegeneration. Such genetic studies clearly show that tau dysfunction and aggregation can be central to neurodegeneration, however, most likely in a secondary fashion in relation to AD. Additional pathologic, biochemical, and modeling studies further support the concept that Abeta and tau are prime targets for disease modifying therapies in AD. Treatment strategies aimed at preventing the aggregation and accumulation of Abeta, tau, or both proteins should therefore be theoretically possible, assuming that treatment can be initiated before either irreversible damage is present or downstream, self-sustaining, pathological cascades have been initiated. Herein, we will review recent advances and also potential setbacks with respect to the myriad of therapeutic strategies that are designed to slow down, prevent, or clear the accumulation of either "pathological" Abeta or tau. We will also discuss the need for thoughtful prioritization with respect to clinical development of the preclinically validated modifiers of Abeta and tau pathology. The current number of candidate therapies targeting Abeta is becoming so large that a triage process is clearly needed to insure that resources are invested in a way such that the best candidates for disease modifying therapy are rapidly moved toward clinical trials. Finally, we will discuss the challenges for an appropriate "triage" after potential disease modifying therapies targeting tau and Abeta have entered clinical trials.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, College of Medicine, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
655
|
Lord A, Gumucio A, Englund H, Sehlin D, Sundquist VS, Söderberg L, Möller C, Gellerfors P, Lannfelt L, Pettersson FE, Nilsson LNG. An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer's disease. Neurobiol Dis 2009; 36:425-34. [PMID: 19703562 DOI: 10.1016/j.nbd.2009.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/11/2009] [Accepted: 08/14/2009] [Indexed: 01/08/2023] Open
Abstract
Human genetics link Alzheimer's disease pathogenesis to excessive accumulation of amyloid-beta (Abeta) in brain, but the symptoms do not correlate with senile plaque burden. Since soluble Abeta aggregates can cause synaptic dysfunctions and memory deficits, these species could contribute to neuronal dysfunction and dementia. Here we explored selective targeting of large soluble aggregates, Abeta protofibrils, as a new immunotherapeutic strategy. The highly protofibril-selective monoclonal antibody mAb158 inhibited in vitro fibril formation and protected cells from Abeta protofibril-induced toxicity. When the mAb158 antibody was administered for 4 months to plaque-bearing transgenic mice with both the Arctic and Swedish mutations (tg-ArcSwe), Abeta protofibril levels were lowered while measures of insoluble Abeta were unaffected. In contrast, when treatment began before the appearance of senile plaques, amyloid deposition was prevented and Abeta protofibril levels diminished. Therapeutic intervention with mAb158 was however not proven functionally beneficial, since place learning depended neither on treatment nor transgenicity. Our findings suggest that Abeta protofibrils can be selectively cleared with immunotherapy in an animal model that display highly insoluble Abeta deposits, similar to those of Alzheimer's disease brain.
Collapse
Affiliation(s)
- Anna Lord
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
656
|
Combs CK. Inflammation and microglia actions in Alzheimer's disease. J Neuroimmune Pharmacol 2009; 4:380-8. [PMID: 19669893 DOI: 10.1007/s11481-009-9165-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/22/2009] [Indexed: 12/19/2022]
Abstract
A variety of studies have documented increased presence of reactive microglia in the brains of not only Alzheimer's disease (AD) patients but its transgenic mouse models. Since these cells are often characterized in association with fibrillar Abeta peptide-containing plaques, it has been assumed that plaque interaction provides one stimulus for the phenotype observed. The growing appreciation that microglia phenotype changes with age and that resident immune cells are commingled with blood-derived macrophage has complicated understanding of the behavior of these cells in AD. In addition, comparison of microglia within AD brains and the many rodent models suggests that there are population phenotype differences among these cells within any given brain during disease. Recent immunomodulatory strategies that have been employed, although effective at improving behavioral performance, decreasing Abeta plaque load, and altering immune molecule levels, have not yet resolved the details and dynamics of the microglial and macrophage responses. The heterogeneity of microglial presentation in AD brains and its transgenic mouse models and the outcomes of immunoregulatory efforts will be reviewed below along with the remaining question of how much understanding of microglial behavior is actually required in order to propose a microglia-related therapy for AD.
Collapse
Affiliation(s)
- Colin K Combs
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Grand Forks, ND 58202, USA.
| |
Collapse
|
657
|
Amyloid reduction by amyloid-beta vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer's disease. J Neurosci 2009; 29:7957-65. [PMID: 19553436 DOI: 10.1523/jneurosci.1339-09.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Shown to lower amyloid deposits and improve cognition in APP transgenic mouse models, immunotherapy appears to be a promising approach for the treatment of Alzheimer's disease (AD). Due to limitations in available animal models, however, it has been unclear whether targeting amyloid is sufficient to reduce the other pathological hallmarks of AD-namely, accumulation of pathological, nonmutated tau and neuronal loss. We have now developed two transgenic mouse models (APPSw/NOS2(-/-) and APPSwDI/NOS2(-/-)) that more closely model AD. These mice show amyloid pathology, hyperphosphorylated and aggregated normal mouse tau, significant neuron loss, and cognitive deficits. A beta(1-42) or KLH vaccinations were started in these animals at 12 months, when disease progression and cognitive decline are well underway, and continued for 4 months. Vaccinated APPSwDI/NOS2(-/-) mice, which have predominantly vascular amyloid pathology, showed a 30% decrease in brain A beta and a 35-45% reduction in hyperphosphorylated tau. Neuron loss and cognitive deficits were partially reduced. In APPSw/NOS2(-/-) vaccinated mice, brain A beta was reduced by 65-85% and hyperphosphorylated tau by 50-60%. Furthermore, neurons were completely protected, and memory deficits were fully reversed. Microhemorrhage was observed in all vaccinated APPSw/NOS2(-/-) mice and remains a significant adverse event associated with immunotherapy. Nevertheless, by providing evidence that reducing amyloid pathology also reduces nonmutant tau pathology and blocks neuron loss, these data support the development of amyloid-lowering therapies for disease-modifying treatment of AD.
Collapse
|
658
|
Matsumoto SE, Tabira T. [Immunotherapy of Alzheimer's disease by Abeta vaccination]. Nihon Yakurigaku Zasshi 2009; 134:59-63. [PMID: 19671998 DOI: 10.1254/fpj.134.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
659
|
Pitt J, Roth W, Lacor P, Smith AB, Blankenship M, Velasco P, De Felice F, Breslin P, Klein WL. Alzheimer's-associated Abeta oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal. Toxicol Appl Pharmacol 2009; 240:189-97. [PMID: 19631677 DOI: 10.1016/j.taap.2009.07.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/14/2009] [Accepted: 07/14/2009] [Indexed: 12/28/2022]
Abstract
It now appears likely that soluble oligomers of amyloid-beta1-42 peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer's disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt Abeta oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble Abeta species, when assayed with both sequence- and conformation-specific Abeta antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (Abeta-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics.
Collapse
Affiliation(s)
- Jason Pitt
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
660
|
Tarawneh R, Holtzman DM. Critical issues for successful immunotherapy in Alzheimer's disease: development of biomarkers and methods for early detection and intervention. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2009; 8:144-59. [PMID: 19355934 DOI: 10.2174/187152709787847324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the last 10 years, promising data has emerged from both animal and human studies that both active immunization with amyloid-beta (Abeta) as well as passive immunization with anti-Abeta antibodies offer promise as therapies for Alzheimer's disease (AD). Data from animal models suggests that antibodies to Abeta through several mechanisms can decrease Abeta deposition, decrease Abeta -associated damage such as dystrophic neurite formation, and improve behavioral performance. Data from human studies suggests that active immunization can result in plaque clearance and that passive immunotherapy might result in slowing of cognitive decline. Despite this, a recent analysis from a phase I trial that involved active immunization with Abeta42, while not powered to determine efficacy, suggested no large effect of active immunization despite the fact that plaque clearance was very prominent in some subjects. An important issue to consider is when active or passive immunization targeting Abeta has the chance to be most effective. Clinico-pathological and biomarker studies have shown that in terms of the time course of AD, Abeta deposition probably begins about 10-15 years prior to symptom onset (preclinical AD) and that tau aggregation in tangles and in neurites does not begin to accelerate and build up in larger amounts in the neocortex until just prior to symptom onset. By the time the earliest clinical signs of AD emerge, Abeta deposition may be close to reaching its peak and tangle formation and neuronal cell loss is substantial though still not at its maximal extent. Since immunization targeting Abeta does not appear to have major effects on tangle pathology, for immunization to have the most chance for success, performing clinical trials in individuals who are cognitively only very mildly impaired or even in those with preclinical AD would likely offer a much better chance for success. Current work with AD biomarkers suggests that such individuals can now be identified and it seems likely that targeting this population with immunization strategies targeting Abeta would offer the best chance of success.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
661
|
Kokjohn TA, Roher AE. Antibody responses, amyloid-beta peptide remnants and clinical effects of AN-1792 immunization in patients with AD in an interrupted trial. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2009; 8:88-97. [PMID: 19355930 DOI: 10.2174/187152709787847315] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Post mortem examinations of AN-1792-vaccinated humans revealed this therapy produced focal senile plaque disruption. Despite the dispersal of substantial plaque material, vaccination did not constitute even a partial eradication of brain amyloid as water soluble amyloid-beta (Abeta) 40/42 increased in the gray matter compared to sporadic Alzheimer's disease (AD) patients and total brain Abeta levels were not decreased. Significant aspects of AD pathology were unaffected by vaccination with both vascular amyloid and hyper-phosphorylated tau deposits appeared refractory to this therapy. In addition, vaccination resulted in the consequential and drastic expansion of the white matter (WM) amyloid pool to levels without precedent in sporadic AD patients. Although vaccination disrupted amyloid plaques, this therapy did not enhance long-term cognitive function or necessarily halt neurodegeneration. The intricate involvement of vascular pathology in AD evolution and the firm recalcitrance of vessel-associated amyloid to antibody-mediated disruption suggest that immunization therapies might be more effective if administered on a prophylactic basis before vascular impairment and well ahead of any clinically evident cognitive decline. Amyloid-beta is viewed as pathological based on the postmortem correlation of senile plaques with an AD diagnosis. It remains uncertain which of the various forms of this peptide is the most toxic and whether Abeta or senile plaques themselves serve any desirable or protective functions. The long-term cognitive effects of chronic immunotherapy producing a steadily accumulating and effectively permanent pool of disrupted Abeta peptides within the human brain are unknown. In addition, the side effects of such therapy provided on a chronic basis could extend far beyond the brain. Eagerly seeking new therapies, critical knowledge gaps should prompt us to take a more wholistic perspective viewing Abeta and the amyloid cascade as aspects of complex and many-faceted physiological processes that sometimes end in AD dementia.
Collapse
|
662
|
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by an insidious onset and slow deterioration in cognition, activities of daily living (ADL), mood stability and social functioning. The cholinesterase inhibitors (ChEIs), developed based on the cholinergic hypothesis, are currently considered to be the best established treatment for AD, although the significant advances in the symptomatic pharmacotherapy of AD may be followed by disease-modification treatments. Donepezil is a mixed competitive and noncompetitive acetylcholinesterase inhibitor that shows a relative selectivity for acetylcholinesterase inhibitor compared with butyrylcholinesterase. In many clinical trials of donepezil, beneficial effects on standard measures of cognitive function, ADL and behavior have been shown in patients with mild, moderate or severe AD. Although the pharmacological and phamacokinetic profiles of the currently available ChEIs have notable differences that may affect efficacy, the clinical significance of these differences remains hypothetical in the absence of large, randomized trials that compare the ChEIs with each other.
Collapse
Affiliation(s)
- Norifumi Tsuno
- Department of Psychiatry, Tokyo Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
663
|
Weller RO, Boche D, Nicoll JAR. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer's disease and their potential impact on therapy. Acta Neuropathol 2009; 118:87-102. [PMID: 19234858 DOI: 10.1007/s00401-009-0498-z] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/08/2009] [Accepted: 02/09/2009] [Indexed: 12/25/2022]
Abstract
The introduction of immunotherapy and its ultimate success will require re-evaluation of the pathogenesis of Alzheimer's disease particularly with regard to the role of the ageing microvasculature and the effects of APOE genotype. Arteries in the brain have two major functions (a) delivery of blood and (b) elimination of interstitial fluid and solutes, including amyloid-beta (Abeta), along perivascular pathways (lymphatic drainage). Both these functions fail with age and particularly severely in Alzheimer's disease and vascular dementia. Accumulation of Abeta as plaques in brain parenchyma and artery walls as cerebral amyloid angiopathy (CAA) is associated with failure of perivascular elimination of Abeta from the brain in the elderly and in Alzheimer's disease. High levels of soluble Abeta in the brain correlate with cognitive decline in Alzheimer's disease and reflect the failure of perivascular drainage of solutes from the brain and loss of homeostasis of the neuronal environment. Clinically and pathologically, there is a spectrum of disease related to functional failure of the ageing microvasculature with "pure" Alzheimer's disease at one end of the spectrum and vascular dementia at the other end. Changes in the cerebral microvasculature with age have a potential impact on therapy with cholinesterase inhibitors and especially on immunotherapy that removes Abeta from plaques in the brain, but results in an increase in severity of CAA and no clear improvement in cognition. Drainage of Abeta along perivascular pathways in ageing artery walls may need to be improved to maximise the potential for improvement of cognitive function with immunotherapy.
Collapse
Affiliation(s)
- Roy O Weller
- Clinical Neurosciences, University of Southampton School of Medicine, LD74, South Laboratory & Pathology Block, Southampton General Hospital, Southampton SO166YD, UK.
| | | | | |
Collapse
|
664
|
Mohajeri MH, Leuba G. Prevention of age-associated dementia. Brain Res Bull 2009; 80:315-25. [PMID: 19576269 DOI: 10.1016/j.brainresbull.2009.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The advancement of medical sciences during the last century has resulted in a considerable increase in life expectancy. As more people live to old age, one of the most fundamental questions of the 21st century is whether the number of individuals suffering from dementia will also continue to increase. Alzheimer's disease (AD) accounts for the majority of cases of dementia in the elderly, but there is currently no curative treatment available. Several strategies have been introduced for treatment, the most recent strategy of which was the immunization of patients using antibodies against Abeta, which is a naturally occurring, even though misfolded peptide in the AD brain. Both active and passive immunization routes have been shown to reduce the pathology associated with Abeta accumulation in brains of genetically designed animal models. However, despite tremendous efforts, no unequivocal proof of therapeutic efficacy could be shown in AD patients. Particularly, the persistence of the neurofibrillary tangles in immunized brains and the issue of inducing cerebral amyloid angiopathy are major limiting factors of antibody therapy. Furthermore, physical activity, a healthy immune system and nutritional habits are suggested to protect against the onset of age-associated dementia. Thus, accumulative evidence suggests that an early integrated strategy, combining pharmacological, immunological, nutritional and life-style factors, is the most pragmatic approach to delay the onset and progression of age-associated dementia.
Collapse
Affiliation(s)
- M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
665
|
Gros-Louis F, Gowing G, Julien JP. Development of immunization approaches to amyotrophic lateral sclerosis. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by loss of motor neurons in the brain and spinal cord. Mutations in the gene encoding superoxide dismutase (SOD1) remain the major known genetic causes associated with ALS. Evidence suggests that the toxicity of SOD1 mutations is related to the abnormal misfolding and aggregation of mutant SOD1 proteins. The discovery of a secretion pathway for mutant SOD1 increased the possibility of using immunization approaches to reduce or neutralize the burden of toxic SOD1 species in the nervous system. Both active and passive immunization protocols were successful in delaying the onset of disease and mortality in transgenic mice expressing mutant SOD1. Owing to the potential adverse immune responses, immunization strategies need to be considered cautiously before being tested in human clinical trials. Critical issues for development of human immunotherapy will be discussed including the routes and methods of antibody delivery, the specificity of antibodies and immune responses, the penetration through the BBB and the time to start treatment. Prophylactic immunotherapy may become a conceivable approach for SOD1-linked ALS patients providing that the treatment is not overly invasive and can be implemented at reasonable cost. This article reviews how innate and adaptive immunity can affect the pathogenesis of ALS and how harnessing the immune system through immunization approaches might offer promising future therapeutic avenues.
Collapse
Affiliation(s)
- François Gros-Louis
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Department of Anatomy & Physiology of Laval University, Quebec, Pavillon CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| | - Geneviève Gowing
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Department of Anatomy & Physiology of Laval University, Quebec, Pavillon CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| | - Jean-Pierre Julien
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Department of Anatomy & Physiology of Laval University, Quebec, Pavillon CHUL, 2705 Boulevard Laurier, Quebec, G1V 4G2, Canada
| |
Collapse
|
666
|
Venneti S, Wiley CA, Kofler J. Imaging microglial activation during neuroinflammation and Alzheimer's disease. J Neuroimmune Pharmacol 2009; 4:227-43. [PMID: 19052878 PMCID: PMC2682630 DOI: 10.1007/s11481-008-9142-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/17/2008] [Indexed: 01/07/2023]
Abstract
Microglial activation is an important pathogenic component of neurodegenerative disease processes. This state of increased inflammation is associated not only with neurotoxic consequences but also neuroprotective effects, e.g., phagocytosis and clearance of amyloid in Alzheimer's disease. In addition, activation of microglia appears to be one of the major mechanisms of amyloid clearance following active or passive immunotherapy. Imaging techniques may provide a minimally invasive tool to elucidate the complexities and dynamics of microglial function and dysfunction in aging and neurodegenerative diseases. Imaging microglia in vivo in live subjects by confocal or two/multiphoton microscopy offers the advantage of studying these cells over time in their native environment. Imaging microglia in human subjects by positron emission tomography scanning with translocator protein-18 kDa ligands can offer a measure of the inflammatory process and a means of detecting progression of disease and efficacy of therapeutics over time.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce St, 6.093 Founders Building, Philadelphia, PA 19104, USA e-mail:
| | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-506, Pittsburgh, PA 15213, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-506, Pittsburgh, PA 15213, USA
| |
Collapse
|
667
|
Pahnke J, Walker LC, Scheffler K, Krohn M. Alzheimer's disease and blood-brain barrier function-Why have anti-beta-amyloid therapies failed to prevent dementia progression? Neurosci Biobehav Rev 2009; 33:1099-108. [PMID: 19481107 DOI: 10.1016/j.neubiorev.2009.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 01/02/2023]
Abstract
Proteopathies of the brain are defined by abnormal, disease-inducing protein deposition that leads to functional abrogation and death of neurons. Immunization trials targeting the removal of amyloid-beta plaques in Alzheimer's disease have so far failed to stop the progression of dementia, despite autopsy findings of reduced plaque load. Here, we summarize current knowledge of the relationship between AD pathology and blood-brain barrier function, and propose that the activation of the excretion function of the blood-brain barrier might help to achieve better results in trials targeting the dissolution of cerebral amyloid-beta aggregates. We further discuss a possible role of oligomers in limiting the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jens Pahnke
- University of Rostock, Department of Neurology, Germany.
| | | | | | | |
Collapse
|
668
|
Wilcock DM, Colton CA. Immunotherapy, vascular pathology, and microhemorrhages in transgenic mice. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2009; 8:50-64. [PMID: 19275636 DOI: 10.2174/187152709787601858] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that results in severe cognitive decline. Amyloid plaques are a principal pathology found in AD and are composed of aggregated amyloid-beta (Abeta) peptides. According to the amyloid hypothesis, Abeta peptides initiate the other pathologies characteristic for AD including cognitive deficits. Immunotherapy against Abeta is a potential therapeutic for the treatment of humans with AD. While anti-Abeta immunotherapy has been shown to reduce amyloid burden in both mouse models and in humans, immunotherapy also exacerbates vascular pathologies. Cerebral amyloid angiopathy (CAA), that is, the accumulation of amyloid in the cerebrovasculature, is increased with immunotherapy in humans with AD and in mouse models of amyloid deposition. CAA persists in the brains of clinical trial patients that show removal of parenchymal amyloid. Mouse model studies also show that immunotherapy results in multiple small bleeds in the brain, termed microhemorrhages. The neurovascular unit is a term used to describe the cerebrovasculature and its associated cells-astrocytes, neurons, pericytes and microglia. CAA affects brain perfusion and there is now evidence that the neurovascular unit is affected in AD when CAA is present. Understanding the type of damage to the neurovascular unit caused by CAA in AD and the underlying cause of microhemorrhage after immunotherapy is essential to the success of therapeutic vaccines as a treatment for AD.
Collapse
Affiliation(s)
- Donna M Wilcock
- Duke University Medical Center, Division of Neurology, Research Dr, Durham, NC 27710, USA.
| | | |
Collapse
|
669
|
Abstract
Alzheimer's disease (AD) is a critical health care problem that has considerable social and economic impact on society. Effective treatments have been elusive. One major causal factor for the disease is believed to be the deposition of amyloid fibrils in the brain, which ultimately leads to neurodegeneration and cognitive dysfunction. Based on the amyloid hypothesis of Alzheimer's disease, many therapies presently target the amyloid beta (Abeta) peptide, the monomeric protein fragment that assembles to form fibrils. This video article takes the form of a debate between Dr. Morgan and Dr. Landreth on the merits and drawbacks of an Alzheimer's disease vaccine. Click on Supplemental Material to watch the streaming video.
Collapse
|
670
|
Lecanu L, Tillement L, Rammouz G, Paul Tillement J, Greeson J, Papadopoulos V. Caprospinol: moving from a neuroactive steroid to a neurotropic drug. Expert Opin Investig Drugs 2009; 18:265-76. [DOI: 10.1517/13543780902762827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
671
|
Saxena U. Lipid metabolism and Alzheimer's disease: pathways and possibilities. Expert Opin Ther Targets 2009; 13:331-8. [DOI: 10.1517/14728220902738720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
672
|
Abstract
Patients with Alzheimer's disease (AD) express severe cognitive deficiencies with a concurrent increase in brain deposits of aggregated amyloid-beta (Abeta), a catabolic derivative of the ubiquitous amyloid precursor protein (APP). Interference in the homeostasis of Abeta has been suggested as a treatment for AD patients. In AD murine models it has been shown that active and passive immunization against Abeta alters the equilibrium of the different forms of Abeta in brain and serum, leading to a concomitant cognitive improvement. Generally, the clinical trials that followed the study of the murine AD model confirmed the results of the AD models, although safety issues advocate the passive vaccination approach rather than the active one. However, passive vaccination of patients with monoclonal antibodies derived from nonhuman sources is limited. Anti-Abeta IgM and IgG antibodies, which are present in the serum of every healthy individual and probably play a role in the homeostasis of Abeta in healthy subjects, might be beneficial to AD patients, as shown for the effect exerted by the commercial preparation of intravenous immunoglobulin. Human monoclonal anti-Abeta antibodies, which correspond to the ubiquitous anti-Abeta antibodies, are plausible candidates for future immunotherapy of AD patients.
Collapse
Affiliation(s)
- Michael Steinitz
- Department of Pathology, The Hebrew University-Hadassah Medical School, Israel.
| |
Collapse
|
673
|
Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 2009; 14:469-86. [PMID: 18794889 DOI: 10.1038/mp.2008.96] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, the 'amyloid hypothesis' is the most widely accepted explanation for the pathogenesis of Alzheimer's disease (AD). According to this hypothesis, altered metabolism of the amyloid-beta (Abeta) peptide is central to the pathological cascade involved in the pathogenesis of AD. Although Abeta is produced by almost every cell in the body, a physiological function for the peptide has not been determined, and the pathways by which Abeta leads to cognitive dysfunction and cell death are unclear. Numerous therapeutic approaches that target the production, toxicity and removal of Abeta are being developed worldwide. Although therapeutic treatment for AD may be imminent, the value and effectiveness of such treatment are largely dependent on early diagnosis of the disease. This review summarizes current knowledge of Abeta clearance, transport and degradation, and evaluates the use of such information in the development of diagnostic tools. The conflicting results of plasma Abeta ELISAs are discussed, as are the more promising results of Abeta imaging by positron emission tomography. Current knowledge of Abeta-binding proteins and Abeta-degrading enzymes is analysed in the context of a potential therapy for AD. Transport across the blood-brain barrier by the receptor for advanced glycation end products and efflux via the multi-ligand lipoprotein receptor LRP-1 is also reviewed. Enhancing clearance and degradation of Abeta remains an attractive therapeutic strategy, and improved understanding of Abeta clearance may lead to advances in diagnostics and interventions designed to prevent or delay the onset of AD.
Collapse
|
674
|
Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009; 8:398-412. [PMID: 19296922 DOI: 10.1016/s1474-4422(09)70054-7] [Citation(s) in RCA: 465] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroprotection and brain repair in patients after acute brain damage are still major unfulfilled medical needs. Pharmacological treatments are either ineffective or confounded by adverse effects. Consequently, endogenous mechanisms by which the brain protects itself against noxious stimuli and recovers from damage are being studied. Research on preconditioning, also known as induced tolerance, over the past decade has resulted in various promising strategies for the treatment of patients with acute brain injury. Several of these strategies are being tested in randomised clinical trials. Additionally, research into preconditioning has led to the idea of prophylactically inducing protection in patients such as those undergoing brain surgery and those with transient ischaemic attack or subarachnoid haemorrhage who are at high risk of brain injury in the near future. In this Review, we focus on the clinical issues relating to preconditioning and tolerance in the brain; specifically, we discuss the clinical situations that might benefit from such procedures. We also discuss whether preconditioning and tolerance occur naturally in the brain and assess the most promising candidate strategies that are being investigated.
Collapse
Affiliation(s)
- Ulrich Dirnagl
- Department of Neurology, Center for Stroke Research, Charite Universitätsmedizin Berlin, Charitéplatz, D-10098, Berlin, Germany.
| | | | | |
Collapse
|
675
|
Mathieu JM, Schloendorn J, Rittmann BE, Alvarez PJJ. Medical bioremediation of age-related diseases. Microb Cell Fact 2009; 8:21. [PMID: 19358742 PMCID: PMC2674406 DOI: 10.1186/1475-2859-8-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 04/09/2009] [Indexed: 12/12/2022] Open
Abstract
Catabolic insufficiency in humans leads to the gradual accumulation of a number of pathogenic compounds associated with age-related diseases, including atherosclerosis, Alzheimer's disease, and macular degeneration. Removal of these compounds is a widely researched therapeutic option, but the use of antibodies and endogenous human enzymes has failed to produce effective treatments, and may pose risks to cellular homeostasis. Another alternative is "medical bioremediation," the use of microbial enzymes to augment missing catabolic functions. The microbial genetic diversity in most natural environments provides a resource that can be mined for enzymes capable of degrading just about any energy-rich organic compound. This review discusses targets for biodegradation, the identification of candidate microbial enzymes, and enzyme-delivery methods.
Collapse
Affiliation(s)
- Jacques M Mathieu
- Dept. of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - John Schloendorn
- Dept. of Civil and Environmental Engineering, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- Dept. of Civil and Environmental Engineering, Arizona State University, Tempe, AZ, USA
| | - Pedro JJ Alvarez
- Dept. of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
676
|
Intramembranous fragment of amyloid-beta: A potential immunogen for Alzheimer's disease immunotherapy. Neurochem Res 2009; 34:1889-95. [PMID: 19347579 DOI: 10.1007/s11064-009-9964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/21/2009] [Indexed: 10/20/2022]
Abstract
Immunotherapy holds great promise for Alzheimer's disease (AD), but meningoencephalitis observed in the first AD vaccination trial, which accompanied T-lymphocytic infiltration, needs to be overcome. This study was aimed to investigate alternative approaches for a safer vaccine to treat AD. We used intramembranous fragment of amyloid-beta (IF-Abeta) to immunize Kunming mice for up to 2.5 months and then evaluated the immunization efficacy and potential adverse effects. Immunization of mice with IF-Abeta plus Freund's adjuvant resulted in moderate levels of Abeta antibodies (IgG), and the anti-sera were able to neutralize Abeta1-42-neurotoxicity in cultured primary cortical neurons. IF-Abeta itself did not show neurotoxicity, and immunization with IF-Abeta did not cause behavioral deficits in Morris water maze or any abnormalities by histological examinations of major organs including the brain. We conclude that vaccination with IF-Abeta may be a potentially safe and effective treatment for AD.
Collapse
|
677
|
Vellas B, Black R, Thal LJ, Fox NC, Daniels M, McLennan G, Tompkins C, Leibman C, Pomfret M, Grundman M. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 2009; 6:144-51. [PMID: 19355849 PMCID: PMC2825665 DOI: 10.2174/156720509787602852] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/19/2008] [Accepted: 05/23/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND Immunization of patients with Alzheimer's disease (AD) with synthetic amyloid-beta peptide (Abeta(42)) (AN1792) was previously studied in a randomized, double-blind, placebo-controlled phase 2a clinical trial, Study AN1792(QS-21)-201. Treatment was discontinued following reports of encephalitis. One year follow-up revealed that AN1792 antibody responders showed improvements in cognitive measures as assessed by the neuropsychological test battery (NTB) and a decrease in brain volume compared with placebo. METHODS A follow-up study, Study AN1792(QS-21)-251, was conducted to assess the long-term functional, psychometric, neuroimaging, and safety outcomes of patients from the phase 2a study 4.6 years after immunization with AN1792. The results were analyzed by comparing patients originally identified as antibody responders in the AN1792 phase 2a study with placebo-treated patients. RESULTS One hundred and fifty-nine patients/caregivers (30 placebo; 129 AN1792) participated in this follow-up study. Of the 129 AN1792-treated patients, 25 were classified in the phase 2a study as antibody responders (anti-AN1792 titers > or = 1:2,200 at any time after the first injection). Low but detectable, sustained anti-AN1792 titers were found in 17 of 19 samples obtained from patients classified as antibody responders in the phase 2a study. No detectable anti-AN1792 antibodies were found in patients not classified as antibody responders in the phase 2a study. Significantly less decline was observed on the Disability Assessment for Dementia scale among antibody responders than placebo-treated patients (p=0.015) after 4.6 years. Significant differences in favor of responders were also observed on the Dependence Scale (p=0.033). Of the small number of patients who underwent a follow-up MRI, antibody responders showed similar brain volume loss during the follow-up period subsequent to the AN1792 phase 2a study compared with placebo-treated patients. CONCLUSIONS Approximately 4.6 years after immunization with AN1792, patients defined as responders in the phase 2a study maintained low but detectable, sustained anti-AN1792 antibody titers and demonstrated significantly reduced functional decline compared with placebo-treated patients. Brain volume loss in antibody responders was not significantly different from placebo-treated patients approximately 3.6 years from the end of the original study. No further cases of encephalitis were noted. These data support the hypothesis that Abeta immunotherapy may have long-term functional benefits.
Collapse
Affiliation(s)
- Bruno Vellas
- Department of Geriatrics INSERM U 558, Toulouse University Hospital Center, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
678
|
Abstract
BACKGROUND Passive immunization strategies are under investigation as potential disease-modifying therapies for Alzheimer's disease (AD). Current approaches, based on data demonstrating behavioral improvement and reduced pathology in transgenic animal models, have focused exclusively on immune targeting of beta-amyloid. OBJECTIVE To examine immunization strategies for AD. METHODS A review of relevant publications. RESULTS/CONCLUSIONS Preliminary results from three Phase II trials suggest both the promise and the need to exercise caution with this method of immunotherapy. The strategies used were distinct, using monoclonal N-terminal, central epitope, and polyclonal antibodies to maximize the efficacy and safety of each approach. The tested compounds are moving into Phase III trials for mild to moderate AD. We await the discoveries that from these studies that may yield the first disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Gregory A Jicha
- University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Alzheimer's Disease Center, Department of Neurology, 800 South Limestone Street, Lexington, KY 40536-0230, USA.
| |
Collapse
|
679
|
Matsuda JI, Kaminaka K, Nozaki C. Amyloid β peptides with an additional cysteine residue can enhance immunogenicity and reduce the amyloid β burden in an Alzheimer’s disease mouse model. Biochem Biophys Res Commun 2009; 382:149-52. [DOI: 10.1016/j.bbrc.2009.02.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 11/28/2022]
|
680
|
Perdivara I, Deterding LJ, Cozma C, Tomer KB, Przybylski M. Glycosylation profiles of epitope-specific anti-beta-amyloid antibodies revealed by liquid chromatography-mass spectrometry. Glycobiology 2009; 19:958-70. [PMID: 19318519 DOI: 10.1093/glycob/cwp038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of age-related neurodementia. The accumulation of beta-amyloid polypeptide (Abeta) in brain is generally believed to be a key event in AD. The recent discovery of physiological beta-amyloid autoantibodies represents a promising perspective for treatment and early diagnosis of AD. The mechanisms by which natural beta-amyloid autoantibodies prevent neurodegeneration are currently unknown. The aim of the present study was to analyze the N-linked glycosylation of a plaque-specific, monoclonal antibody (clone 6E10) relevant for immunotherapy of AD, in comparison with the glycosylation pattern of an Abeta autoantibody isolated from an IgG source. Liquid chromatography in combination with tandem mass spectrometry was used to analyze the glycopeptides generated by enzymatic degradation of the antibodies reduced and alkylated heavy chains. The oligosaccharide pattern of the 6E10 antibody shows primarily core-fucosylated biantennary complex structures and, to a low extent, tri- and tetragalactosyl glycoforms, with or without terminal sialic acids. The glycans associated with the serum anti-Abeta autoantibodies are of the complex, biantennary-type, fucosylated at the first N-acetyl glucosamine residue of the trimannosyl chitobiose core and contain zero to two galactose residues, and zero to one terminal sialic acid, with or without bisecting N-acetyl glucosamine. Glycosylation analysis of the Abeta-autoantibody performed at the peptide level revealed all four human IgG subclasses, with IgG(1) and IgG(2) as the dominant subclasses.
Collapse
Affiliation(s)
- Irina Perdivara
- Department of Chemistry, Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
681
|
Chabrier PE. [Therapeutic strategies and Alzheimer's disease: contribution of animal models]. ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:97-103. [PMID: 19298893 DOI: 10.1016/j.pharma.2008.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/13/2008] [Accepted: 11/24/2008] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a human neurodegenerative disease characterized by two key histopathological hallmarks : beta amyloid plaques and neurofibrillary tangles. No animal species naturally develops AD. Lesions induced by toxic substances which modify neurotransmission have been used in rodents but are not suitable models for AD. More recently, transgenic mouse models reproducing physiopathologic aspects of AD have greatly contributed to our understanding of the disease and have provided models to evaluate new therapeutic approaches. While none of these models perfectly reproduces all the pathological characteristics of AD, they are extremely useful in the evaluation and development of novel therapeutic agents. Pharmacological evaluation should assess abnormal behavior, histopathologic lesions and biochemical or metabolic dysfunctions. New technologic tools such as neuroimaging and biological biomarkers have greatly facilitated these evaluations. Depending on the symptomatic or neuroprotective therapeutic objectives, these methods are becoming increasingly accurate and adaptable to the human patient. A multidisciplinary approach is going to optimize these models so that they can become more predictive and help bring forward new effective treatments for AD patients.
Collapse
Affiliation(s)
- P-E Chabrier
- IPSEN, centre de recherche institut Henri-Beaufour, 5, avenue du Canada, 9196 Les Ulis, France.
| |
Collapse
|
682
|
Duyckaerts C, Panchal M, Delatour B, Potier MC. [Morphologic and molecular neuropathology of Alzheimer's disease]. ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:127-35. [PMID: 19298896 DOI: 10.1016/j.pharma.2009.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/10/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Alzheimer disease lesions include the abnormal accumulation of two proteins normally present in neurons: tau protein and Abeta peptide. Tau protein aggregates into fibrils in the cell body of neurons (neurofibrillary tangles), in dendrites (neuropil threads) and in degenerating axons that constitute the corona of the senile plaque. Tau pathology progresses in the brain areas in a stereotyped manner and in parallel with the clinical symptoms. Abeta extracellular deposits may be diffuse or focal. The Abeta focal deposit constitutes the core of the senile plaque. Progression of the Abeta lesions, which initially affect the isocortex, then the hippocampus, basal ganglia, various brainstem nuclei and cerebellum, is not directly correlated with symptoms. Mutations involving the genes implicated in Abeta peptide metabolism are responsible for familial Alzheimer disease. Mutations of the tau gene are not associated with Alzheimer disease but with frontotemporal dementia. The link between altered Abeta peptide metabolism and tau pathology has not been fully elucidated. Animal models mimic several aspects of the disease and have contributed to a better understanding of the mechanisms of the lesions.
Collapse
Affiliation(s)
- C Duyckaerts
- Laboratoire de neuropathologie Escourolle, hôpital de La Salpêtrière, AP-HP, Paris, France.
| | | | | | | |
Collapse
|
683
|
Diaz JC, Simakova O, Jacobson KA, Arispe N, Pollard HB. Small molecule blockers of the Alzheimer Abeta calcium channel potently protect neurons from Abeta cytotoxicity. Proc Natl Acad Sci U S A 2009; 106:3348-53. [PMID: 19204293 PMCID: PMC2637905 DOI: 10.1073/pnas.0813355106] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a common, chronic neurodegenerative disease that is thought to be caused by the neurotoxic effect of the Amyloid beta peptides (Abeta). We have hypothesized that the intrinsic Abeta calcium channel activity of the oligomeric Abeta polymer may be responsible for the neurotoxic properties of Abeta, and that Abeta channel blockers may be candidate AD therapeutics. As a consequence of a rational search paradigm based on the model structure of the Abeta channel, we have identified two compounds of interest: MRS2481 and an enatiomeric species, MRS2485. These are amphiphilic pyridinium salts that both potently block the Abeta channel and protect neurons from Abeta toxicity. Both block the Abeta channel with similar potency (approximately 500 nM) and efficacy (100%). However, we find that inhibition by MRS2481 is easily reversible, whereas inhibition by MRS2485 is virtually irreversible. We suggest that both species deserve consideration as candidates for Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Juan Carlos Diaz
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Bethesda, MD 20814; and
| | - Olga Simakova
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Bethesda, MD 20814; and
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Biooganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nelson Arispe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Bethesda, MD 20814; and
| | - Harvey B. Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Bethesda, MD 20814; and
| |
Collapse
|
684
|
Checler F, Buée L. Données fondamentales sur les pathologies amyloïde et Tau dans la maladie d’Alzheimer : quelles perspectives thérapeutiques ? ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:136-53. [DOI: 10.1016/j.pharma.2009.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/18/2009] [Accepted: 01/18/2009] [Indexed: 01/24/2023]
|
685
|
Abstract
There has been considerable recent interest in vaccination of patients by immunotherapy as a potentially clinically useful methodology for combating histopathological changes in Alzheimer's disease (AD). The focus of the majority of this research has been on (1) active immunotherapy using the pre-aggregated synthetic beta-amyloid (Abeta) 42 preparation AN1792 vaccine (QS-21), or (2) passive immunization using injections of already prepared polyclonal anti-Abeta antibodies (intravenous immunoglobulin). These two clinical approaches to the treatment of patients with AD represent the focus of this review. We conclude here that, with certain caveats, immunization offers further potential as a technique for the treatment (and possible prevention) of AD. New studies are seeking to develop and apply safer vaccines that do not result in toxicity and neuroinflammation. Nevertheless, caution is warranted, and future clinical investigations are required to tackle key outstanding issues. These include the need to demonstrate efficacy in humans as well as animal models (especially with respect to the potentially toxic side effects of immunotherapy), and fine-tuning in safely guiding the immune response. The issue of defining necessary and sufficient criteria for determining clinical efficacy remains an additional important issue for future immunization trials. The vaccination methodology appears to offer substantial current promise for clearing both soluble and aggregated amyloid in AD. However, it remains to be determined whether this approach will help to repair already damaged neural systems in the disease, and the extent to which vaccination-driven amyloid clearance will impact beneficially on patients' neurocognitive capacity and their functional status. The outcomes of future studies will be important both clinically and scientifically: an important further test of the validity of the amyloid hypothesis of AD is to evaluate the impact of an effective anti-amyloid strategy on the functional status of patients with this disease.
Collapse
|
686
|
Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2009; 8:16-30. [PMID: 19275634 PMCID: PMC2872930 DOI: 10.2174/187152709787601867] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main receptors for amyloid-beta peptide (Abeta) transport across the blood-brain barrier (BBB) from brain to blood and blood to brain are low-density lipoprotein receptor related protein-1 (LRP1) and receptor for advanced glycation end products (RAGE), respectively. In normal human plasma a soluble form of LRP1 (sLRP1) is a major endogenous brain Abeta 'sinker' that sequesters some 70 to 90 % of plasma Abeta peptides. In Alzheimer's disease (AD), the levels of sLRP1 and its capacity to bind Abeta are reduced which increases free Abeta fraction in plasma. This in turn may increase brain Abeta burden through decreased Abeta efflux and/or increased Abeta influx across the BBB. In Abeta immunotherapy, anti-Abeta antibody sequestration of plasma Abeta enhances the peripheral Abeta 'sink action'. However, in contrast to endogenous sLRP1 which does not penetrate the BBB, some anti-Abeta antibodies may slowly enter the brain which reduces the effectiveness of their sink action and may contribute to neuroinflammation and intracerebral hemorrhage. Anti-Abeta antibody/Abeta immune complexes are rapidly cleared from brain to blood via FcRn (neonatal Fc receptor) across the BBB. In a mouse model of AD, restoring plasma sLRP1 with recombinant LRP-IV cluster reduces brain Abeta burden and improves functional changes in cerebral blood flow (CBF) and behavioral responses, without causing neuroinflammation and/or hemorrhage. The C-terminal sequence of Abeta is required for its direct interaction with sLRP and LRP-IV cluster which is completely blocked by the receptor-associated protein (RAP) that does not directly bind Abeta. Therapies to increase LRP1 expression or reduce RAGE activity at the BBB and/or restore the peripheral Abeta 'sink' action, hold potential to reduce brain Abeta and inflammation, and improve CBF and functional recovery in AD models, and by extension in AD patients.
Collapse
Affiliation(s)
- R Deane
- Center for Neurodegenerative and Vascular Brain Disorders, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
687
|
Castellani RJ, Zhu X, Lee HG, Smith MA, Perry G. Molecular pathogenesis of Alzheimer's disease: reductionist versus expansionist approaches. Int J Mol Sci 2009; 10:1386-1406. [PMID: 19399255 PMCID: PMC2672036 DOI: 10.3390/ijms10031386] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterized clinically by dementia and pathologically by two hallmark lesions, senile plaques and neurofibrillary tangles. About a quarter century ago these hallmark lesions were purified and their protein constituents identified, precipitating an avalanche of molecular studies as well as substantial optimism about successful therapeutic intervention. In 2009, we now have copious knowledge on the biochemical cascades that produce these proteins, the different modifications and forms in which these proteins exist, and the ability to selectively target these proteins for therapeutic intervention on an experimental basis. At the same time, there has been no discernible alteration in the natural course of AD in humans. While it may be that the complexity of AD will exceed our capacity to make significant treatment progress for decades or more, a paradigm shift from the reductionism that defines amyloid-beta and tau hypotheses, to one that more accurately reflects the meaning of neuropathological changes, may be warranted. We and others have demonstrated that AD pathology is a manifestation of cellular adaptation, specifically as a defense against oxidative injury. As such, AD pathology is therefore a host response rather than a manifestation of cytotoxic protein injury, and is unlikely to be a fruitful target for therapeutic intervention. An "expansionist" view of the disease, we believe, with oxidative stress as a pleiotropic and upstream process, more aptly describes the relationship between various and numerous molecular alterations and clinical disease.
Collapse
Affiliation(s)
- Rudy J. Castellani
- Division of Neuropathology, University of Maryland, Baltimore, Maryland, USA
- Author to whom correspondence should be addressed; E-Mail:
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- College of Sciences, University of Texas, San Antonio, Texas, USA
| |
Collapse
|
688
|
Schneeberger A, Mandler M, Otawa O, Zauner W, Mattner F, Schmidt W. Development of AFFITOPE vaccines for Alzheimer's disease (AD)--from concept to clinical testing. J Nutr Health Aging 2009; 13:264-7. [PMID: 19262965 DOI: 10.1007/s12603-009-0070-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Based on the notion that cerebral accumulation of certain Abeta species is central to AD pathogenesis and endowed with the knowledge that emerged during clinical testing of the first human Alzheimer vaccine, AN1792, we designed a new generation of Alzheimer vaccines. Rather than relying on full-length Abeta itself or fragments thereof, AFFITOPE vaccines use short peptides, mimicking parts of the native Abeta sequence, as their antigenic component. The technology created to identify these peptides, termed AFFITOPE-technology, at the same time provides the basis for the multi-component safety concept realized in AFFITOPE vaccines. First, as they are nonself, AFFITOPES don't need to break tolerance typically established against self proteins. This allows us to use aluminium hydroxide, the agent first approved as immunological adjuvant for human use and, thus, exhibiting an excellent safety profile. Second, AFFITOPES employed in Alzheimer vaccines are only 6 amino acids in length, which precludes the activation of Abeta-specific autoreactive T cells. Third, and above all, the AFFITOPE technology allows for controlling the specificity of the vaccine-induced antibody response focusing it exclusively on Abeta and preventing crossreactivity with APP. In a program based on two AFFITOPES allowing neoepitope targeting of Abeta (free N-terminus), this approach was taken all the way from concept to clinical application. Early clinical data support the safety concept inherent to AFFITOPE Alzheimer vaccines. Further clinical testing will focus on the identification of the optimal vaccine dose and immunization schedule. Together, result of these trials will provide a solid basis for clinical POC studies.
Collapse
|
689
|
Khan TK, Nelson TJ, Verma VA, Wender PA, Alkon DL. A cellular model of Alzheimer's disease therapeutic efficacy: PKC activation reverses Abeta-induced biomarker abnormality on cultured fibroblasts. Neurobiol Dis 2009; 34:332-9. [PMID: 19233276 DOI: 10.1016/j.nbd.2009.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 02/03/2009] [Indexed: 12/21/2022] Open
Abstract
PKC signaling is critical for the non-toxic degradation of amyloid precursor protein (APP) and inhibition of GSK3beta, which controls phosphorylation of tau protein in Alzheimer's disease (AD). Thus the misregulation of PKC signaling could contribute to the origins of AD. Bryostatin, a potent PKC modulator, has the potential to ameliorate both the neurodegeneration and the recent memory loss associated with AD. As reported herein bryostatin and a potent synthetic analog (picolog) are found to cause stimulation of non-amyloidogenic pathways by increasing alpha-secretase activity and thus lowering the amount of toxic Abeta produced. Both bryostatin and picolog increased the secretion of the alpha-secretase product (s-APP-alpha) of APP at sub-nanomolar to nanomolar concentrations. A peripheral AD-Biomarker has previously been autopsy-validated. This Biomarker, based on bradykinin-induced differential phosphorylation of Erk1 and Erk2, has been used here to test the therapeutic efficacy both for bryostatin and picolog. Both of these PKC activators are then shown to convert the AD Erk1/2 phenotype of fibroblasts into the phenotype of "normal" control skin fibroblasts. This conversion occurred for both the abnormal Erk1/2 phenotype induced by application of Abeta(1-42) to the fibroblasts or the phenotype observed for fibroblasts of AD patients. The Abeta(1-42)-induction, and PKC modulator reversal of the AD Erk1/2 biomarker phenotype demonstrate the AD-Biomarker's potential to monitor both disease progression and treatment response. Additionally, this first demonstration of the therapeutic potential in AD of a synthetically accessible bryostatin analog warrants further preclinical advancement.
Collapse
Affiliation(s)
- Tapan K Khan
- Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, 26506, USA.
| | | | | | | | | |
Collapse
|
690
|
Yamin G, Ono K, Inayathullah M, Teplow DB. Amyloid beta-protein assembly as a therapeutic target of Alzheimer's disease. Curr Pharm Des 2009; 14:3231-46. [PMID: 19075703 DOI: 10.2174/138161208786404137] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder in the aged, is characterized by the cerebral deposition of fibrils formed by the amyloid beta-protein (Abeta), a 40-42 amino acid peptide. The folding of Abeta into neurotoxic oligomeric, protofibrillar, and fibrillar assemblies is hypothesized to be the key pathologic event in AD. Abeta is formed through cleavage of the Abeta precursor protein by two endoproteinases, beta-secretase and gamma-secretase, that cleave the Abeta N-terminus and C-terminus, respectively. These facts support the relevance of therapeutic strategies targeting Abeta production, assembly, clearance, and neurotoxicity. Currently, no disease-modifying therapeutic agents are available for AD patients. Instead, existing therapeutics provide only modest symptomatic benefits for a limited time. We summarize here recent efforts to produce therapeutic drugs targeting Abeta assembly. A number of approaches are being used in these efforts, including immunological, nutraceutical, and more classical medicinal chemical (peptidic inhibitors, carbohydrate-containing compounds, polyamines, "drug-like" compounds, chaperones, metal chelators, and osmolytes), and many of these have progressed to phase III clinical trails. We also discuss briefly a number of less mature, but intriguing, strategies that have therapeutic potential. Although initial trials of some disease-modifying agents have failed, we argue that substantial cause for optimism exists.
Collapse
Affiliation(s)
- Ghiam Yamin
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Drive South (Room 445), Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
691
|
Wentrup A, Oertel WH, Dodel R. Once-daily transdermal rivastigmine in the treatment of Alzheimer's disease. Drug Des Devel Ther 2009; 2:245-54. [PMID: 19920911 PMCID: PMC2761169 DOI: 10.2147/dddt.s3102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
During the past decade, transdermal delivery systems (TDS) have become increasingly important for treating neurologic and psychiatric disorders. The rivastigmine patch was the first patch to be approved to treat Alzheimer’s disease (AD). The 9.5 mg/24 h patch has equal efficacy to the capsules and reduces gastrointestinal adverse events, such as nausea and vomiting, by two-thirds. This treatment is well tolerated by patients because drug delivery is even and continuous, reducing fluctuation in drug plasma level, and attenuating the development of centrally mediated cholinergic side effects. Furthermore, once-a-day application of the patch enables an easy treatment schedule, ease of handling, infrequent skin irritations, and a patient- and caregiver-friendly mode of administration. Improved compliance with a subsequent drug administration may contribute to better clinical efficacy, reduce caregiver burden, result in a slower rate of institutionalization, and lead to a decrease in healthcare and medical costs. Because of these advantages, the rivastigmine patch has enabled great progress in the treatment of AD, and represents an excellent alternative to the orally administered cholinesterase inhibitors.
Collapse
Affiliation(s)
- Andreas Wentrup
- Department of Neurology, Philipps-University Marburg, Rudolf-Bultmann-Strasse 8, Marburg, Germany
| | | | | |
Collapse
|
692
|
Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M. Autoantibodies against β-amyloid are common in Alzheimer's disease and help control plaque burden. Ann Neurol 2009; 65:24-31. [DOI: 10.1002/ana.21475] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
693
|
Terzi D, Zachariou V. Adeno-associated virus-mediated gene delivery approaches for the treatment of CNS disorders. Biotechnol J 2009; 3:1555-63. [PMID: 19072910 DOI: 10.1002/biot.200800284] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the last few years, a large number of preclinical and clinical studies have demonstrated the potential of gene therapy applications using adeno-associated viral (AAV) vectors. Gene transfer via AAV vectors has been particularly successful for the treatment or adjunct therapy of several CNS disorders. The present review summarizes the progress on AAV gene delivery models for three different CNS disorders. In particular, we discuss advances in AAV-mediated gene transfer strategies in animal models of Parkinson's disease, Alzheimer's disease and spinal cord trauma and summarize the results from the first clinical studies using AAV systems.
Collapse
Affiliation(s)
- Dimitra Terzi
- Department of Pharmacology, University of Crete, Faculty of Medicine, Heraklion, Crete, Greece
| | | |
Collapse
|
694
|
Hansson O, Buchhave P, Zetterberg H, Blennow K, Minthon L, Warkentin S. Combined rCBF and CSF biomarkers predict progression from mild cognitive impairment to Alzheimer's disease. Neurobiol Aging 2009; 30:165-73. [PMID: 17646035 DOI: 10.1016/j.neurobiolaging.2007.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 11/29/2022]
Abstract
This study aimed to identify preclinical Alzheimer's disease (AD) in patients with mild cognitive impairment (MCI) using measurements of both regional cerebral blood flow (rCBF) and cerebrospinal fluid (CSF) biomarkers. Baseline rCBF assessments ((133)Xe method) were performed in 70 patients with MCI who were cognitively stable for 4-6 years, 69 patients with MCI who subsequently developed AD, and 33 healthy individuals. CSF was collected at baseline and analyzed for beta-amyloid(1-42), total tau and phophorylated tau. In contrast to patients with stable MCI, those who subsequently developed AD had decreased rCBF in the temporo-parietal cortex already at baseline. The relative risk of future progression to AD was particularly increased in MCI patients with decreased rCBF in parietal cortex (hazard ratio 3.1, P<0.0001). Subjects with pathological levels of both CSF tau and beta-amyloid(1-42) were also at high risk of developing AD (hazard ratio 13.4, P<0.0001). The MCI patients with a combination of decreased parietal rCBF and pathological CSF biomarkers at baseline had a substantially increased risk of future development of AD, with a hazard ratio of 24.3 (P<0.0001), when compared to those with normal CSF biomarkers. Moreover, decreased parietal rCBF (but not CSF biomarkers) was associated with a more rapid progression to AD. In conclusion, the combination of rCBF and CSF biomarkers improves the risk assessment of progression to AD in patients with MCI.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden.
| | | | | | | | | | | |
Collapse
|
695
|
Abstract
Alzheimer's disease is an ever-increasing health concern among the aging population, and as we research new and existing treatments for this disease we begin to uncover possibilities for its prevention. Observational studies and animal models have provided promising findings and generated excitement, but placebo-controlled clinical trials are required to demonstrate true efficacy for these treatments.In the past two decades, clinical trials have led to the approval of symptomatic treatments for Alzheimer's disease, including cholinesterase inhibitors and, more recently, an NMDA receptor antagonist. Clinical trials have also examined antioxidants, NSAIDs, hormone replacement, nutritional supplements and nonpharmacological interventions for the treatment and prevention of Alzheimer's disease. While the results of many of these trials have been disappointing, new mechanisms targeting the hallmark pathology of Alzheimer's disease are currently under investigation, including immunotherapy and secretase modulation, targeted at reducing the amyloid burden, for which we await the results. We review the evidence from completed trials, support for ongoing studies and propose directions for future research.
Collapse
Affiliation(s)
- Mary Sano
- The Alzheimer Disease Research Center of Mount Sinai School of Medicine, New York, New York, USA.
| | | | | |
Collapse
|
696
|
Kim SYH, Kim HM, Langa KM, Karlawish JHT, Knopman DS, Appelbaum PS. Surrogate consent for dementia research: a national survey of older Americans. Neurology 2009; 72:149-55. [PMID: 19139366 PMCID: PMC2663398 DOI: 10.1212/01.wnl.0000339039.18931.a2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Research in novel therapies for Alzheimer disease (AD) relies on persons with AD as research subjects. Because AD impairs decisional capacity, informed consent often must come from surrogates, usually close family members. But policies for surrogate consent for research remain unsettled after decades of debate. METHODS We designed a survey module for a random subsample (n = 1,515) of the 2006 wave of the Health and Retirement Study, a biennial survey of a nationally representative sample of Americans aged 51 and older. The participants answered questions regarding one of four randomly assigned surrogate-based research (SBR) scenarios: lumbar puncture study, drug randomized control study, vaccine study, and gene transfer study. Each participant answered three questions: whether our society should allow family surrogate consent, whether one would want to participate in the research, and whether one would allow one's surrogate some or complete leeway to override stated personal preferences. RESULTS Most respondents stated that our society should allow family surrogate consent for SBR (67.5% to 82.5%, depending on the scenario) and would themselves want to participate in SBR (57.4% to 79.7%). Most would also grant some or complete leeway to their surrogates (54.8% to 66.8%), but this was true mainly of those willing to participate. There was a trend toward lower willingness to participate in SBR among those from ethnic or racial minority groups. CONCLUSIONS Family surrogate consent-based dementia research is broadly supported by older Americans. Willingness to allow leeway to future surrogates needs to be studied further for its ethical significance for surrogate-based research policy.
Collapse
Affiliation(s)
- S Y H Kim
- Bioethics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
697
|
Cao C, Arendash GW, Dickson A, Mamcarz MB, Lin X, Ethell DW. Abeta-specific Th2 cells provide cognitive and pathological benefits to Alzheimer's mice without infiltrating the CNS. Neurobiol Dis 2009; 34:63-70. [PMID: 19167499 DOI: 10.1016/j.nbd.2008.12.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/24/2008] [Accepted: 12/13/2008] [Indexed: 10/21/2022] Open
Abstract
We have found that a small number of purified Th2-biased Abeta-specific T cells are sufficient to provide profound cognitive and pathological benefits in an APP+PS1 mouse model for Alzheimer's disease. Six weeks after receiving T cell infusions, cognitively-impaired mice performed significantly better in working memory tasks, which correlated with higher plasma levels of soluble Abeta. Pathological analysis of the hippocampus revealed a 30% decrease of plaque-associated microglia and less vascular amyloidosis in T cell treated mice. The infusion of Abeta-specific Th2 cells also reduced plasma levels of IFN-gamma, TNF-alpha, GM-CSF, IL-2 and IL-4, which are elevated in untreated APP+PS1 mice. No significant immune cell infiltration and no anti-Abeta antibody titers occurred in the T cell treated mice. These results demonstrate that Abeta-specific Th2 cells are sufficient to reverse cognitive impairment and provide multiple pathological benefits in an Alzheimer's mouse model.
Collapse
Affiliation(s)
- Chuanhai Cao
- The Johnnie B. Byrd Sr. Alzheimer's Center and Research Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
698
|
Lemere CA. Developing novel immunogens for a safe and effective Alzheimer's disease vaccine. PROGRESS IN BRAIN RESEARCH 2009; 175:83-93. [PMID: 19660650 DOI: 10.1016/s0079-6123(09)17506-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of neurodegeneration; however, therapies to prevent or treat AD are inadequate. Amyloid-beta (Abeta) protein accrues in cortical senile plaques, one of the key neuropathological hallmarks of AD, and is elevated in brains of early onset AD patients in a small number of families that bear certain genetic mutations, further implicating its role in this devastating neurological disease. In addition, soluble Abeta oligomers have been shown to be detrimental to neuronal function. Therapeutic strategies aimed at lowering cerebral Abeta levels are currently under development. One strategy is to immunize AD patients with Abeta peptides so that they will generate antibodies that bind to Abeta protein and enhance its clearance. As of 1999, Abeta immunotherapy, either through active immunization with Abeta peptides or through passive transfer of Abeta-specific antibodies, has been shown to reduce cerebral Abeta levels and improve cognitive deficits in AD mouse models and lower plaque load in nonhuman primates. However, a Phase II clinical trial of active immunization using full-length human Abeta1-42 peptide and a strong Th1-biased adjuvant, QS-21, ended prematurely in 2002 because of the onset of meningoencephalitis in approximately 6% of the AD patients enrolled in the study. It is possible that T cell recognition of the human full-length Abeta peptide as a self-protein may have induced an adverse autoimmune response in these patients. Although only approximately 20% of immunized patients generated anti-Abeta titers, responders showed some general slowing of cognitive decline. Focal cortical regions devoid of Abeta plaques were observed in brain tissues of several immunized patients who have since come to autopsy. In order to avoid a deleterious immune response, passive Abeta immunotherapy is under investigation by administering monthly intravenous injections of humanized Abeta monoclonal antibodies to AD patients. However, a safe and effective active Abeta vaccine would be more cost-effective and more readily available to a larger AD population. We have developed several novel short Abeta immunogens that target the Abeta N-terminus containing a strong B cell epitope while avoiding the Abeta mid-region and C-terminus containing T cell epitopes. These immunogens include dendrimeric Abeta1-15 (16 copies of Abeta1-15 on a lysine antigen tree), 2xAbeta1-15 (a tandem repeat of two lysine-linked Abeta1-15 peptides), and 2xAbeta1-15 with the addition of a three amino acid RGD motif (R-2xAbeta1-15). Intranasal immunization with our short Abeta fragment immunogens and a mucosal adjuvant, mutant Escherichia coli heat-labile enterotoxin LT(R192G), resulted in reduced cerebral Abeta levels, plaque deposition, and gliosis, as well as increased plasma Abeta levels and improved cognition in a transgenic mouse model of AD. Preclinical trials in nonhuman primates, and human clinical trials using similar Abeta immunogens, are now underway. Abeta immunotherapy looks promising but must be made safer and more effective at generating antibody titers in the elderly. It is hoped that these novel immunogens will enhance Abeta antibody generation across a broad population and avoid the adverse events seen in the earlier clinical trial.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
699
|
Abstract
Small molecule drugs are relatively effective in working on 'drugable' targets such as GPCRs, ion channels, kinases, proteases, etc but ineffective at blocking protein-protein interactions that represent an emerging class of 'nondrugable' central nervous system (CNS) targets. This article provides an overview of novel therapeutic modalities such as biologics (in particular antibodies) and emerging oligonucleotide therapeutics such as antisense, small-interfering RNA, and aptamers. Their key properties, overall strengths and limitations, and their utility as tools for target validation are presented. In addition, issues with regard to CNS targets as it relates to the blood-brain barrier penetration are discussed. Finally, examples of their application as therapeutics for the treatment of pain and some neurological disorders such as Alzheimer's disease, multiple sclerosis, Huntington's disease, and Parkinson's disease are provided.
Collapse
|
700
|
Willingness to participate in Alzheimer disease research and attitudes towards proxy-informed consent: results from the Health and Retirement Study. Am J Geriatr Psychiatry 2009; 17:65-74. [PMID: 19092313 DOI: 10.1097/jgp.0b013e31818cd3d3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate public opinion about participation in Alzheimer disease (AD) research and willingness to have a proxy-informed consent. DESIGN Cross-sectional. SETTING A national survey of community-dwelling adults over the age of 50 and their spouse of any age. PARTICIPANTS The 2006 wave of the Health and Retirement Study (N = 1,517). MEASUREMENTS Willingness to participate in one of four possible research scenarios and to have a proxy-informed consent for AD research. RESULTS Overall, 65.8% agreed to participate in AD research and 70.7% agreed to proxy-informed consent. Relative to a minimal benefit and moderate risk scenario, participants were more likely to favor participation in a moderate benefit and minimal risk scenario and less likely to endorse a minimal benefit and severe risk scenario. Those agreeing to participate in the study were more likely to agree to proxy consent and to give leeway to a research proxy to go against their will. CONCLUSIONS Most participants view AD research favorably and are agreeable toward participating in such research as well as toward having a research proxy. Participants are able to distinguish between studies of different levels of benefit and risk. Nevertheless, over 50% agreed to a study of minimal benefit and severe risk. Researchers and clinicians should be aware that those less agreeable toward AD research are less interested in having a research proxy.
Collapse
|