701
|
Chavira A, Belda-Ferre P, Kosciolek T, Ali F, Dorrestein PC, Knight R. The Microbiome and Its Potential for Pharmacology. Handb Exp Pharmacol 2019; 260:301-326. [PMID: 31820171 DOI: 10.1007/164_2019_317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The human microbiota (the microscopic organisms that inhabit us) and microbiome (their genes) hold considerable potential for improving pharmacological practice. Recent advances in multi-"omics" techniques have dramatically improved our understanding of the constituents of the microbiome and their functions. The implications of this research for human health, including microbiome links to obesity, drug metabolism, neurological diseases, cancer, and many other health conditions, have sparked considerable interest in exploiting the microbiome for targeted therapeutics. Links between microbial pathways and disease states further highlight a rich potential for companion diagnostics and precision medicine approaches. For example, the success of fecal microbiota transplantation to treat Clostridium difficile infection has already started to redefine standard of care with a microbiome-directed therapy. In this review we briefly discuss the nature of human microbial ecosystems and with pathologies and biological processes linked to the microbiome. We then review emerging computational metagenomic, metabolomic, and wet lab techniques researchers are using today to learn about the roles host-microbial interactions have with respect to pharmacological purposes and vice versa. Finally, we describe how drugs affect the microbiome, how the microbiome can impact drug response in different people, and the potential of the microbiome itself as a source of new therapeutics.
Collapse
Affiliation(s)
- Aries Chavira
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Farhana Ali
- Division of Gastroenterology, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
702
|
Doenyas C. Novel Personalized Dietary Treatment for Autism Based on the Gut-Immune-Endocrine-Brain Axis. Front Endocrinol (Lausanne) 2019; 10:508. [PMID: 31456745 PMCID: PMC6700238 DOI: 10.3389/fendo.2019.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/12/2019] [Indexed: 01/22/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition manifesting with impaired social interaction and communication, and restricted and repetitive behaviors and interests. In this perspective article, a more comprehensive approach than the gut-brain axis, hereby termed the "gut-immune-endocrine-brain" axis, is taken, based on which a personalized treatment plan for ASD is presented. ASD has no known etiology or cure, making desperate parents willing to try any treatment that worked for an individual with ASD, without much regard for its effectiveness, safety or side effects. This has been the case for restrictive dietary interventions as gluten-free/casein-free and ketogenic diets and recently, probiotics have emerged as the new such fad. One of the concerns about these dietary and probiotic treatments is their non-specificity: they may not be effective for all individuals with ASD, not all probiotic strains may have the beneficial qualities advertised indiscriminately for probiotics, and strains conferring benefits in one condition may not be probiotic in another. Not all children with ASD show immune reactivity to dietary proteins in wheat and milk, and wheat and milk may not be the only dietary elements to which reactivity is exhibited, where dietary aquaporins that resemble human aquaporins may elicit antibody reactivity in genetically susceptible individuals, which may include individuals with ASD. These observations are utilized to formulate a three-step plan to create effective, targeted, personalized treatments with as few side effects as possible, enabled by a systems approach connecting the various findings for dietary, immune, and neuroautoimmune reactivity in individuals with ASD.
Collapse
|
703
|
Spichak S, Guzzetta KE, O’Leary OF, Clarke G, Dinan TG, Cryan JF. Without a bug’s life: Germ-free rodents to interrogate microbiota-gut-neuroimmune interactions. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ddmod.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|