701
|
Abstract
Extracellular microRNAs (miRNA) are present in most biological fluids, relatively stable, and hold great potential for disease biomarkers and novel therapeutics. Circulating miRNAs are transported by membrane-derived vesicles (exosomes and microparticles), lipoproteins, and other ribonucleoprotein complexes. Evidence suggests that miRNAs are selectively exported from cells with distinct signatures that have been found to be altered in many pathophysiologies, including cardiovascular disease. Protected from plasma ribonucleases by their carriers, functional miRNAs are delivered to recipient cells by various routes. Transferred miRNAs use cellular machinery to reduce target gene expression and alter cellular phenotype. Similar to soluble factors, miRNAs mediate cell-to-cell communication linking disparate cell types, diverse biological mechanisms, and homeostatic pathways. Although significant advances have been made, miRNA intercellular communication is full of complexities and many questions remain. This review brings into focus what is currently known and outstanding in a novel field of study with applicability to cardiovascular disease.
Collapse
Affiliation(s)
- Reinier A Boon
- Institute for Cardiovascular Regeneration, J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | |
Collapse
|
702
|
Abstract
Extracellular microRNAs (miRNA) are present in most biological fluids, relatively stable, and hold great potential for disease biomarkers and novel therapeutics. Circulating miRNAs are transported by membrane-derived vesicles (exosomes and microparticles), lipoproteins, and other ribonucleoprotein complexes. Evidence suggests that miRNAs are selectively exported from cells with distinct signatures that have been found to be altered in many pathophysiologies, including cardiovascular disease. Protected from plasma ribonucleases by their carriers, functional miRNAs are delivered to recipient cells by various routes. Transferred miRNAs use cellular machinery to reduce target gene expression and alter cellular phenotype. Similar to soluble factors, miRNAs mediate cell-to-cell communication linking disparate cell types, diverse biological mechanisms, and homeostatic pathways. Although significant advances have been made, miRNA intercellular communication is full of complexities and many questions remain. This review brings into focus what is currently known and outstanding in a novel field of study with applicability to cardiovascular disease.
Collapse
Affiliation(s)
- Reinier A Boon
- Institute for Cardiovascular Regeneration, J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | |
Collapse
|
703
|
Tatischeff I. Assets of the non-pathogenic microorganism Dictyostelium discoideum as a model for the study of eukaryotic extracellular vesicles. F1000Res 2013; 2:73. [PMID: 24327885 PMCID: PMC3782363 DOI: 10.12688/f1000research.2-73.v1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2013] [Indexed: 12/12/2022] Open
Abstract
Dictyostelium discoideum microvesicles have recently been presented as a valuable model for eukaryotic extracellular vesicles. Here, the advantages of D. discoideum for unraveling important biological functions of extracellular vesicles in general are detailed. D. discoideum, a non-pathogenic eukaryotic microorganism, belongs to a billion-year-old Amoeboza lineage, which diverged from the animal-fungal lineage after the plant animal-split. During growth and early starvation-induced development, it presents analogies with lymphocytes and macrophages with regard to motility and phagocytosis capability, respectively. Its 6-chromosome genome codes for about 12,500 genes, some showing analogies with human genes. The presence of extracellular vesicles during cell growth has been evidenced as a detoxification mechanism of various structurally unrelated drugs. Controls led to the discovery of constitutive extracellular vesicle secretion in this microorganism, which was an important point. It means that the secretion of extracellular vesicles occurs, in the absence of any drug, during both cell growth and early development. This constitutive secretion of D. discoideum cells is very likely to play a role in intercellular communication. The detoxifying secreted vesicles, which can transport drugs outside the cells, can also act as "Trojan horses", capable of transferring these drugs not only into naïve D. discoideum cells, but into human cells as well. Therefore, these extracellular vesicles were proposed as a new biological drug delivery tool. Moreover, Dictyostelium, chosen by the NIH (USA) as a new model organism for biomedical research, has already been used for studying some human diseases. These cells, which are much easier to manipulate than human cells, can be easily designed in simple conditioned medium experiments. Owing to the increasing consensus that extracellular vesicles are probably important mediators of intercellular communication, D. discoideum is here suggested to constitute a convenient model for tracking as yet unknown biological functions of eukaryotic extracellular vesicles.
Collapse
Affiliation(s)
- Irène Tatischeff
- Laboratoire Jean Perrin, UPMC University of Paris 06, Paris, 75005, France ; Laboratoire Jean Perrin, CNRS, Paris, 75005, France
| |
Collapse
|
704
|
Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics 2013; 12:587-98. [PMID: 23230278 PMCID: PMC3591653 DOI: 10.1074/mcp.m112.021303] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 10/19/2012] [Indexed: 12/14/2022] Open
Abstract
Exosomes are naturally occurring biological nanomembranous vesicles (∼40 to 100 nm) of endocytic origin that are released from diverse cell types into the extracellular space. They have pleiotropic functions such as antigen presentation and intercellular transfer of protein cargo, mRNA, microRNA, lipids, and oncogenic potential. Here we describe the isolation, via sequential immunocapture using anti-A33- and anti-EpCAM-coupled magnetic beads, of two distinct populations of exosomes released from organoids derived from human colon carcinoma cell line LIM1863. The exosome populations (A33-Exos and EpCAM-Exos) could not be distinguished via electron microscopy and contained stereotypical exosome markers such as TSG101, Alix, and HSP70. The salient finding of this study, revealed via gel-based LC-MS/MS, was the exclusive identification in EpCAM-Exos of the classical apical trafficking molecules CD63 (LAMP3), mucin 13 and the apical intestinal enzyme sucrase isomaltase and increased expression of dipeptidyl peptidase IV and the apically restricted pentaspan membrane glycoprotein prominin 1. In contrast, the A33-Exos preparation was enriched with basolateral trafficking molecules such as early endosome antigen 1, the Golgi membrane protein ADP-ribosylation factor, and clathrin. Our observations are consistent with EpCAM- and A33-Exos being released from the apical and basolateral surfaces, respectively, and the EpCAM-Exos proteome profile with widely published stereotypical exosomes. A proteome analysis of LIM1863-derived shed microvesicles (sMVs) was also performed in order to clearly distinguish A33- and EpCAM-Exos from sMVs. Intriguingly, several members of the MHC class I family of antigen presentation molecules were exclusively observed in A33-Exos, whereas neither MHC class I nor MHC class II molecules were observed via MS in EpCAM-Exos. Additionally, we report for the first time in any extracellular vesicle study the colocalization of EpCAM, claudin-7, and CD44 in EpCAM-Exos. Given that these molecules are known to complex together to promote tumor progression, further characterization of exosome subpopulations will enable a deeper understanding of their possible role in regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Bow J. Tauro
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- §Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - David W. Greening
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Rommel A. Mathias
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Suresh Mathivanan
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hong Ji
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Richard J. Simpson
- From the ‡Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
705
|
O'Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM, McDonnell S, Crown J, Radomski MW, O'Driscoll L. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer 2013; 49:1845-59. [PMID: 23453937 DOI: 10.1016/j.ejca.2013.01.017] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/04/2013] [Accepted: 01/18/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) accounts for 15-20% of breast cancers but is responsible for a disproportionate number of deaths. We investigated the relevance, in TNBC, of nano-sized exosomes expelled from cells. Specifically, we compared effects of exosomes derived from the claudin-low TNBC cell line Hs578T and its more invasive Hs578Ts(i)8 variant, as well as exosomes from TNBC patient sera compared to normal sera. METHODS Exosomes were isolated from conditioned media (CM) of Hs578T and Hs578Ts(i)8 cells and from sera by filtration and ultracentrifugation. Successful isolation was confirmed by transmission electron microscopy and immunoblotting. Subsequent analysis, of secondary/recipient cells in response to exosomes, included proliferation; motility/migration; invasion; anoikis assays and endothelial tubule formation assays. RESULTS Hs578Ts(i)8-exosomes versus Hs578T-exosomes significantly increased the proliferation, migration and invasion capacity of all three recipient cell lines evaluated i.e. SKBR3, MDA-MB-231 and HCC1954. Exosomes from Hs578Ts(i)8 cells also conferred increased invasiveness to parent Hs578T cells. Hs578Ts(i)8-exosomes increased sensitivity of SKBR3, MDA-MB-231 and HCC1954 to anoikis when compared to the effects of Hs578T-exosomes reflecting the fact that Hs578Ts(i)8 cells are themselves innately more sensitive to anoikis. In relation to vasculogenesis and subsequent angiogenesis, Hs578Ts(i)8-exosomes versus Hs578T-exosomes stimulated significantly more endothelial tubules formation. Finally, our pilot translational study showed that exosomes from TNBC patients' sera significantly increased recipient cells' invasion when compared to those derived from age- and gender-matched healthy control sera. CONCLUSION This study supports the hypothesis that TNBC exosomes may be involved in cancer cell-to-cell communication, conferring phenotypic traits to secondary cells that reflect those of their cells of origin.
Collapse
Affiliation(s)
- Keith O'Brien
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
706
|
Tétreault N, De Guire V. miRNAs: their discovery, biogenesis and mechanism of action. Clin Biochem 2013; 46:842-5. [PMID: 23454500 DOI: 10.1016/j.clinbiochem.2013.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 01/18/2023]
Abstract
The field of miRNA research is evolving at a very fast pace. Since their discovery almost 20years ago, miRNAs have proven to be of tremendous importance to normal physiological homeostasis as well as to the pathogenesis of major diseases such as cancer. Recent advances describe a key contribution for miRNAs in a wide variety of cellular processes ranging from embryonic development, cell proliferation and apoptosis to prominent roles in disease progression. miRNAs are now of central interest to biomedical research. Here we provide an overview of their discovery, biogenesis and mechanism of action.
Collapse
Affiliation(s)
- N Tétreault
- Department of Clinical Biochemistry, Maisonneuve-Rosemont Hospital, 5415 Boulevard de l'Assomption, Montréal, Québec, H1T 2M4, Canada.
| | | |
Collapse
|
707
|
Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 2013; 13:1637-53. [PMID: 23335344 DOI: 10.1002/pmic.201200373] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/04/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), membrane vesicles that are secreted by a variety of mammalian cell types, have been shown to play an important role in intercellular communication. The contents of EVs, including proteins, microRNAs, and mRNAs, vary according to the cell type that secreted them. Accordingly, researchers have demonstrated that EVs derived from various cell types play different roles in biological phenomena. Considering the ubiquitous presence of mesenchymal stem cells (MSCs) in the body, MSC-derived EVs may take part in a wide range of events. In particular, MSCs have recently attracted much attention due to the therapeutic effects of their secretory factors. MSC-derived EVs may therefore provide novel therapeutic approaches. In this review, we first summarize the wide range of functions of EVs released from different cell types, emphasizing that EVs echo the phenotype of their parent cell. Then, we describe the various therapeutic effects of MSCs and pay particular attention to the significance of their paracrine effect. We then survey recent reports on MSC-derived EVs and consider the therapeutic potential of MSC-derived EVs. Finally, we discuss remaining issues that must be addressed before realizing the practical application of MSC-derived EVs, and we provide some suggestions for enhancing their therapeutic efficiency.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
708
|
Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 2013; 288:10849-59. [PMID: 23439645 PMCID: PMC3624465 DOI: 10.1074/jbc.m112.446831] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The release of humoral factors between cancer cells and the microenvironmental cells is critical for metastasis; however, the roles of secreted miRNAs in non-cell autonomous cancer progression against microenvironmental cells remain largely unknown. Here, we demonstrate that the neutral sphyngomyelinase 2 (nSMase2) regulates exosomal microRNA (miRNA) secretion and promotes angiogenesis within the tumor microenvironment as well as metastasis. We demonstrate a requirement for nSMase2-mediated cancer cell exosomal miRNAs in the regulation of metastasis through the induction of angiogenesis in inoculated tumors. In addition, miR-210, released by metastatic cancer cells, was shown to transport to endothelial cells and suppress the expression of specific target genes, which resulted in enhanced angiogenesis. These findings suggest that the horizontal transfer of exosomal miRNAs from cancer cells can dictate the microenviromental niche for the benefit of the cancer cell, like “on demand system” for cancer cells.
Collapse
Affiliation(s)
- Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
709
|
Eissa NT. The exosome in lung diseases: Message in a bottle. J Allergy Clin Immunol 2013; 131:904-5. [PMID: 23360758 DOI: 10.1016/j.jaci.2013.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 11/16/2022]
|
710
|
Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics 2013; 80:171-82. [PMID: 23333927 DOI: 10.1016/j.jprot.2012.12.029] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 12/04/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the most lethal type of cancer among all frequent gynecologic malignancies, because most patients present with advanced disease at diagnosis. Exosomes are important intercellular communication vehicles, released by various cell types. Here we presented firstly the protein profile of highly purified exosomes derived from two ovarian cancer cell lines, OVCAR-3 and IGROV1. The exosomes derived from ovarian cancer cell lines were round and mostly 30-100 nm in diameter when viewed under an electron microscope. The exosomal marker proteins TSG101 and Alix were detected in exosome preparations. The range of density was between 1.09 g/ml and 1.15 g/ml. A total of 2230 proteins were identified from two ovarian cell-derived exosomes. Among them, 1017 proteins were identified in both exosomes including all of the major exosomal protein markers. There were 380 proteins that are not reported in the ExoCarta database. In addition to common proteins from exosomes of various origins, our results showed that ovarian cancer-derived exosomes also carried tissue specific proteins associated with tumorigenesis and metastasis, especially in ovarian carcinoma. Based on the known roles of exosomes in cellular communication, these data indicate that exosomes released by ovarian cancer cells may play important roles in ovarian cancer progression and provide a potential source of blood-based protein biomarkers.
Collapse
Affiliation(s)
- Bing Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meijun Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Haixia Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xialu Li
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
711
|
Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS 2013; 10:4. [PMID: 23305214 PMCID: PMC3560214 DOI: 10.1186/2045-8118-10-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022] Open
Abstract
Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary astrocytes and cortical neurons, as cell-cell communication vesicles. Finally, brain endothelial cell extracellular microvesicles were shown to contain several receptors previously shown to carry macromolecules across the blood brain barrier, including transferrin receptor, insulin receptor, LRPs, LDL and TMEM30A. Conclusions The methods described here permit identification of the molecular signatures for brain endothelial cell-specific extracellular microvesicles under various biological conditions. In addition to being a potential source of useful biomarkers, these vesicles contain potentially novel receptors known for delivering molecules across the blood–brain barrier.
Collapse
Affiliation(s)
- Arsalan S Haqqani
- National Research Council of Canada, Human Health Therapeutics Portfolio, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.
| | | | | | | | | | | |
Collapse
|
712
|
Nayak A, Tassetto M, Kunitomi M, Andino R. RNA Interference-Mediated Intrinsic Antiviral Immunity in Invertebrates. Curr Top Microbiol Immunol 2013; 371:183-200. [DOI: 10.1007/978-3-642-37765-5_7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
713
|
Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M, Baba H. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 2012; 119:1159-67. [PMID: 23224754 DOI: 10.1002/cncr.27895] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Exosomes are 40-nm to 100-nm membrane vesicles that are secreted by various cells, and they play a major role in cell-cell communication. The objective of this study was to clarify the significance of the levels of microRNA in exosomes extracted from the sera of patients with esophageal squamous cell cancer (ESCC). METHODS The authors isolated exosomes in serum samples from patients who had ESCC and from patients who had benign diseases without systemic inflammation. Total RNA was purified from the exosomes, and expression levels of microRNA-21 (miR-21) were analyzed by quantitative real-time polymerase chain reaction. RESULTS Serum exosomes from patients with ESCC induced the proliferation of ESCC cells in vitro. The expression levels of exosomal miR-21 were significantly higher in patients with ESCC than those with benign diseases with and without (C-reactive protein <0.3 mg/dL) systemic inflammation. MiR-21 was not detected in serum that remained after exosome extraction. Exosomal miR-21 expression was correlated with advanced tumor classification, positive lymph node status, and the presence of metastasis with inflammation or and clinical stage without inflammation (C-reactive protein <0.3 mg/dL). CONCLUSIONS The current results confirmed that exosomal miR-21 expression is up-regulated in serum from patients with ESCC versus serum from patients who have benign diseases without systemic inflammation. Exosomal miR-21 was positively correlated with tumor progression and aggressiveness, suggesting that it may be a useful target for cancer therapy. Cancer 2013. © 2012 American Cancer Society.
Collapse
Affiliation(s)
- Youhei Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
714
|
Abstract
miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and modulating the precise amount of proteins that get expressed in a cell at a given time. This form of gene regulation plays an important role in developmental systems and is critical for the proper function of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A broad range of cell types have also been shown to secrete miRNAs in association with components of the RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation and mediators of cell–cell communication.
Collapse
|
715
|
Abstract
Membrane vesicles secreted by Leishmania mexicana were collected and analyzed. These vesicles can bind plasminogen and were shown to contain enolase, previously identified as a plasminogen-binding protein. In addition, another plasminogen-binding protein was identified, the small myristoylated protein, SMP-1. Recombinant SMP-1 was able to bind plasminogen in a lysine-dependent manner with a K(d) value of 0.24 μM. The C-terminal lysine seems to be responsible for this binding, since this recognition decreases upon carboxypeptidase B treatment. This protein was present within the secreted membrane vesicles as demonstrated by its protection from trypsin digestion in the absence of Triton X-100. Plasminogen-binding proteins in the secreted vesicles may be involved in parasite invasion in the mammalian host.
Collapse
|
716
|
Abstract
Metastasis is the leading cause of cancer death, yet it is mechanistically considered a very inefficient process suggesting the presence of some sort of (e.g. systemic) routes for fuelling the process. The pre-metastatic niche formation is described as one such metastasis promoting route. Now, the emerging potentials of tumor-derived microvesicles (TDMVs), not only in formulating the pre-metastatic niche, but also conferring neoplastic phenotypes onto normal cells, has integrated new concepts into the field. Here, we note as an ancillary proposition that, exerting functional disturbances in other sites, TDMVs (we have termed them metastasomes) may aid foundation of the secondary lesions via two seemingly interrelated models: (i) tumor-organ-training (TOTr), training a proper niche for the growth of the disseminated tumor cells; (ii) tumor-organ-targeting (TOTa), contribution to the propagation of the transformed phenotype via direct or indirect (TOTr-mediated disturbed stroma) transformation and/or heightened growth/survival states of the normal resident cells in the secondary organs. Respecting the high content of the RNA molecules (particularly microRNAs) identified in the secretory MVs, they may play crucial parts in such "malignant trait" spreading system. That is, the interactions between tumor tissue-specific RNA signatures, being transferred via metastasomes, and the cell-type/tissue-specific RNA stockrooms in other areas may settle a unique outcome in each organ. Thus, serving as tumor-organ matchmakers, the RNA molecules may also play substantial roles in the seeding and tropism of the process.
Collapse
|
717
|
Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol 2012; 2012:354605. [PMID: 23226938 PMCID: PMC3511851 DOI: 10.1155/2012/354605] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/16/2012] [Indexed: 02/07/2023] Open
Abstract
The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.
Collapse
|
718
|
Bonne NJ, Wong DT. Salivary biomarker development using genomic, proteomic and metabolomic approaches. Genome Med 2012; 4:82. [PMID: 23114182 PMCID: PMC3580451 DOI: 10.1186/gm383] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The use of saliva as a diagnostic sample provides a non-invasive, cost-efficient method of sample collection for disease screening without the need for highly trained professionals. Saliva collection is far more practical and safe compared with invasive methods of sample collection, because of the infection risk from contaminated needles during, for example, blood sampling. Furthermore, the use of saliva could increase the availability of accurate diagnostics for remote and impoverished regions. However, the development of salivary diagnostics has required technical innovation to allow stabilization and detection of analytes in the complex molecular mixture that is saliva. The recent development of cost-effective room temperature analyte stabilization methods, nucleic acid pre-amplification techniques and direct saliva transcriptomic analysis have allowed accurate detection and quantification of transcripts found in saliva. Novel protein stabilization methods have also facilitated improved proteomic analyses. Although candidate biomarkers have been discovered using epigenetic, transcriptomic, proteomic and metabolomic approaches, transcriptomic analyses have so far achieved the most progress in terms of sensitivity and specificity, and progress towards clinical implementation. Here, we review recent developments in salivary diagnostics that have been accomplished using genomic, transcriptomic, proteomic and metabolomic approaches.
Collapse
Affiliation(s)
- Nicolai J Bonne
- School of Dentistry and Dental Research Institute, University of California Los Angeles, 650 Charles Young Drive, CHS 73-032, Los Angeles, California, USA
| | - David Tw Wong
- School of Dentistry and Dental Research Institute, University of California Los Angeles, 650 Charles Young Drive, CHS 73-032, Los Angeles, California, USA
| |
Collapse
|
719
|
Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 2012; 30:1556-64. [PMID: 22605481 DOI: 10.1002/stem.1129] [Citation(s) in RCA: 678] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
720
|
Plasma membrane-derived microvesicles released from tip endothelial cells during vascular sprouting. Angiogenesis 2012; 15:761-9. [PMID: 22886085 PMCID: PMC3496552 DOI: 10.1007/s10456-012-9292-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/18/2012] [Indexed: 01/23/2023]
Abstract
During human foetal brain vascularization, activated CD31+/CD105+ endothelial cells are characterized by the emission of filopodial processes which also decorate the advancing tip of the vascular sprout. Together with filopodia, both the markers also reveal a number of plasma membrane-derived microvesicles (MVs) which are concentrated around the tip cell tuft of processes. At this site, MVs appear in tight contact with endothelial filopodia and follow these long processes, advancing into the surrounding neuropil to a possible cell target. These observations suggest that, like shedding vesicles of many other cell types that deliver signalling molecules and play a role in cell-to-cell communication, MVs sent out from endothelial tip cells could be involved in tip cell guidance and/or act on target cells, regulating cell-to-cell mutual recognition during vessel sprouting and final anastomosis. The results also suggest a new role for tip cell filopodia as conveyor processes for transporting MVs far from the cell of origin in a controlled microenvironment. Additional studies focused on the identification of MV content are needed to ultimately clarify the significance of tip cell MVs during human brain vascularization.
Collapse
|
721
|
Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol 2012; 44:2060-4. [PMID: 22903023 DOI: 10.1016/j.biocel.2012.08.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 12/15/2022]
Abstract
Exosomes are small membrane vesicles of endosomal origin, which are secreted from a variety of cell types. During the 1980s exosomes were first described as organelles to remove cell debris and unwanted molecules. The discovery that exosomes contain proteins, messenger and microRNAs suggests a role as mediators in cell-to-cell communication. Exosomes can be transported between different cells and influence physiological pathways in the recipient cells. In the present review, we will summarize the biological function of exosomes and their involvement in physiological and pathological processes. Moreover, the potential clinical application of exosomes as biomarkers and therapeutic tools will be discussed.
Collapse
Affiliation(s)
- Claudia Bang
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
722
|
Woods LT, Camden JM, Batek JM, Petris MJ, Erb L, Weisman GA. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol 2012; 303:C790-801. [PMID: 22875784 DOI: 10.1152/ajpcell.00072.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inflammation of the salivary gland is a well-documented aspect of salivary gland dysfunction that occurs in Sjogren's syndrome (SS), an autoimmune disease, and in γ-radiation-induced injury during treatment of head and neck cancers. Extracellular nucleotides have gained recognition as key modulators of inflammation through activation of cell surface ionotropic and metabotropic receptors, although the contribution of extracellular nucleotides to salivary gland inflammation is not well understood. In vitro studies using submandibular gland (SMG) cell aggregates isolated from wild-type C57BL/6 mice indicate that treatment with ATP or the high affinity P2X7R agonist 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) induces membrane blebbing and enhances caspase activity, responses that were absent in SMG cell aggregates isolated from mice lacking the P2X7R (P2X7R(-/-)). Additional studies with SMG cell aggregates indicate that activation of the P2X7R with ATP or BzATP stimulates the cleavage and release of α-fodrin, a cytoskeletal protein thought to act as an autoantigen in the development of SS. In vivo administration of BzATP to ligated SMG excretory ducts enhances immune cell infiltration into the gland and initiates apoptosis of salivary epithelial cells in wild-type, but not P2X7R(-/-), mice. These findings indicate that activation of the P2X7R contributes to salivary gland inflammation in vivo, suggesting that the P2X7R may represent a novel target for the treatment of salivary gland dysfunction.
Collapse
Affiliation(s)
- Lucas T Woods
- Dept. of Biochemistry, Univ. of Missouri, Columbia, MO 65211-7310, USA
| | | | | | | | | | | |
Collapse
|
723
|
Abstract
Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy - hallmarks of personalized medicine - plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on the identification of unequivocal correlations between critical disease states and specific EMV signatures, which in future may be determined in rapid and convenient fashion using nanoparticle-driven biosensors.
Collapse
Affiliation(s)
- Günter Müller
- Department of Biology I, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, Germany
| |
Collapse
|
724
|
Torrecilhas AC, Schumacher RI, Alves MJM, Colli W. Vesicles as carriers of virulence factors in parasitic protozoan diseases. Microbes Infect 2012; 14:1465-74. [PMID: 22892602 DOI: 10.1016/j.micinf.2012.07.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/08/2023]
Abstract
Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell-cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function.
Collapse
Affiliation(s)
- Ana Claudia Torrecilhas
- Departamento de Ciências Biológicas, Campus Diadema, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
725
|
Affiliation(s)
- Eugene D Sverdlov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
726
|
Abstract
Multivesicular bodies (MVBs) are unique organelles in the endocytic pathway that contain vesicles in their lumen. Sorting and incorporation of material into such vesicles is a critical cellular process that has been intensely studied following discovery of the ESCRT (endosomal sorting complex required for transport) machinery just more than a decade ago. In this review, we summarize current understanding of the cellular functions of MVBs and how the ESCRT machinery contributes to MVB morphogenesis. We also highlight the importance of MVBs and ESCRTs in human health. We identify critical areas in which further mechanistic and spatiotemporal studies in living cells will advance this exciting area of research.
Collapse
Affiliation(s)
- Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
727
|
Cossetti C, Smith JA, Iraci N, Leonardi T, Alfaro-Cervello C, Pluchino S. Extracellular membrane vesicles and immune regulation in the brain. Front Physiol 2012; 3:117. [PMID: 22557978 PMCID: PMC3340916 DOI: 10.3389/fphys.2012.00117] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/11/2012] [Indexed: 01/19/2023] Open
Abstract
The brain is characterized by a complex and integrated network of interacting cells in which cell-to-cell communication is critical for proper development and function. Initially considered as an immune privileged site, the brain is now regarded as an immune specialized system. Accumulating evidence reveals the presence of immune components in the brain, as well as extensive bidirectional communication that takes place between the nervous and the immune system both under homeostatic and pathological conditions. In recent years the secretion of extracellular membrane vesicles (EMVs) has been described as a new and evolutionary well-conserved mechanism of cell-to-cell communication, with EMVs influencing the microenvironment through the traffic of bioactive molecules that include proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Increasing evidence suggests that EMVs are a promising candidate to study cross-boundary cell-to-cell communication pathways. Herein we review the role of EMVs secreted by neural cells in modulating the immune response(s) within the brain under physiological and pathological circumstances.
Collapse
Affiliation(s)
- Chiara Cossetti
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, Stem Cell Institute, University of Cambridge Cambridge, UK
| | | | | | | | | | | |
Collapse
|
728
|
Frühbeis C, Fröhlich D, Krämer-Albers EM. Emerging roles of exosomes in neuron-glia communication. Front Physiol 2012; 3:119. [PMID: 22557979 PMCID: PMC3339323 DOI: 10.3389/fphys.2012.00119] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/11/2012] [Indexed: 01/12/2023] Open
Abstract
Brain function depends on coordinated interactions between neurons and glial cells. Recent evidence indicates that these cells release endosome-derived microvesicles termed exosomes, which are 50-100 nm in size and carry specific protein and RNA cargo. Exosomes can interact with neighboring cells raising the concept that exosomes may mediate signaling between brain cells and facilitate the delivery of bioactive molecules. Oligodendrocytes myelinate axons and furthermore maintain axonal integrity by an yet uncharacterized pathway of trophic support. Here, we highlight the role of exosomes in nervous system cell communication with particular focus on exosomes released by oligodendrocytes and their potential implications in axon-glia interaction and myelin disease, such as multiple sclerosis. These secreted vesicles may contribute to eliminate overproduced myelin membrane or to transfer antigens facilitating immune surveillance of the brain. Furthermore, there is emerging evidence that exosomes participate in axon-glia communication.
Collapse
Affiliation(s)
- Carsten Frühbeis
- Department of Molecular Cell Biology, Johannes Gutenberg University Mainz Mainz, Germany
| | | | | |
Collapse
|
729
|
Hu G, Drescher KM, Chen XM. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front Genet 2012; 3:56. [PMID: 22529849 PMCID: PMC3330238 DOI: 10.3389/fgene.2012.00056] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/27/2012] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding regulatory RNAs that regulate gene expression at the post-transcriptional level, are master regulators of a wide array of cellular processes. Altered miRNA expression could be a determinant of disease development and/or progression and manipulation of miRNA expression represents a potential avenue of therapy. Exosomes are cell-derived extracellular vesicles that promote cell–cell communication and immunoregulatory functions. These “bioactive vesicles” shuttle various molecules, including miRNAs, to recipient cells. Inappropriate release of miRNAs from exosomes may cause significant alterations in biological pathways that affect disease development, supporting the concept that miRNA-containing exosomes could serve as targeted therapies for particular diseases. This review briefly summarizes recent advances in the biology, function, and therapeutic potential of exosomal miRNAs.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Medical Microbiology and Immunology, Creighton University Medical Center Omaha, NE, USA
| | | | | |
Collapse
|
730
|
Abstract
PURPOSE OF REVIEW Extracellular microRNAs (miRNAs) are uniquely stable in plasma, and the levels of specific circulating miRNAs can differ with disease. Extracellular miRNAs are associated with lipid-based carriers and lipid-free proteins. miRNAs can be transferred from cell-to-cell by lipid-based carriers and affect gene expression. This review summarizes recent studies that demonstrate the transfer of miRNA between cells and their potential role in intercellular communication. RECENT FINDINGS Microvesicles, exosomes, apoptotic bodies, lipoproteins, and large microparticles contain miRNAs. Recent studies have demonstrated that miRNAs are transferred between dendritic cells, hepatocellular carcinoma cells, and adipocytes in lipid-based carriers. miRNAs are also transferred from T cells to antigen-presenting cells, from stem cells to endothelial cells and fibroblasts, from macrophages to breast cancer cells, and from epithelial cells to hepatocytes in lipid-based carriers. The cellular export of miRNAs in lipid-based carriers is regulated by the ceramide pathway, and the delivery of lipid-associated miRNAs to recipient cells is achieved by various routes, including endocytotic uptake, membrane-fusion, and scavenger receptors. SUMMARY Cellular miRNAs are exported in and to lipid-based carriers (vesicles and lipoprotein particles) and transferred to recipient cells with gene expression changes as intercellular communication.
Collapse
Affiliation(s)
- Kasey C Vickers
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
731
|
Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y, Leszyk J, Zhang B, Budnik V. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem 2012; 287:16820-34. [PMID: 22437826 DOI: 10.1074/jbc.m112.342667] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Wnt signaling plays critical roles during synaptic development and plasticity. However, the mechanisms by which Wnts are released and travel to target cells are unresolved. During synaptic development, the secretion of Drosophila Wnt1, Wingless, requires the function of Evenness Interrupted (Evi)/Wls, a Wingless-binding protein that is secreted along with Wingless at the neuromuscular junction. Given that Evi is a transmembrane protein, these studies suggested the presence of a novel vesicular mechanism of trans-synaptic communication, potentially in the form of exosomes. To establish the mechanisms for the release of Evi vesicles, we used a dsRNA assay in cultured cells to screen for genes that when down-regulated prevent the release of Evi vesicles. We identified two proteins, Rab11 and Syntaxin 1A (Syx1A), that were required for Evi vesicle release. To determine whether the same mechanisms were used in vivo at the neuromuscular junction, we altered the activity of Rab11 and Syx1A in motoneurons and determined the impact on Evi release. We found that Syx1A, Rab11, and its effector Myosin5 were required for proper Evi vesicle release. Furthermore, ultrastructural analysis of synaptic boutons demonstrated the presence of multivesicular bodies, organelles involved in the production and release of exosomes, and these multivesicular bodies contained Evi. We also used mass spectrometry, electron microscopy, and biochemical techniques to characterize the exosome fraction from cultured cells. Our studies revealed that secreted Evi vesicles show remarkable conservation with exosomes in other systems. In summary, our observations unravel some of the in vivo mechanisms required for Evi vesicle release.
Collapse
Affiliation(s)
- Kate Koles
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
732
|
|
733
|
Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14394-400. [PMID: 22017459 PMCID: PMC3235036 DOI: 10.1021/la2038763] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Exosomes are naturally occurring nanoparticles with unique structure, surface biochemistry, and mechanical characteristics. These distinct nanometer-sized bioparticles are secreted from the surfaces of oral epithelial cells into saliva and are of interest as oral-cancer biomarkers. We use high- resolution AFM to show single-vesicle quantitative differences between exosomes derived from normal and oral cancer patient's saliva. Compared to normal exosomes (circular, 67.4 ± 2.9 nm), our findings indicate that cancer exosome populations are significantly increased in saliva and display irregular morphologies, increased vesicle size (98.3 ± 4.6 nm), and higher intervesicular aggregation. At the single-vesicle level, cancer exosomes exhibit significantly (P < 0.05) increased CD63 surface densities. To our knowledge, it represents the first report detecting single-exosome surface protein variations. Additionally, high-resolution AFM imaging of cancer saliva samples revealed discrete multivesicular bodies with intraluminal exosomes enclosed. We discuss the use of quantitative, nanoscale ultrastructural and surface biomolecular analysis of saliva exosomes at single-vesicle- and single-protein-level sensitivities as a potentially new oral cancer diagnostic.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Corresponding authors: and , Fax: 310 267 4918, Tel: 310 206 7658
| | - Boyd M Gillespie
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Corresponding authors: and , Fax: 310 267 4918, Tel: 310 206 7658
| |
Collapse
|