751
|
Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 2011; 117:5561-72. [PMID: 21411759 DOI: 10.1182/blood-2010-12-328161] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed induced pluripotent stem cells (iPSCs) from a patient with X-linked chronic granulomatous disease (X-CGD), a defect of neutrophil microbicidal reactive oxygen species (ROS) generation resulting from gp91(phox) deficiency. We demonstrated that mature neutrophils differentiated from X-CGD iPSCs lack ROS production, reproducing the pathognomonic CGD cellular phenotype. Targeted gene transfer into iPSCs, with subsequent selection and full characterization to ensure no off-target changes, holds promise for correction of monogenic diseases without the insertional mutagenesis caused by multisite integration of viral or plasmid vectors. Zinc finger nuclease-mediated gene targeting of a single-copy gp91(phox) therapeutic minigene into one allele of the "safe harbor" AAVS1 locus in X-CGD iPSCs without off-target inserts resulted in sustained expression of gp91(phox) and substantially restored neutrophil ROS production. Our findings demonstrate how precise gene targeting may be applied to correction of X-CGD using zinc finger nuclease and patient iPSCs.
Collapse
|
752
|
|
753
|
BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 2011; 31:1972-82. [PMID: 21383063 DOI: 10.1128/mcb.00981-10] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G(2)/M. These data support a crucial role for BMI1 in the cellular response to DNA damage.
Collapse
|
754
|
Eridani S, Mosca A. Fetal hemoglobin reactivation and cell engineering in the treatment of sickle cell anemia. J Blood Med 2011; 2:23-30. [PMID: 22287860 PMCID: PMC3262355 DOI: 10.2147/jbm.s14942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Indexed: 12/20/2022] Open
Abstract
The natural history of severe hemoglobinopathies like sickle cell disease (SCD) is rather variable, depending on the circumstances, but the main influence on such variability is the level of fetal hemoglobin (HbF) in the patient's red cells. It is well known that a significant HbF level is associated with a milder course of disease and fewer complications. Therefore, attempts have been made to reactivate using various means the HbF production, which is normally switched off perinatally. A pharmacological approach has been attempted since the 1980s, ranging from drugs like 5-azacytidine and its derivative, decitabine, to a series of compounds like hydroxyurea and a number of histone deacetylase inhibitors like butyrate, which seem to act as epigenetic modifiers. Many other disparate agents have been tried with mixed results, but hydroxyurea remains the most effective compound so far available. Combinations of different compounds have also been tried with some success. Established treatments like bone marrow or cord blood transplantation are so far the only real cure for a limited number of patients with severe hemoglobinopathies. Improved chemotherapy regimens of milder toxicity than those employed in the past have made it possible recently to obtain a stable, mixed donor-recipient chimerism, with reversal of the SCD phenotype. However, great effort is directed to cell engineering, searching for an effective gene vector by which a desired gene can be transferred into new classes of vectors for autologous hemopoietic stem cells. Recent studies are also aiming at targeted insertion of the therapeutic gene into hemopoietic cells, which can also be "induced" human stem cells, obtained from somatic dedifferentiated cells. Attention in this area must be paid to the possibility of undesired effects, like the emergence of potentially oncogenic cell populations. Finally, an update is presented on improved HbF determination methods, because common international standards are becoming mandatory.
Collapse
Affiliation(s)
- Sandro Eridani
- Department of Biomedical Science and Technology, University of Milano, Italy
| | | |
Collapse
|
755
|
Gene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases. Mol Ther 2011; 19:942-50. [PMID: 21326219 DOI: 10.1038/mt.2011.12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human embryonic stem (hES) cells are renewable cell sources that have potential applications in regenerative medicine. The development of technologies to produce permanent and site-specific genome modifications is in demand to achieve future medical implementation of hES cells. We report herein that a baculoviral vector (BV) system carrying zinc-finger nucleases (ZFNs) can successfully modify the hES cell genome. BV-mediated transient expression of ZFNs specifically disrupted the CCR5 locus in transduced cells and the modified cells exhibited resistance to HIV-1 transduction. To convert the BV to a gene targeting vector, a DNA donor template and ZFNs were incorporated into the vector. These hybrid vectors yielded permanent site-specific gene addition in both immortalized human cell lines (10%) and hES cells (5%). Modified hES cells were both karyotypically normal and pluripotent. These results suggest that this baculoviral delivery system can be engineered for site-specific genetic manipulation in hES cells.
Collapse
|
756
|
Delacôte F, Perez C, Guyot V, Mikonio C, Potrel P, Cabaniols JP, Delenda C, Pâques F, Duchateau P. Identification of genes regulating gene targeting by a high-throughput screening approach. J Nucleic Acids 2011; 2011:947212. [PMID: 21716659 PMCID: PMC3118287 DOI: 10.4061/2011/947212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/23/2011] [Indexed: 12/29/2022] Open
Abstract
Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination.
Collapse
Affiliation(s)
- Fabien Delacôte
- Cellectis SA, 102 Avenue Gaston Roussel, 93340 Romainville Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
757
|
Belay E, Mátrai J, Acosta-Sanchez A, Ma L, Quattrocelli M, Mátés L, Sancho-Bru P, Geraerts M, Yan B, Vermeesch J, Rincón MY, Samara-Kuko E, Ivics Z, Verfaillie C, Sampaolesi M, Izsvák Z, Vandendriessche T, Chuah MKL. Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cells 2011; 28:1760-71. [PMID: 20715185 DOI: 10.1002/stem.501] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult stem cells and induced pluripotent stem cells (iPS) hold great promise for regenerative medicine. The development of robust nonviral approaches for stem cell gene transfer would facilitate functional studies and potential clinical applications. We have previously generated hyperactive transposases derived from Sleeping Beauty, using an in vitro molecular evolution and selection paradigm. We now demonstrate that these hyperactive transposases resulted in superior gene transfer efficiencies and expression in mesenchymal and muscle stem/progenitor cells, consistent with higher expression levels of therapeutically relevant proteins including coagulation factor IX. Their differentiation potential and karyotype was not affected. Moreover, stable transposition could also be achieved in iPS, which retained their ability to differentiate along neuronal, cardiac, and hepatic lineages without causing cytogenetic abnormalities. Most importantly, transposon-mediated delivery of the myogenic PAX3 transcription factor into iPS coaxed their differentiation into MYOD(+) myogenic progenitors and multinucleated myofibers, suggesting that PAX3 may serve as a myogenic "molecular switch" in iPS. Hence, this hyperactive transposon system represents an attractive nonviral gene transfer platform with broad implications for regenerative medicine, cell and gene therapy.
Collapse
Affiliation(s)
- Eyayu Belay
- Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
758
|
Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 2011; 28:1893-904. [PMID: 20715183 PMCID: PMC2996088 DOI: 10.1002/stem.499] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells represent a promising unlimited cell source for generating patient-specific cells for biomedical research and personalized medicine. As a first step, critical to clinical applications, we attempted to develop defined culture conditions to expand and differentiate human iPSCs into functional progeny such as dopaminergic neurons for treating or modeling Parkinson's disease (PD). We used a completely defined (xeno-free) system that we previously developed for efficient generation of authentic dopaminergic neurons from human embryonic stem cells (hESCs), and applied it to iPSCs. First, we adapted two human iPSC lines derived from different somatic cell types for the defined expansion medium and showed that the iPSCs grew similarly as hESCs in the same medium regarding pluripotency and genomic stability. Second, by using these two independent adapted iPSC lines, we showed that the process of differentiation into committed neural stem cells (NSCs) and subsequently into dopaminergic neurons was also similar to hESCs. Importantly, iPSC-derived dopaminergic neurons were functional as they survived and improved behavioral deficits in 6-hydroxydopamine-leasioned rats after transplantation. In addition, iPSC-derived NSCs and neurons could be efficiently transduced by a baculoviral vector delivering episomal DNA for future gene function study and disease modeling using iPSCs. We also performed genome-wide microarray comparisons between iPSCs and hESCs, and we derived NSC and dopaminergic neurons. Our data revealed overall similarity and visible differences at a molecular level. Efficient generation of functional dopaminergic neurons under defined conditions will facilitate research and applications using PD patient-specific iPSCs. Stem Cells 2010;28:1893–1904
Collapse
Affiliation(s)
- Andrzej Swistowski
- Laboratory for Stem Cells & Aging, Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | | | |
Collapse
|
759
|
Cristea S, Gregory PD, Urnov FD, Cost GJ. Dissection of splicing regulation at an endogenous locus by zinc-finger nuclease-mediated gene editing. PLoS One 2011; 6:e16961. [PMID: 21347446 PMCID: PMC3035666 DOI: 10.1371/journal.pone.0016961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/18/2011] [Indexed: 01/22/2023] Open
Abstract
Sequences governing RNA splicing are difficult to study in situ due to the great difficulty of traditional targeted mutagenesis. Zinc-finger nuclease (ZFN) technology allows for the rapid and efficient introduction of site-specific mutations into mammalian chromosomes. Using a ZFN pair along with a donor plasmid to manipulate the outcomes of DNA repair, we introduced several discrete, targeted mutations into the fourth intron of the endogenous BAX gene in Chinese hamster ovary cells. Putative lariat branch points, the polypyrimidine tract, and the splice acceptor site were targeted. We recovered numerous otherwise isogenic clones carrying the intended mutations and analyzed the effect of each on BAX pre-mRNA splicing. Mutation of one of three possible branch points, the polypyrimidine tract, and the splice acceptor site all caused exclusion of exon five from BAX mRNA. Interestingly, these exon-skipping mutations allowed usage of cryptic splice acceptor sites within intron four. These data demonstrate that ZFN-mediated gene editing is a highly effective tool for dissection of pre-mRNA splicing regulatory sequences in their endogenous context.
Collapse
Affiliation(s)
- Sandra Cristea
- Sangamo BioSciences, Richmond, California, United States of America
| | | | | | | |
Collapse
|
760
|
Doyon JB, Zeitler B, Cheng J, Cheng AT, Cherone JM, Santiago Y, Lee AH, Vo TD, Doyon Y, Miller JC, Paschon DE, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Drubin DG. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 2011; 13:331-7. [PMID: 21297641 DOI: 10.1038/ncb2175] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022]
Abstract
Clathrin-mediated endocytosis (CME) is the best-studied pathway by which cells selectively internalize molecules from the plasma membrane and surrounding environment. Previous live-cell imaging studies using ectopically overexpressed fluorescent fusions of endocytic proteins indicated that mammalian CME is a highly dynamic but inefficient and heterogeneous process. In contrast, studies of endocytosis in budding yeast using fluorescent protein fusions expressed at physiological levels from native genomic loci have revealed a process that is very regular and efficient. To analyse endocytic dynamics in mammalian cells in which endogenous protein stoichiometry is preserved, we targeted zinc finger nucleases (ZFNs) to the clathrin light chain A and dynamin-2 genomic loci and generated cell lines expressing fluorescent protein fusions from each locus. The genome-edited cells exhibited enhanced endocytic function, dynamics and efficiency when compared with previously studied cells, indicating that CME is highly sensitive to the levels of its protein components. Our study establishes that ZFN-mediated genome editing is a robust tool for expressing protein fusions at endogenous levels to faithfully report subcellular localization and dynamics.
Collapse
Affiliation(s)
- Jeffrey B Doyon
- 1] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
761
|
Jensen NM, Dalsgaard T, Jakobsen M, Nielsen RR, Sørensen CB, Bolund L, Jensen TG. An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci 2011; 18:10. [PMID: 21284895 PMCID: PMC3042377 DOI: 10.1186/1423-0127-18-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/02/2011] [Indexed: 11/10/2022] Open
Abstract
Transfer of full-length genes including regulatory elements has been the preferred gene therapy strategy for clinical applications. However, with significant drawbacks emerging, targeted gene alteration (TGA) has recently become a promising alternative to this method. By means of TGA, endogenous DNA repair pathways of the cell are activated leading to specific genetic correction of single-base mutations in the genome. This strategy can be implemented using single-stranded oligodeoxyribonucleotides (ssODNs), small DNA fragments (SDFs), triplex-forming oligonucleotides (TFOs), adeno-associated virus vectors (AAVs) and zinc-finger nucleases (ZFNs). Despite difficulties in the use of TGA, including lack of knowledge on the repair mechanisms stimulated by the individual methods, the field holds great promise for the future. The objective of this review is to summarize and evaluate the different methods that exist within this particular area of human gene therapy research.
Collapse
Affiliation(s)
- Nanna M Jensen
- Institute of Human Genetics, The Bartholin Building, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
762
|
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11:11-27. [PMID: 21182466 PMCID: PMC3267165 DOI: 10.2174/156652311794520111] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 12/17/2022]
Abstract
The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.
Collapse
Affiliation(s)
- George Silva
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Laurent Poirot
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Roman Galetto
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Julianne Smith
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Centre (CNIO), Melchor Fdez. Almagro 3, 28029 Madrid, Spain
| | | | - Frédéric Pâques
- Cellectis Genome Surgery, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
- Cellectis, 102 Avenue Gaston Roussel, 93 235 Romainville, Cedex, France
| |
Collapse
|
763
|
Reyon D, Kirkpatrick JR, Sander JD, Zhang F, Voytas DF, Joung JK, Dobbs D, Coffman CR. ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics 2011; 12:83. [PMID: 21276248 PMCID: PMC3042413 DOI: 10.1186/1471-2164-12-83] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/28/2011] [Indexed: 02/04/2023] Open
Abstract
Background Zinc Finger Nucleases (ZFNs) have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN) method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. Description ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s). Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence). Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter) "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the effectiveness of a given ZFN in creating double-stranded breaks. Conclusions ZFNGenome provides a user-friendly interface that allows researchers to access resources and information regarding genomic target sites for engineered ZFNs in seven model organisms. This genome-wide database of potential ZFN target sites should greatly facilitate the utilization of ZFNs in both basic and clinical research. ZFNGenome is freely available at: http://bindr.gdcb.iastate.edu/ZFNGenome or at the Zinc Finger Consortium website: http://www.zincfingers.org/.
Collapse
Affiliation(s)
- Deepak Reyon
- Department of Genetics, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | | | |
Collapse
|
764
|
Abstract
DNA double-strand breaks (DSBs) arise through both replication errors and from exogenous events such as exposure to ionizing radiation. DSBs are potentially lethal, and cells have evolved a highly conserved mechanism to detect and repair these lesions. This mechanism involves phosphorylation of histone H2AX (γH2AX) and the loading of DNA repair proteins onto the chromatin adjacent to the DSB. It is now clear that the chromatin architecture in the region surrounding the DSB has a critical impact on the ability of cells to mount an effective DNA damage response. DSBs promote the direct the formation of open, relaxed chromatin domains which are spatially confined to the area surrounding the break. These relaxed chromatin structures are created through the coupled action of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. The resulting destabilization of nucleosomes at the DSB by Tip60 and p400 is required for ubiquitination of the chromatin by the RNF8 ubiquitin ligase, and for the subsequent recruitment of the brca1 complex. Chromatin dynamics at DSBs can therefore exert a powerful influence on the process of DSB repair. Further, there is emerging evidence that the different chromatin structures in the cell, such as heterochromatin and euchromatin, utilize distinct remodeling complexes and pathways to facilitate DSB. The processing and repair of DSB is therefore critically influenced by the nuclear architecture in which the lesion arises.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
765
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
766
|
An adeno-associated virus vector efficiently and specifically transduces mouse skeletal muscle. Mol Biotechnol 2011; 49:1-10. [PMID: 21197588 DOI: 10.1007/s12033-010-9369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Expression of a therapeutic gene in the skeletal muscle is a practical strategy to compensate a patients' insufficient circulating factor. Its clinical application requires a muscle-targeting vector capable of inducing a continuous high-level transgene expression. We modified an adeno-associated virus serotype 2 (AAV2) vector expressing luciferase from the mouse muscle creatine kinase gene promoter-enhancer (Ckm). First, AAVS1 insulator was inserted into the vector genome for transcriptional enhancement. This increased transduction of mouse quadriceps muscle by 11-fold at 4 weeks after intramuscular injection. Second, two capsid modifications were combined (21F capsid): incorporation of a segment of AAV1 capsid to produce a hybrid capsid and substitution of a tyrosine with a phenylalanine. Use of 21F capsid increased muscle transduction further by 18-fold, resulting in 200-fold higher efficacy than that of the unmodified vector. Compared with a vector having human elongation factor 1α promoter which showed similar efficacy in the muscle, this vector having Ckm transduced non-muscle organs less efficiently after intravenous administration. The AAV2 vector composed of the modified genome and capsid provides a backbone to develop a clinical vector expressing a therapeutic gene in the muscle.
Collapse
|
767
|
|
768
|
Abstract
Epigenetic mechanisms alter the structure of local chromosome domains to dynamically regulate gene expression by signalling and propagating transcriptional states. Nuclear receptors, a stimulus-inducible class of transcription factors, interact with chromatin to regulate transcription. To promote transcription, nuclear receptors interact with genomic regulatory elements that are epigenetically marked by modified histone tails, DNA methylation status, histone variants, chromatin accessibility and long-range interactions. Advances in throughput have allowed the profiling of regulatory factor activity on a genome-wide scale, with recent evidence from genomic analyses highlighting novel aspects of DNA-binding factor actions on chromatin. In the present review, the current knowledge of the mechanisms regulating nuclear receptor occupancy at cis-regulatory elements is discussed, with particular emphasis on the glucocorticoid, oestrogen and androgen receptors. Epigenetic regulation of genomic elements direct cell-specific regulatory factor binding and contribute to human variation in factor occupancy. Through regulating nuclear receptor activity, the epigenome is a critical checkpoint in nuclear receptor induced gene expression in health and disease.
Collapse
Affiliation(s)
- S C Biddie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| |
Collapse
|
769
|
Yoon BS, You S. Trends and clinical application of induced pluripotent stem cells. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2011. [DOI: 10.5124/jkma.2011.54.5.502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Byung Sun Yoon
- Laboratory of Cell Function Regulation, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| |
Collapse
|
770
|
Wong JV, Yao G, Nevins JR, You L. Using noisy gene expression mediated by engineered adenovirus to probe signaling dynamics in mammalian cells. Methods Enzymol 2011; 497:221-37. [PMID: 21601089 DOI: 10.1016/b978-0-12-385075-1.00010-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Perturbations from environmental, genetic, and pharmacological sources can generate heterogeneous biological responses, even in genetically identical cells. Although these differences have important consequences on cell physiology and survival, they are often subsumed in measurements that average over the population. Here, we describe in detail how variability in adenoviral-mediated gene expression provides an effective means to map dose responses of signaling pathways. Cell-cell variability is inherent in gene delivery methods used in cell biology, which makes this approach adaptable to many existing experimental systems. We also discuss strategies to quantify biologically relevant inputs and outputs.
Collapse
Affiliation(s)
- Jeffrey V Wong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
771
|
Kim S, Kim JS. Targeted genome engineering via zinc finger nucleases. PLANT BIOTECHNOLOGY REPORTS 2011; 5:9-17. [PMID: 21837253 PMCID: PMC3150832 DOI: 10.1007/s11816-010-0161-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 05/29/2023]
Abstract
With the development of next-generation sequencing technology, ever-expanding databases of genetic information from various organisms are available to researchers. However, our ability to study the biological meaning of genetic information and to apply our genetic knowledge to produce genetically modified crops and animals is limited, largely due to the lack of molecular tools to manipulate genomes. Recently, targeted cleavage of the genome using engineered DNA scissors called zinc finger nucleases (ZFNs) has successfully supported the precise manipulation of genetic information in various cells, animals, and plants. In this review, we will discuss the development and applications of ZFN technology for genome engineering and highlight recent reports on its use in plants.
Collapse
Affiliation(s)
- Seokjoong Kim
- ToolGen, Inc., Biotechnology Incubating Center, Seoul National University, Gwanak-gu, Seoul, 151-724 South Korea
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul, 151-742 South Korea
| |
Collapse
|
772
|
Gaspard N, Vanderhaeghen P. From stem cells to neural networks: recent advances and perspectives for neurodevelopmental disorders. Dev Med Child Neurol 2011; 53:13-7. [PMID: 21087236 DOI: 10.1111/j.1469-8749.2010.03827.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Embryonic or induced pluripotent stem cells, available in mouse and human, have emerged as powerful tools to address complex questions in neurobiology. This review focuses on major advances relating to brain development and developmental disorders. Stem cells can differentiate into many different neuronal subtypes using in vitro models mimicking relevant in vivo developmental processes, and the underlying molecular and cellular mechanisms. Disease-specific human embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells are now available and allow for the study in vitro of the pathophysiology of degenerative and neurodevelopmental hereditary and sporadic disorders, including in the near future those of the human cortex. Finally, some recent studies have shown that stem cell-derived neural progenitors and neurons could help to rebuild damaged brain circuitry, opening the possibility of cell therapy.
Collapse
Affiliation(s)
- Nicolas Gaspard
- Université Libre de Bruxelles, Institute for Interdisciplinary Research, Brussels, Belgium
| | | |
Collapse
|
773
|
Therapeutic Possibilities of Induced Pluripotent Stem Cells. TRANSLATIONAL STEM CELL RESEARCH 2011. [DOI: 10.1007/978-1-60761-959-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
774
|
Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA. Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res 2011; 39:381-92. [PMID: 20843781 PMCID: PMC3017618 DOI: 10.1093/nar/gkq787] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 01/12/2023] Open
Abstract
Zinc finger nucleases (ZFNs) facilitate tailor-made genomic modifications in vivo through the creation of targeted double-stranded breaks. They have been employed to modify the genomes of plants and animals, and cell-based therapies utilizing ZFNs are undergoing clinical trials. However, many ZFNs display dose-dependent toxicity presumably due to the generation of undesired double-stranded breaks at off-target sites. To evaluate the parameters influencing the functional specificity of ZFNs, we compared the in vivo activity of ZFN variants targeting the zebrafish kdrl locus, which display both high on-target activity and dose-dependent toxicity. We evaluated their functional specificity by assessing lesion frequency at 141 potential off-target sites using Illumina sequencing. Only a minority of these off-target sites accumulated lesions, where the thermodynamics of zinc finger-DNA recognition appear to be a defining feature of active sites. Surprisingly, we observed that both the specificity of the incorporated zinc fingers and the choice of the engineered nuclease domain could independently influence the fidelity of these ZFNs. The results of this study have implications for the assessment of likely off-target sites within a genome and point to both zinc finger-dependent and -independent characteristics that can be tailored to create ZFNs with greater precision.
Collapse
Affiliation(s)
- Ankit Gupta
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiangdong Meng
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J. Zhu
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nathan D. Lawson
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scot A. Wolfe
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
775
|
Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG. Chemical Control of Stem Cell Fate and Developmental Potential. Angew Chem Int Ed Engl 2010; 50:200-42. [DOI: 10.1002/anie.201004284] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Costas A. Lyssiotis
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Luke L. Lairson
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Anthony E. Boitano
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Heiko Wurdak
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Shoutian Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Peter G. Schultz
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| |
Collapse
|
776
|
Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG. Chemische Kontrolle des Schicksals und Entwicklungspotenzials von Stammzellen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004284] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Costas A. Lyssiotis
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Luke L. Lairson
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Anthony E. Boitano
- The Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (USA)
| | - Heiko Wurdak
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Shoutian Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| | - Peter G. Schultz
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858‐784‐9440
| |
Collapse
|
777
|
Bobis-Wozowicz S, Osiak A, Rahman SH, Cathomen T. Targeted genome editing in pluripotent stem cells using zinc-finger nucleases. Methods 2010; 53:339-46. [PMID: 21185378 DOI: 10.1016/j.ymeth.2010.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/29/2010] [Accepted: 12/17/2010] [Indexed: 12/31/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) are designer nucleases capable of cleaving a prespecified target DNA within complex genomes. ZFNs consist of a non-specific endonuclease domain fused to an engineered DNA-binding domain that tethers the nuclease activity to the chosen chromosomal site. The endonuclease-induced DNA double strand break triggers a cellular DNA damage response, resulting in double strand break repair by either accurate homologous recombination (HR) or error-prone non-homologous end-joining (NHEJ). Thus, ZFNs are powerful tools for targeted genome engineering in a variety of mammalian cell types, including embryonic (ESCs) and induced pluripotent stem cells (iPSCs). As a paradigm for genome editing in pluripotent stem cells, we describe the use of ZFNs in murine ESCs for generating knockout alleles by NHEJ without selection or by HR employing different selection schemes.
Collapse
|
778
|
A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2010; 29:143-8. [PMID: 21179091 DOI: 10.1038/nbt.1755] [Citation(s) in RCA: 1513] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/14/2010] [Indexed: 11/08/2022]
Abstract
Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.
Collapse
|
779
|
Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LMS, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M. Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 2010; 29:73-8. [PMID: 21151124 DOI: 10.1038/nbt.1717] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/26/2010] [Indexed: 12/20/2022]
Abstract
Realizing the therapeutic potential of human induced pluripotent stem (iPS) cells will require robust, precise and safe strategies for genetic modification, as cell therapies that rely on randomly integrated transgenes pose oncogenic risks. Here we describe a strategy to genetically modify human iPS cells at 'safe harbor' sites in the genome, which fulfill five criteria based on their position relative to contiguous coding genes, microRNAs and ultraconserved regions. We demonstrate that ∼10% of integrations of a lentivirally encoded β-globin transgene in β-thalassemia-patient iPS cell clones meet our safe harbor criteria and permit high-level β-globin expression upon erythroid differentiation without perturbation of neighboring gene expression. This approach, combining bioinformatics and functional analyses, should be broadly applicable to introducing therapeutic or suicide genes into patient-specific iPS cells for use in cell therapy.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
780
|
Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 2010; 29:64-7. [PMID: 21151125 DOI: 10.1038/nbt.1731] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 11/10/2010] [Indexed: 11/09/2022]
Abstract
Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed.
Collapse
|
781
|
Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 2010; 143:508-25. [PMID: 21074044 DOI: 10.1016/j.cell.2010.10.008] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/23/2022]
Abstract
Direct reprogramming of somatic cells to induced pluripotent stem cells by ectopic expression of defined transcription factors has raised fundamental questions regarding the epigenetic stability of the differentiated cell state. In addition, evidence has accumulated that distinct states of pluripotency can interconvert through the modulation of both cell-intrinsic and exogenous factors. To fully realize the potential of in vitro reprogrammed cells, we need to understand the molecular and epigenetic determinants that convert one cell type into another. Here we review recent advances in this rapidly moving field and emphasize unresolved and controversial questions.
Collapse
Affiliation(s)
- Jacob H Hanna
- The Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
782
|
Şöllü C, Pars K, Cornu TI, Thibodeau-Beganny S, Maeder ML, Joung JK, Heilbronn R, Cathomen T. Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res 2010; 38:8269-76. [PMID: 20716517 PMCID: PMC3001086 DOI: 10.1093/nar/gkq720] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/17/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) have been successfully used for rational genome engineering in a variety of cell types and organisms. ZFNs consist of a non-specific FokI endonuclease domain and a specific zinc-finger DNA-binding domain. Because the catalytic domain must dimerize to become active, two ZFN subunits are typically assembled at the cleavage site. The generation of obligate heterodimeric ZFNs was shown to significantly reduce ZFN-associated cytotoxicity in single-site genome editing strategies. To further expand the application range of ZFNs, we employed a combination of in silico protein modeling, in vitro cleavage assays, and in vivo recombination assays to identify autonomous ZFN pairs that lack cross-reactivity between each other. In the context of ZFNs designed to recognize two adjacent sites in the human HOXB13 locus, we demonstrate that two autonomous ZFN pairs can be directed simultaneously to two different sites to induce a chromosomal deletion in ∼ 10% of alleles. Notably, the autonomous ZFN pair induced a targeted chromosomal deletion with the same efficacy as previously published obligate heterodimeric ZFNs but with significantly less toxicity. These results demonstrate that autonomous ZFNs will prove useful in targeted genome engineering approaches wherever an application requires the expression of two distinct ZFN pairs.
Collapse
Affiliation(s)
- Cem Şöllü
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Kaweh Pars
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Tatjana I. Cornu
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Stacey Thibodeau-Beganny
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Morgan L. Maeder
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - J. Keith Joung
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Regine Heilbronn
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Toni Cathomen
- Department of Experimental Hematology, Hannover Medical School, Hannover, Institute of Virology, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany, Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Biological and Biomedical Sciences Program and Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
783
|
Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S. Creating designed zinc-finger nucleases with minimal cytotoxicity. J Mol Biol 2010; 405:630-41. [PMID: 21094162 DOI: 10.1016/j.jmb.2010.10.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 12/28/2022]
Abstract
Zinc-finger nucleases (ZFNs) have emerged as powerful tools for delivering a targeted genomic double-strand break (DSB) to either stimulate local homologous recombination with investigator-provided donor DNA or induce gene mutations at the site of cleavage in the absence of a donor by nonhomologous end joining both in plant cells and in mammalian cells, including human cells. ZFNs are formed by fusing zinc-finger proteins to the nonspecific cleavage domain of the FokI restriction enzyme. ZFN-mediated gene targeting yields high gene modification efficiencies (>10%) in a variety of cells and cell types by delivering a recombinogenic DSB to the targeted chromosomal locus, using two designed ZFNs. The mechanism of DSB by ZFNs requires (1) two ZFN monomers to bind to their adjacent cognate sites on DNA and (2) the FokI nuclease domains to dimerize to form the active catalytic center for the induction of the DSB. In the case of ZFNs fused to wild-type FokI cleavage domains, homodimers may also form; this could limit the efficacy and safety of ZFNs by inducing off-target cleavage. In this article, we report further refinements to obligate heterodimer variants of the FokI cleavage domain for the creation of custom ZFNs with minimal cellular toxicity. The efficacy and efficiency of the reengineered obligate heterodimer variants of the FokI cleavage domain were tested using the green fluorescent protein gene targeting reporter system. The three-finger and four-finger zinc-finger protein fusions to the REL_DKK pair among the newly generated FokI nuclease domain variants appear to eliminate or greatly reduce the toxicity of designer ZFNs to human cells.
Collapse
Affiliation(s)
- Sivaprakash Ramalingam
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
784
|
Rowntree RK, McNeish JD. Induced pluripotent stem cells: opportunities as research and development tools in 21st century drug discovery. Regen Med 2010; 5:557-68. [PMID: 20632859 DOI: 10.2217/rme.10.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs), when compared with transformed, primary or engineered cells, have unique characteristics and advantages that have resulted in the development of important cell-based tools in modern drug discovery. However, a key limitation has been the availability of human ESCs from patients with specific medical needs and the broad range of genetic variation represented worldwide. Induced pluripotent stem (iPS) cells are derived from somatic cells that are reprogrammed to a pluripotent stem cell state and have functional characteristics similar to ESCs. The demonstration that human iPS cells can be derived, with relative ease, through the introduction of transcription factor combinations has allowed the generation of disease-specific iPS cell lines. Therefore, iPS cell technology may deliver robust, human pluripotent cell lines from a wide range of clinical phenotypes and genotypes. Although human iPS cell technology is still a new tool in drug discovery, the promise that this technology will impact the discovery of new therapies can be projected based on the uptake of stem cell applications in biopharmaceutical sciences. Here, the near-term opportunities that iPS cells may deliver to drug discoverers to generate and test hypotheses will be discussed, with a focus on the specific strengths and weaknesses of iPS cell technology. Finally, the future perspective will address novel opportunities iPS cells could uniquely deliver to the preclinical development of new drug therapies.
Collapse
Affiliation(s)
- Rebecca K Rowntree
- Pfizer Regenerative Medicine, 620 Memorial Drive, Cambridge, MA 02139, USA
| | | |
Collapse
|
785
|
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24:2239-63. [PMID: 20952534 DOI: 10.1101/gad.1963910] [Citation(s) in RCA: 557] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic transcription factors. This discovery has raised fundamental questions about the mechanisms by which transcription factors influence the epigenetic conformation and differentiation potential of cells during reprogramming and normal development. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. In this review, we summarize the progress that has been made in the iPSC field over the last 4 years, with an emphasis on understanding the mechanisms of cellular reprogramming and its potential applications in cell therapy.
Collapse
Affiliation(s)
- Matthias Stadtfeld
- Howard Hughes Medical Institute, Harvard University and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
786
|
Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnol Adv 2010; 28:715-24. [DOI: 10.1016/j.biotechadv.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
|
787
|
Narsinh KH, Wu JC. Gene correction in human embryonic and induced pluripotent stem cells: promises and challenges ahead. Mol Ther 2010; 18:1061-3. [PMID: 20514030 DOI: 10.1038/mt.2010.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kazim H Narsinh
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
788
|
Li P, Estrada J, Zhang F, Waghmare SK, Mir B. Isolation, Characterization, and Nuclear Reprogramming of Cell Lines Derived from Porcine Adult Liver and Fat. Cell Reprogram 2010; 12:599-607. [DOI: 10.1089/cell.2010.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Ping Li
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose Estrada
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fan Zhang
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sanjeev K. Waghmare
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bashir Mir
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
789
|
Jacob HJ, Lazar J, Dwinell MR, Moreno C, Geurts AM. Gene targeting in the rat: advances and opportunities. Trends Genet 2010; 26:510-8. [PMID: 20869786 DOI: 10.1016/j.tig.2010.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 01/19/2023]
Abstract
The rat has long been a model favored by physiologists, pharmacologists and neuroscientists. However, over the past two decades, many investigators in these fields have turned to the mouse because of its gene modification technologies and extensive genomic resources. Although the genomic resources of the rat have nearly caught up, gene targeting has lagged far behind, limiting the value of the rat for many investigators. In the past two years, advances in transposon- and zinc finger nuclease (ZFN)-mediated gene knockout as well as the establishment and culturing of embryonic and inducible pluripotent stem cells have created new opportunities for rat genetic research. Here, we provide a high-level description and the potential uses of these new technologies for investigators using the rat for biomedical research.
Collapse
Affiliation(s)
- Howard J Jacob
- Department of Dermatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
790
|
Kooreman NG, Wu JC. Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. J R Soc Interface 2010; 7 Suppl 6:S753-63. [PMID: 20880852 DOI: 10.1098/rsif.2010.0353.focus] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the ability (i) to duplicate indefinitely while maintaining pluripotency and (ii) to differentiate into cell types of all three embryonic germ layers. These two properties of ESCs and iPSCs make them potentially suitable for tissue engineering and cell replacement therapy for many different diseases, including Parkinson's disease, diabetes and heart disease. However, one critical obstacle in the clinical application of ESCs or iPSCs is the risk of teratoma formation. The emerging field of molecular imaging is allowing researchers to track transplanted ESCs or iPSCs in vivo, enabling early detection of teratomas.
Collapse
Affiliation(s)
- Nigel G Kooreman
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, 300 Pasteur Drive, Grant S140B, Stanford, CA 94305-5111, USA
| | | |
Collapse
|
791
|
Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. ACTA ACUST UNITED AC 2010; 191:31-43. [PMID: 20876283 PMCID: PMC2953432 DOI: 10.1083/jcb.201001160] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p400 unwinds chromatin from nucleosomes flanking double-strand breaks to facilitate recruitment of the DNA repair components brca1 and 53BP1. The complexity of chromatin architecture presents a significant barrier to the ability of the DNA repair machinery to access and repair DNA double-strand breaks (DSBs). Consequently, remodeling of the chromatin landscape adjacent to DSBs is vital for efficient DNA repair. Here, we demonstrate that DNA damage destabilizes nucleosomes within chromatin regions that correspond to the γ-H2AX domains surrounding DSBs. This nucleosome destabilization is an active process requiring the ATPase activity of the p400 SWI/SNF ATPase and histone acetylation by the Tip60 acetyltransferase. p400 is recruited to DSBs by a mechanism that is independent of ATM but requires mdc1. Further, the destabilization of nucleosomes by p400 is required for the RNF8-dependent ubiquitination of chromatin, and for the subsequent recruitment of brca1 and 53BP1 to DSBs. These results identify p400 as a novel DNA damage response protein and demonstrate that p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage.
Collapse
Affiliation(s)
- Ye Xu
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
792
|
Abstract
Adeno-associated viruses (AAV) are widely spread throughout the human population, yet no pathology has been associated with infection. This fact, together with the availability of simple molecular techniques to alter the packaged viral genome, has made AAV a serious contender in the search for an ideal gene therapy delivery vehicle. However, our understanding of the intriguing features of this virus is far from exhausted and it is likely that the mechanisms underlying the viral lifestyle will reveal possible novel strategies that can be employed in future clinical approaches. One such aspect is the unique approach AAV has evolved in order to establish latency. In the absence of a cellular milieu that will support productive viral replication, wild-type AAV can integrate its genome site specifically into a locus on human chromosome 19 (termed AAVS1), where it resides without apparent effects on the host cell until cellular conditions are changed by outside influences, such as adenovirus super-infection, which will lead to the rescue of the viral genome and productive replication. This article will introduce the biology of AAV, the unique viral strategy of targeted genome integration and address relevant questions within the context of attempts to establish therapeutic approaches that will utilize targeted gene addition to the human genome.
Collapse
Affiliation(s)
- Els Henckaerts
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK
| | | |
Collapse
|
793
|
Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. NATURE MATERIALS 2010; 9:768-78. [PMID: 20729850 PMCID: PMC3388774 DOI: 10.1038/nmat2812] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 06/24/2010] [Indexed: 04/14/2023]
Abstract
Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure-function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content, have a moderate wettability and employ integrin alpha(v)beta(3) and alpha(v)beta(5) engagement with adsorbed vitronectin to promote colony formation. The structure-function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.
Collapse
Affiliation(s)
- Ying Mei
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
794
|
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11:636-46. [PMID: 20717154 DOI: 10.1038/nrg2842] [Citation(s) in RCA: 1465] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reverse genetics in model organisms such as Drosophila melanogaster, Arabidopsis thaliana, zebrafish and rats, efficient genome engineering in human embryonic stem and induced pluripotent stem cells, targeted integration in crop plants, and HIV resistance in immune cells - this broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair. Such 'genome editing' is now established in human cells and a number of model organisms, thus opening the door to a range of new experimental and therapeutic possibilities.
Collapse
Affiliation(s)
- Fyodor D Urnov
- Sangamo BioSciences Inc., Richmond, California 94804, USA
| | | | | | | | | |
Collapse
|
795
|
Ito D, Yagi T, Nihei Y, Yoshizaki T, Suzuki N. [Advances in induced pluripotent stem cell research for neurological diseases]. Rinsho Shinkeigaku 2010; 50:449-54. [PMID: 20681260 DOI: 10.5692/clinicalneurol.50.449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In 2006, Takahashi and Yamanaka reported a groundbreaking study showing mouse and human somatic cells that can be reprogrammed to the pluripotent state by expression of only a few transcription factors (Oct4, Sox2, Klf4, and c-Myc). This novel strategy can be used for transplantation therapies without immune rejection providing additional advantages regarding ethic issues of oocyte donation. For neurological diseases, disease-specific induced pluripotent stem (iPS) cells may serve as an invaluable model for clarifying pathogenesis and for screening new drug therapies. In particular, differentiated neurons derived from patient iPS cells could infinitely provide an alternative cellular-biochemical material for research instead of biopsy and autopsy. This review summarizes the current studies applying iPS cells in the field of neurology and discusses their potential and limitations for therapy against neurological diseases.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, School of Medicine, Keio University
| | | | | | | | | |
Collapse
|
796
|
Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 2010; 107:15022-6. [PMID: 20686113 DOI: 10.1073/pnas.1009424107] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene targeting by homologous recombination in embryonic stem cells is extensively used to generate specific mouse mutants. However, most mammalian species lack tools for targeted gene manipulation. Since double-strand breaks strongly increase the rate of homologous recombination at genomic loci, we explored whether gene targeting can be directly performed in zygotes by the use of zinc-finger nucleases. Here we report that gene targeting is achieved in 1.7-4.5% of murine one-cell embryos upon the coinjection of targeting vectors with zinc-finger nucleases, without preselection. These findings enable the manipulation of the mammalian germ line in a single step in zygotes, independent of ES cells.
Collapse
|
797
|
Wichterle H, Przedborski S. What can pluripotent stem cells teach us about neurodegenerative diseases? Nat Neurosci 2010; 13:800-4. [PMID: 20581816 DOI: 10.1038/nn.2577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent a growing public health challenge. Current medications treat symptoms, but none halt or retard neurodegeneration. The recent advent of pluripotent cell biology has opened new avenues for neurodegenerative disease research. The greatest potential for induced pluripotent cells derived from affected individuals is likely to be their utility for modeling and understanding the mechanisms underlying neurodegenerative processes, and for searching for new treatments, including cell replacement therapies. However, much work remains to be done before pluripotent cells can be used for preclinical and clinical applications. Here we discuss the challenges of generating specific neural cell subtypes from pluripotent stem cells, the use of pluripotent stem cells to model both cell-autonomous and non-cell-autonomous mechanisms of neurodegeneration, whether adult-onset neurodegeneration can be emulated in short-term cultures and the hurdles of cell replacement therapy. Progress in these four areas will substantially accelerate effective application of pluripotent stem cells.
Collapse
Affiliation(s)
- Hynek Wichterle
- Department of Neurology, Columbia University, New York, New York, USA
| | | |
Collapse
|
798
|
Gene therapy, gene targeting and induced pluripotent stem cells: applications in monogenic disease treatment. Biotechnol Adv 2010; 29:1-10. [PMID: 20656005 DOI: 10.1016/j.biotechadv.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 01/15/2023]
Abstract
Monogenic diseases are often severe, life-threatening disorders for which lifelong palliative treatment is the only option. Over the last two decades, a number of strategies have been devised with the aim to treat these diseases with a genetic approach. Gene therapy has been under development for many years, yet suffers from the lack of an effective and safe vector for the delivery of genetic material into cells. More recently, gene targeting by homologous recombination has been proposed as a safer treatment, by specifically correcting disease-causing mutations. However, low efficiency is a major drawback. The emergence of two technologies could overcome some of these obstacles. Terminally differentiated somatic cells can be reprogrammed, using defined factors, to become induced pluripotent stem cells (iPSCs), which can undergo efficient gene mutation correction with the aid of fusion proteins known as zinc finger nucleases (ZFNs). The amalgamation of these two technologies has the potential to break through the current bottleneck in gene therapy and gene targeting.
Collapse
|
799
|
Abstract
The importance of genetic laboratory models, such as mice and rats, becomes evident when there is a poor understanding of the nature of human disease. Many rat models for human disease, created over the years by phenotype-driven strategies, now provide a foundation for the identification of their genetic determinants. These models are especially valuable with the emerging need for validation of genes found in genome-wide association studies for complex diseases. The manipulation of the rat genome using engineered zinc-finger nucleases now introduces a key technology for manipulating the rat genome, which is broadly applicable. The ability to generate knockout rat models using zinc-finger nuclease technology will now enable its full emergence as an exceptional physiological and genetic research model.
Collapse
|
800
|
Ochiai H, Fujita K, Suzuki KI, Nishikawa M, Shibata T, Sakamoto N, Yamamoto T. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 2010; 15:875-85. [PMID: 20604805 DOI: 10.1111/j.1365-2443.2010.01425.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We showed that engineered zinc-finger nucleases (ZFNs), which consist of a zinc-finger DNA-binding array and a nuclease domain of the restriction enzyme FokI, can introduce mutations at a specific genomic site in the sea urchin embryo. Using bacterial one-hybrid screening with zinc-finger randomized libraries and a single-strand annealing assay in cultured cells, ZFNs targeting the sea urchin Hemicentrotus pulcherrimus homologue of HesC (HpHesC) were efficiently selected. Consistent with the phenotype observed in embryos injected with an antisense morpholino oligonucleotide against HpHesC, an increase in the primary mesenchyme cell population was observed in embryos injected with a pair of HpHesC ZFN mRNAs. In addition, sequence analysis of the mutations showed that deletions and insertions occurred at the HpHesC target site in the embryos injected with the HpHesC ZFN mRNAs. These results suggest that targeted gene disruption using ZFNs is feasible for the sea urchin embryo.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|