99901
|
He X, Ewing AG. Simultaneous Counting of Molecules in the Halo and Dense-Core of Nanovesicles by Regulating Dynamics of Vesicle Opening. Angew Chem Int Ed Engl 2022; 61:e202116217. [PMID: 35129861 PMCID: PMC9306628 DOI: 10.1002/anie.202116217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 01/09/2023]
Abstract
We report the discovery that in the presence of chaotropic anions (SCN- ) the opening of nanometer biological vesicles at an electrified interface often becomes a two-step process (around 30 % doublet peaks). We have then used this to independently count molecules in each subvesicular compartment, the halo and protein dense-core, and the fraction of catecholamine binding to the dense-core is 68 %. Moreover, we differentiated two distinct populations of large dense-core vesicles (LDCVs) and quantified their content, which might correspond to immature (43 %) and mature (30 %) LDCVs, to reveal differences in their biogenesis. We speculate this is caused by an increase in the electrostatic attraction between protonated catecholamine and the negatively charged dense-core following adsorption of SCN- .
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
99902
|
Chrysostomou V, Katifelis H, Gazouli M, Dimas K, Demetzos C, Pispas S. Hydrophilic Random Cationic Copolymers as Polyplex-Formation Vectors for DNA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2650. [PMID: 35407982 PMCID: PMC9000809 DOI: 10.3390/ma15072650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022]
Abstract
Research on the improvement and fabrication of polymeric systems as non-viral gene delivery carriers is required for their implementation in gene therapy. Random copolymers have not been extensively utilized for these purposes. In this regard, double hydrophilic poly[(2-(dimethylamino) ethyl methacrylate)-co-(oligo(ethylene glycol) methyl ether methacrylate] [P(DMAEMA-co-OEGMA)] random copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The copolymers were further modified by quaternization of DMAEMA tertiary amine, producing the cationic P(QDMAEMA-co-OEGMA) derivatives. Fluorescence and ultraviolet-visible (UV-vis) spectroscopy revealed the efficient interaction of copolymers aggregates with linear DNAs of different lengths, forming polyplexes, with the quaternized copolymer aggregates exhibiting stronger binding affinity. Light scattering techniques evidenced the formation of polyplexes whose size, molar mass, and surface charge strongly depend on the N/P ratio (nitrogen (N) of the amine group of DMAEMA/QDMAEMA over phosphate (P) groups of DNA), DNA length, and length of the OEGMA chain. Polyplexes presented colloidal stability under physiological ionic strength as shown by dynamic light scattering. In vitro cytotoxicity of the empty nanocarriers was evaluated on HEK293 as a control cell line. P(DMAEMA-co-OEGMA) copolymer aggregates were further assessed for their biocompatibility on 4T1, MDA-MB-231, MCF-7, and T47D breast cancer cell lines presenting high cell viability rates.
Collapse
Affiliation(s)
- Varvara Chrysostomou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece;
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (H.K.); (M.G.)
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (H.K.); (M.G.)
- Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece;
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
99903
|
Huang XY, Zheng Q, Zou LM, Gu Q, Tu T, You SL. Hyper-Crosslinked Porous Chiral Phosphoric Acids: Robust Solid Organocatalysts for Asymmetric Dearomatization Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xian-Yun Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei-Ming Zou
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shu-Li You
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
99904
|
Xie PC, Guo XQ, Yang FQ, Xu N, Chen YY, Wang XQ, Wang H, Yong YC. Cytochrome C catalyzed oxygen tolerant atom-transfer radical polymerization. BIORESOUR BIOPROCESS 2022; 9:41. [PMID: 38647739 PMCID: PMC10992558 DOI: 10.1186/s40643-022-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Atom-transfer radical polymerization (ATRP) is a well-known technique for controlled polymer synthesis. However, the ATRP usually employed toxic heavy metal ionas as the catalyst and was susceptible to molecular oxygen, which made it should be conducted under strictly anoxic condition. Conducting ATRP under ambient and biocompatible conditions is the major challenge. In this study, cytochrome C was explored as an efficient biocatalyst for ATRP under biocompatible conditions. The cytochrome C catalyzed ATRP showed a relatively low polymer dispersity index of 1.19. More interestingly, the cytochrome C catalyzed ATRP showed superior oxygen resistance as it could be performed under aerobic conditions with high dissolved oxygen level. Further analysis suggested that the Fe(II) embed in the cytochrome C might serve as the catalytic center and methyl radical was responsible for the ATRP catalysis. This work explored new biocompatible catalyst for aerobic ATRP, which might open new dimension for practical ATRP and application of cytochrome C protein.
Collapse
Affiliation(s)
- Peng-Cheng Xie
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xue-Qing Guo
- Joint Institute of Jiangsu University-Hongrun Tech, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fu-Qiao Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Nuo Xu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yuan-Yuan Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xing-Qiang Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Hongcheng Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
- Joint Institute of Jiangsu University-Hongrun Tech, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
99905
|
Synthesis and Nanoarchitectonics of Novel Squaraine Derivatives for Organic Photovoltaic Devices. NANOMATERIALS 2022; 12:nano12071206. [PMID: 35407324 PMCID: PMC9000516 DOI: 10.3390/nano12071206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/18/2023]
Abstract
Necessary advancements in the area of organic photovoltaic (OPV) devices include the upgrade of power conversion efficiencies (PCE) and stability. One answer to these demands lies in the research into new absorbers. Here, we focus on the development of new small molecule absorbers from the group of squaraines (SQs). These modular absorbers can be applied as donors in organic solar cells and have the ability to utilize a broad range of solar radiation if blended with suitable acceptors. In order to allow for the compatibility and favorable organization of donor and acceptor in the absorber layer, we intend to optimize the structure of the SQ by varying the groups attached to the squaric acid core. For that purpose, we accordingly developed a well-suited synthesis route. The novel alkyl- and benzyl-substituted aryl aminosquaraines were synthesized through an improved and eco-friendly procedure. Special emphasis was placed on optimizing the amination reaction to obtain initial precursors in the synthesis of squaraine, avoiding hitherto common catalytic processes. All SQ precursors and SQ products were completely described. The derived SQs were additionally characterized in thin-film configuration using cyclic voltammetry and UV-VIS spectroscopy and then processed to prepare self-standing bulk heterojunction (BHJ) thin films in conjunction with fullerene-based electron acceptors, which were characterized via profilometry. The comparison between SQ and BHJ solutions and thin films, using atomic force microscopy and UV-VIS spectroscopy, revealed differences in susceptibility for the organization and orientation of the constituting domains.
Collapse
|
99906
|
Hung SC, Ke LC, Lien TS, Huang HS, Sun DS, Cheng CL, Chang HH. Nanodiamond-Induced Thrombocytopenia in Mice Involve P-Selectin-Dependent Nlrp3 Inflammasome-Mediated Platelet Aggregation, Pyroptosis and Apoptosis. Front Immunol 2022; 13:806686. [PMID: 35444640 PMCID: PMC9013758 DOI: 10.3389/fimmu.2022.806686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Nanodiamond (ND) has been developed as a carrier to conduct various in vivo diagnostic and therapeutic uses. Safety is one of the major considerations, while the hemocompatibility of ND is not clearly addressed. Here we found that, compared to the other sizes of ND with relatively inert properties, treatments of 50 nm ND induced stronger platelet aggregation, platelet pyroptosis, apoptosis and thrombocytopenia in mice. Blockage treatments of soluble P-selectin, reactive oxygen species (ROS), and Nlrp3 inflammasome inhibitors markedly suppressed such adverse effects, suggesting ND-induced platelet activation and pyroptosis involves surface P-selectin-mediated enhancement of mitochondrial superoxide levels and Nlrp3 inflammasome activation. In addition, challenges of NDs induced less platelet pyroptosis and displayed less thrombocytopenia in P-selectin (Selp-/-), Nlrp3 (Nlrp3-/-) and caspase-1 (Casp1-/-) mutants, as compared to the wild type mice. Blockers of P-selectin, ROS, and Nlrp3 inflammasome pathways could be considered as antidotes for ND induced platelet activation and thrombocytopenia.
Collapse
Affiliation(s)
- Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Lu-Chu Ke
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- *Correspondence: Hsin-Hou Chang, ;
| |
Collapse
|
99907
|
Zunita M, Hastuti R, Alamsyah A, Khoiruddin K, Wenten IG. Ionic Liquid Membrane for Carbon Capture and Separation. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2021.1920428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Zunita
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - R. Hastuti
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - A. Alamsyah
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - K. Khoiruddin
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - I. G. Wenten
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| |
Collapse
|
99908
|
Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology. Pharmaceutics 2022; 14:pharmaceutics14040784. [PMID: 35456618 PMCID: PMC9027800 DOI: 10.3390/pharmaceutics14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
The use of nanocarriers to deliver antitumor agents to solid tumors must overcome biological barriers in order to provide effective clinical responses. Once within the tumor, a nanocarrier should navigate into a dense extracellular matrix, overcoming intratumoral pressure to push it out of the diseased tissue. In recent years, a paradigm change has been proposed, shifting the target of nanomedicine from the tumoral cells to the immune system, in order to exploit the natural ability of this system to capture and interact with nanometric moieties. Thus, nanocarriers have been engineered to interact with immune cells, with the aim of triggering specific antitumor responses. The use of bacteria as nanoparticle carriers has been proposed as a valuable strategy to improve both the accumulation of nanomedicines in solid tumors and their penetration into the malignancy. These microorganisms are capable of propelling themselves into biological environments and navigating through the tumor, guided by the presence of specific molecules secreted by the diseased tissue. These capacities, in addition to the natural immunogenic nature of bacteria, can be exploited to design more effective immunotherapies that yield potent synergistic effects to induce efficient and selective immune responses that lead to the complete eradication of the tumor.
Collapse
|
99909
|
He Y, Bian K, Wu B, Liu P, Ni S, Wang X. Ligand‐Promoted
, Enantioconvergent Synthesis of Aliphatic Alkanes Bearing Trifluoromethylated Stereocenters via Hy‐drotrifluoroalkylation of Unactivated Alkenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan He
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Kang‐Jie Bian
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Bing‐Bing Wu
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Peng Liu
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Shan‐Xiu Ni
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xi‐Sheng Wang
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
99910
|
Kasai T, Muthiah B, Po X, Yan C, Lin K, Tanudji J, Diño WA. Pattern analysis of the impact‐parameter dependent trajectories for the H +
H
2
exchange reaction at
T
=
3
and
300 K
: A characteristic propensity for reactive versus nonreactive trajectories found in the time‐dependent interaction potential and a roaming‐like libration motion at cold temperature. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Toshio Kasai
- Department of Chemistry National Taiwan University Taipei Taiwan
- Department of Applied Physics Osaka University Suita Japan
| | | | - Xin‐Hui Po
- Department of Chemistry National Taiwan University Taipei Taiwan
- Department of Statistics National Chengchi University Taipei Taiwan
| | - Chu‐Chun Yan
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - King‐Chuen Lin
- Department of Chemistry National Taiwan University Taipei Taiwan
- Department of Chemistry, Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | | | - Wilson Agerico Diño
- Department of Applied Physics Osaka University Suita Japan
- Center for Atomic and Molecular Technologies Osaka University Suita Japan
| |
Collapse
|
99911
|
Biesemans B, De Clercq J, Stevens CV, Thybaut JW, Lauwaert J. Recent advances in amine catalyzed aldol condensations. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2048570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bert Biesemans
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Jeriffa De Clercq
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Christian V. Stevens
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Jeroen Lauwaert
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
99912
|
New Co-Crystals/Salts of Gallic Acid and Substituted Pyridines: An Effect of Ortho-Substituents on the Formation of an Acid–Pyridine Heterosynthon. CRYSTALS 2022. [DOI: 10.3390/cryst12040497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Co-crystallization of gallic acid with pyridines and their polyaromatic analogue, quinoline, ortho-substituted by various proton-donating groups able to form hydrogen bonds, produced the only reported co-crystal of gallic acid with an ortho-substituted pyridine, 2-hydroxypyridine, as its preferred pyridone-2 tautomer, and four new crystalline products of gallic acid. These co-crystals, or gallate salts depending on the choice of the pyridine-containing compound, as predicted by the pKa rule, were identified by X-ray diffraction to feature the popular acid–pyridine heterosynthon found in most of the two-component systems of gallic acid that lack ortho-substituents in the pyridine-containing compound. This single-point heterosynthon is, however, modified by one or two proton-donating ortho-substituents, which sometimes may transform into the proton acceptors in an adopted tautomer or zwitterion, to produce its two- or other multi-point variants, including a very rare four-point heterosynthon. The hydrogen bonds they form with the gallic acid species in the appropriate co-crystals/salts strongly favors the formation of the acid–pyridine heterosynthon over the acid–acid homosynthon. In the competitive conditions of multi-component systems, such a modification might be used to reduce supramolecular-synthon-based polymorphism to produce new pharmaceuticals and other crystalline materials with designed properties.
Collapse
|
99913
|
Recent Progresses in the Preparation of Chlorinated Molecules: Electrocatalysis and Photoredox Catalysis in the Spotlight. REACTIONS 2022. [DOI: 10.3390/reactions3020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Among halogenated molecules, those containing chlorine atoms are fundamental in many areas such as pharmaceuticals, polymers, agrochemicals and natural metabolites. Despite the fact that many reactions have been developed to install chlorine on organic molecules, most of them rely on toxic and hazardous chlorinating reagents as well as harsh conditions. In an attempt to move towards more sustainable approaches, photoredox catalysis and electrocatalysis have emerged as powerful alternatives to traditional methods. In this review, we collect the most recent and significant examples of visible-light- or current-mediated chlorination published in the last five years.
Collapse
|
99914
|
Donovan RJ, Kirrander A, Lawley KP. Heavy Rydberg and ion-pair states: chemistry, spectroscopy and theory. INT REV PHYS CHEM 2022. [DOI: 10.1080/0144235x.2022.2077024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Robert J. Donovan
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Kirrander
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth P. Lawley
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
99915
|
Zhang M, Ji Y, Zhang C. Transition Metal Catalyzed Enantioselective Migratory Functionalization Reactions of Alkenes through Chain‐walking. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University Weijin Rd. 92 Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
99916
|
Farooqi ZH, Begum R, Naseem K, Wu W, Irfan A. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2020.1807797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Khalida Naseem
- Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
99917
|
Kasthuri J, Sivasamy A, Rajendiran N. Green Chemical Synthesis of N-Cholyl-L-Cysteine Encapsulated Gold Nanoclusters for Fluorometric Detection of Mercury Ions. J Fluoresc 2022; 32:1347-1356. [PMID: 35366164 DOI: 10.1007/s10895-022-02935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
Herein we report a simple, single-step, cost-effective, environmentally friendly, and biocompatible approach using sodium salt of N-cholyl-L-cysteine (NaCysC) capped gold nanoclusters (AuNCs) with green emission properties at above the CMC in aqueous medium under UV-light irradiation. The primary and secondary CMC of NaCysC was found to be 4.6 and 10.7 mM respectively using pyrene as fluorescent probe. The synthesized AuNCs exhibit strong emission maxima at 520 nm upon excitation at 375 nm with a large Stokes shift of 145 nm. The surface functionality and morphology of NCs are studied by fourier transform infrared spectroscopy, dymanic light scattering studies and transmission electron microscopy. The formation of AuNCs was completed within 5 h and exhibit high stability for more than 6 months. The NaCysC templated AuNCs selectively quenches the Hg2+ ions with higher sensitivity in aqueous solution over the other metal ions. The fluorescence analysis of Hg2+ showed a wide linear range from 15 to 120 µM and a detection limit was found to be 15 nM.
Collapse
Affiliation(s)
- Jayapalan Kasthuri
- Department of Chemistry, Quaid-E-Millath Government College for Women (Autonomous), Chennai, Tamil Nadu, 600 002, India.
| | - Arumugam Sivasamy
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India
| |
Collapse
|
99918
|
Yu C, Yang P, Zhu X, Wang Y. Planet-satellite cage hybrids: covalent organic cages encircling metal organic cage. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1211-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
99919
|
Zhang H, Situ C, Guo X. Recent progress of proteomic analysis on spermatogenesis. Biol Reprod 2022; 107:109-117. [DOI: 10.1093/biolre/ioac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Testis, the only organ responsible for generating sperm, is by far the organ with the largest variety of proteins and tissue-specific proteins in humans. In testis, spermatogenesis is a multi-step complex process well-accepted that protein and mRNA are decoupled in certain stages of spermatogenesis. With the fast development of mass spectrometry-based proteomics, it is possible to systemically study protein abundances and modifications in testis and sperm to help us understand the molecular mechanisms of spermatogenesis. This review provides an overview of the recent progress of proteomics analysis on spermatogenesis, including protein expression and multiple PTMs, such as phosphorylation, glycosylation, ubiquitylation, and acetylation.
Collapse
Affiliation(s)
- Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
99920
|
|
99921
|
Zhao T, Liang C, Zhao Y, Xue X, Ma Z, Qi J, Shen H, Yang S, Zhang J, Jia Q, Du Q, Cao D, Xiang B, Zhang H, Qi X. Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy. J Nanobiotechnology 2022; 20:177. [PMID: 35366888 PMCID: PMC8976966 DOI: 10.1186/s12951-022-01383-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Small interfering RNA (siRNA) is utilized as a potent agent for cancer therapy through regulating the expression of genes associated with tumors. While the widely application of siRNAs in cancer treatment is severely limited by their insufficient biological stability and its poor ability to penetrate cell membranes. Targeted delivery systems hold great promise to selectively deliver loaded drug to tumor site and reduce toxic side effect. However, the elevated tumor interstitial fluid pressure and efficient cytoplasmic release are still two significant obstacles to siRNA delivery. Co-delivery of chemotherapeutic drugs and siRNA represents a potential strategy which may achieve synergistic anticancer effect. Herein, we designed and synthesized a dual pH-responsive peptide (DPRP), which includes three units, a cell-penetrating domain (polyarginine), a polyanionic shielding domain (ehG)n, and an imine linkage between them. Based on the DPRP surface modification, we developed a pH-responsive liposomal system for co-delivering polo-like kinase-1 (PLK-1) specific siRNA and anticancer agent docetaxel (DTX), D-Lsi/DTX, to synergistically exhibit anti-tumor effect.
Results
In contrast to the results at the physiological pH (7.4), D-Lsi/DTX lead to the enhanced penetration into tumor spheroid, the facilitated cellular uptake, the promoted escape from endosomes/lysosomes, the improved distribution into cytoplasm, and the increased cellular apoptosis under mildly acidic condition (pH 6.5). Moreover, both in vitro and in vivo study indicated that D-Lsi/DTX had a therapeutic advantage over other control liposomes. We provided clear evidence that liposomal system co-delivering siPLK-1 and DTX could significantly downregulate expression of PLK-1 and inhibit tumor growth without detectable toxic side effect, compared with siPLK-1-loaded liposomes, DTX-loaded liposomes, and the combinatorial administration.
Conclusion
These results demonstrate great potential of the combined chemo/gene therapy based on the multistage pH-responsive codelivery liposomal platform for synergistic tumor treatment.
Graphical Abstract
Collapse
|
99922
|
Kumar A, Nimsarkar P, Singh S. Probing the Interactions Responsible for the Structural Stability of Trypanothione Reductase Through Computer Simulation and Biophysical Characterization. Protein J 2022; 41:230-244. [PMID: 35364760 DOI: 10.1007/s10930-022-10052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
With the necessity to develop antileishmanial drugs with substrate specificity, trypanothione reductase (TryR) has gained popularity in parasitology. TryR is unique to be present only in trypanosomatids and is functionally similar to glutathione in mammals. It protects against oxidative stress exerted by the host defense mechanism. The TryR enzyme is essential for the survival of Leishmania parasites in the host as it reduces trypanothione and aids in neutralizing hydrogen peroxide produced by the host macrophages during infection. Henceforth, it becomes vital to decipher their functional stability and behaviour in the presence of denaturants. Our study is focused on structural, functional and behavioural stability aspects of TryR with different concentrations of Urea, Guanidinium chloride, alcohol based compounds followed by extensive molecular dynamics simulations in a lipid bilayer system. The results obtained from the study reveal an interesting insight into the possible mechanisms of modulation of the structure, function and stability of the TryR protein.
Collapse
Affiliation(s)
- Anurag Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Prajakta Nimsarkar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
99923
|
Teixeira MFS, Olean-Oliveira A, Anastácio FC, David-Parra DN, Cardoso CX. Electrocatalytic Reduction of CO2 in Water by a Palladium-Containing Metallopolymer. NANOMATERIALS 2022; 12:nano12071193. [PMID: 35407311 PMCID: PMC9000595 DOI: 10.3390/nano12071193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/28/2023]
Abstract
The palladium–salen complex was immobilized by electropolymerization onto a Pt disc electrode and applied as an electrocatalyst for the reduction of CO2 in an aqueous solution. Linear sweep voltammetry measurements and rotating disk experiments were carried out to study the electrochemical reduction of carbon dioxide. The onset overpotential for carbon dioxide reduction was approximately −0.22 V vs. NHE on the poly-Pd(salen) modified electrode. In addition, by combining the electrochemical study with a kinetic study, the rate-determining step of the electrochemical CO2 reduction reaction (CO2RR) was found to be the radial reduction of carbon dioxide to the CO adsorbed on the metal.
Collapse
Affiliation(s)
- Marcos F. S. Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
- Correspondence:
| | - André Olean-Oliveira
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
| | - Fernanda C. Anastácio
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
| | - Diego N. David-Parra
- Department of Chemistry and Biochemistry, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil; (A.O.-O.); (F.C.A.); (D.N.D.-P.)
| | - Celso X. Cardoso
- Department of Physics, School of Science and Technology, Sao Paulo State University (UNESP), Presidente Prudente CEP 19060-900, SP, Brazil;
| |
Collapse
|
99924
|
Ren H, Tianxiang W. Electrochemical Synthesis Methods of Metal‐Organic Frameworks and Their Environmental Analysis Applications: A Review. ChemElectroChem 2022. [DOI: 10.1002/celc.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ren
- Nanjing Normal University School of Environment CHINA
| | - Wei Tianxiang
- Nanjing Normal University No. 1 Wenyuan Road, Qixia District Nanjing CHINA
| |
Collapse
|
99925
|
Temperature-dependent chloride-mediated access to atom-precise silver thiolate nanoclusters. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1216-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
99926
|
TAŞDEMİR V. Cyclization Reactions of Non-Conjugate Ynones with Propargyl Amine in the Presence of a Catalyst. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1064488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
99927
|
Tiwari OS, Ganesh KN, Gazit E. Effect of Stereochemistry and Hydrophobicity on the Self‐assembly of Phe‐Phe‐Nucleoside Conjugates. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Om Shanker Tiwari
- Shmunis School of Biomedicine and Cancer Research Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Krishna N. Ganesh
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road Pune 411008 India
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Karkambadi Road Tirupati 517507 India
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Department of Materials Science and Engineering Tel Aviv University, Ramat Aviv Tel Aviv 6997801 Israel
| |
Collapse
|
99928
|
Gu Y, Zheng S, Xu Z, Yin Q, Li L, Li J. An efficient curriculum learning-based strategy for molecular graph learning. Brief Bioinform 2022; 23:6562682. [DOI: 10.1093/bib/bbac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Abstract
Computational methods have been widely applied to resolve various core issues in drug discovery, such as molecular property prediction. In recent years, a data-driven computational method-deep learning had achieved a number of impressive successes in various domains. In drug discovery, graph neural networks (GNNs) take molecular graph data as input and learn graph-level representations in non-Euclidean space. An enormous amount of well-performed GNNs have been proposed for molecular graph learning. Meanwhile, efficient use of molecular data during training process, however, has not been paid enough attention. Curriculum learning (CL) is proposed as a training strategy by rearranging training queue based on calculated samples' difficulties, yet the effectiveness of CL method has not been determined in molecular graph learning. In this study, inspired by chemical domain knowledge and task prior information, we proposed a novel CL-based training strategy to improve the training efficiency of molecular graph learning, called CurrMG. Consisting of a difficulty measurer and a training scheduler, CurrMG is designed as a plug-and-play module, which is model-independent and easy-to-use on molecular data. Extensive experiments demonstrated that molecular graph learning models could benefit from CurrMG and gain noticeable improvement on five GNN models and eight molecular property prediction tasks (overall improvement is 4.08%). We further observed CurrMG’s encouraging potential in resource-constrained molecular property prediction. These results indicate that CurrMG can be used as a reliable and efficient training strategy for molecular graph learning.
Availability: The source code is available in https://github.com/gu-yaowen/CurrMG.
Collapse
Affiliation(s)
- Yaowen Gu
- Institute of Medical Information (IMI), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, China
| | - Si Zheng
- Institute of Medical Information (IMI), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, China
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Zidu Xu
- Institute of Medical Information (IMI), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, China
| | - Qijin Yin
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, China
| | - Jiao Li
- Institute of Medical Information (IMI), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, China
| |
Collapse
|
99929
|
Sasaki M, Iwasaki K, Arai K, Hamada N, Umehara A. Convergent Synthesis of the HIJKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1 by a Late-Stage Reductive Olefin Coupling Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Naoya Hamada
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| |
Collapse
|
99930
|
Zou J, Chen C, Chen Y, Zhu Y, Cheng Q, Zou L, Zou Z, Yang H. Facile Steam-Etching Approach to Increase the Active Site Density of an Ordered Porous Fe–N–C Catalyst to Boost Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Chi Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yubin Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Yanping Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Liangliang Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Zhiqing Zou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| |
Collapse
|
99931
|
|
99932
|
Zhang L, Chen P, Bai S. Decarboxylative alkylarylation of alkenes with PhI(O2CR)2 to access benzimidazo[2,1-a]isoquinolin-6(5H)-ones catalyzed by a low-valent divanadium complex. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99933
|
Yang X, Li S, Zhu Y, Lan Y. Theoretical study on mechanism of cycloaddition reaction between o-alkynylbenzaldoximes and hexynol catalyzed by silver(I). MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99934
|
Illner M, Kozachynskyi V, Esche E, Repke JU. Fast-track realization of reactive microemulsion systems – Systematic system analysis and tailored application of PSE methods. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
99935
|
|
99936
|
QM/MM and molecular dynamics simulation of the structure and dissociation of CuF in acetonitrile solvent. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
99937
|
Methane oxidation by green oxidant to methanol over zeolite-based catalysts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
99938
|
Synthesis, reactivity and X-ray crystal structure of tris(pentafluorophenyl)silanol (C6F5)3SiOH. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99939
|
Karoui S, Chouaib H, Kamoun S. Synthesis, crystal structure and phase transition in a perovskite type (CH3NH3)2M(X)2(Y)2(M=Sn; X=SCN; Y=Cl). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
99940
|
Electrochemically co-deposited silicate sol–gel/PdAu alloy nanostructures and their application in electrocatalytic methanol oxidation. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
99941
|
Synthesis, structure and antibacterial activity of dinitrosyl iron complexes (DNICs) dimers functionalized with 5-(nitrophenyl) -4-H-1,2,4-triazole-3-thiolyls. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
99942
|
A facile “dark”-deposition approach for Pt single‐atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99943
|
Tao Y, Hu R, Xie Z, Lin P, Su W. Cobalt-Catalyzed Regioselective para-Amination of Azobenzenes via Nucleophilic Aromatic Substitution of Hydrogen. J Org Chem 2022; 87:4724-4731. [PMID: 35290054 DOI: 10.1021/acs.joc.2c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metal-catalyzed nucleophilic aromatic substitution of hydrogen (SNArH) via coordination of the substituent on the aromatic ring to the metal catalyst, in terms of reactivity, substrate type, and reaction selectivity, complements the transition metal-catalyzed C-H functionalization that proceeds via C-H metalation but remains an elusive target. Described herein is the development of an unprecedented cobalt-catalyzed para-selective amination of azobenzenes, which is essentially a metal-promoted SNArH process as revealed by Hammett analysis, thus illustrating the concept that coordination of the substituent on the arene ring to the metal catalyst may result in electrophilic activation of the arene ring toward SNArH. This cobalt-catalyzed protocol allows the use of a variety of both aliphatic amines and anilines as aminating reagents, tolerates electronically diverse substituents of azobenzene, and furnishes the corresponding products in good yields with a regiospecific selectivity for para-amination.
Collapse
Affiliation(s)
- Yigao Tao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Rong Hu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zeyu Xie
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ping Lin
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
99944
|
Kim T, Bell MR, Thota VN, Lowary TL. One-Pot Regioselective Diacylation of Pyranoside 1,2- cis Diols. J Org Chem 2022; 87:4894-4907. [PMID: 35290061 DOI: 10.1021/acs.joc.2c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot strategy for functionalizing pyranoside 1,2-cis-diols with two different ester protecting groups is reported. The approach employs regioselective acylation via orthoester hydrolysis promoted by a carboxylic acid, e.g., levulinic acid, acetic acid, benzoic acid, or chloroacetic acid. Upon removal of water and introduction of a coupling agent, the carboxylic acid is esterified to the hydroxyl group liberated during hydrolysis. Although applied to 1,2-cis-diols on pyranoside scaffolds, the method should be applicable to such motifs on any six-membered ring.
Collapse
Affiliation(s)
- Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Michael R Bell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - V Narasimharao Thota
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.,Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Roosevelt Road, Section 4, #1, Taipei, 10617, Taiwan
| |
Collapse
|
99945
|
Jia Y, Zhao S, Qu Q, Yang L. Nano-channel confined biomimetic nanozyme/bioenzyme cascade reaction for long-lasting and intensive chemiluminescence. Biosens Bioelectron 2022; 202:114020. [DOI: 10.1016/j.bios.2022.114020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023]
|
99946
|
Bose K, Maity A, Ngo KH, Vandana JJ, Shneider NA, Phan AT. Formation of RNA G-wires by G4C2 repeats associated with ALS and FTD. Biochem Biophys Res Commun 2022; 610:113-118. [DOI: 10.1016/j.bbrc.2022.03.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
|
99947
|
Electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Talanta 2022; 240:123203. [PMID: 34998140 PMCID: PMC8719920 DOI: 10.1016/j.talanta.2021.123203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
This work focuses on the development of an electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Gold nanomaterials (AuNMs), specifically, a mixture of gold nanotriangles (AuNTs) and gold nanoparticles (AuNPs), are used to modified disposable electrodes that serve as an improved nanostructured electrochemiluminescent platform for DNA detection. Carbon nanodots (CDs), prepared by green chemistry, are used as coreactants agents in the [Ru(bpy)3]2+ anodic electrochemiluminescence (ECL) and the hybridization is detected by changes in the ECL signal of [Ru(bpy)3]2+/CDs in combination with AuNMs nanostructures. The biosensor is shown to detect a DNA sequence corresponding to SARS-CoV-2 with a detection limit of 514 aM.
Collapse
|
99948
|
Gossert AD, Wider G. Relaxation optimized double acquisition (RODA) as an alternative for virtual decoupling of NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107177. [PMID: 35290935 DOI: 10.1016/j.jmr.2022.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
We introduce an alternative way for spin-state selection, RODA, which yields higher sensitivity for spin systems exhibiting a TROSY effect. With RODA, the TROSY component of a doublet is recorded twice using a double acquisition scheme. RODA works by simple addition of consecutive NMR signals, and does not require any special processing. Thus, this pulse sequence element can seamlessly be integrated into existing experiments. We demonstrate the broad applicability of RODA with several systems exhibiting a TROSY effect on 15N-1H, 19F-13C or 1H-13C moieties. Further, we show that virtual decoupling with increased sensitivity is possible in a single double acquisition experiment in situations as encountered with dissolution DNP.
Collapse
Affiliation(s)
- Alvar D Gossert
- Department of Biology, Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093 Zürich, Switzerland.
| | - Gerhard Wider
- Department of Biology, Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
99949
|
Majhi J, Maiti SK, Ganguly S. Enhanced current rectification in graphene nanoribbons: effects of geometries and orientations of nanopores. NANOTECHNOLOGY 2022; 33:255704. [PMID: 35294939 DOI: 10.1088/1361-6528/ac5e6f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
We discuss the possibility of getting rectification operation in graphene nanoribbon (GNR). For a system to be a rectifier, it must be physically asymmetric and we induce the asymmetry in GNR by introducing nanopores. The rectification properties are discussed for differently structured nanopores. We find that shape and orientation of the nanopores are critical and sensitive to the degree of current rectification. As the choice of Fermi energy is crucial for obtaining significant current rectification, explicit dependence of Fermi energy on the degree of current rectification is also studied for a particular shape of the nanopore. Finally, the role of nanopore size and different spatial distributions of the electrostatic potential profile across the GNR are explored. The stability of the nanopores is also discussed with a possible solution. Given the simplicity of the proposed method and promising results, the present proposition may lead to a new route of getting current rectification in different kinds of materials where nanopores can be formed selectively.
Collapse
Affiliation(s)
- Joydeep Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | - Santanu K Maiti
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108, India
| | - Sudin Ganguly
- Department of Physics, School of Applied Sciences, University of Science and Technology, Techno City, Kiling Road, Baridua 9th Mile, Ri-Bhoi, Meghalaya-793 101, India
| |
Collapse
|
99950
|
Zhdanov VP. Lipid nanoparticles with ionizable lipids: Statistical aspects. Phys Rev E 2022; 105:044405. [PMID: 35590555 DOI: 10.1103/physreve.105.044405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Lipid nanoparticles (LNPs) with size ∼100 nm are now used for fabrication of a new generation of drugs and antiviral vaccines. To optimize their function or, more specifically, interaction with cell membranes, their composition often includes ionizable lipids which are neutral or cationic (after association with H^{+}). Physically, such LNPs represent an interesting example of mesoscopic nanosystems with complex and far from understood properties. Experimentally, they can be studied at cell-membrane mimics. Herein, I analyze theoretically three related aspects. (i) I describe how the extent of protonation of ionizable lipids located at the surface of LNPs depends on the H^{+} concentration by using the phenomenological Langmuir-Stern and Poisson-Boltzmann models with continuum distribution of charges and the dipole model with discrete charges. In these frameworks, the H^{+} adsorption isotherms are predicted to be close to Langmuirian provided the fraction of ionizable lipids is smaller than 0.5. (ii) I scrutinize the interaction between charged LNPs and their interaction with a supported lipid bilayer (SLB) by using the phenomenological theory and lattice-gas model. The long-term association or attachment is predicted provided the charges are opposite. The models make it possible to estimate the size of the contact region (provided a LNP is not deformed) and the number of lipid-lipid bonds in this region. (iii) I briefly discuss denaturation of a LNP during interaction with the SLB and argue that it may occur via a few stepwise transitions.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|