51
|
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022; 288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease affecting both upper and lower motor neurons. In the United States alone, there are 16,000-20,000 established cases of ALS. The early disease diagnosis is challenging due to many overlapping pathophysiologies with other neurological diseases. The etiology of ALS is unknown; however, it is divided into two categories: familial ALS (fALS) which occurs due to gene mutations & contributes to 5-10% of ALS, and sporadic ALS (sALS) which is due to environmental factors & contributes to 90-95% of ALS. There is still no curative treatment for ALS: palliative care and symptomatic treatment are therefore essential components in the management of these patients. In this review, we provide a panoramic view of ALS, which includes epidemiology, risk factors, pathophysiologies, biomarkers, diagnosis, therapeutics (natural, synthetic, gene-based, pharmacological, stem cell, extracellular vesicles, and physical therapy), controversies (in the clinical trials of ALS), the scope of nanomedicine in ALS, and future perspectives.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
52
|
Santiago-Mujika E, Luthi-Carter R, Giorgini F, Kalaria RN, Mukaetova-Ladinska EB. Tubulin and Tubulin Posttranslational Modifications in Alzheimer's Disease and Vascular Dementia. Front Aging Neurosci 2021; 13:730107. [PMID: 34776926 PMCID: PMC8586541 DOI: 10.3389/fnagi.2021.730107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 01/26/2023] Open
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most common forms of dementia in older people. Although these two dementia types differ in their etiology, they share many pathophysiological and morphological features, including neuronal loss, which is associated with the microtubule (MT) destabilization. Stabilization of MTs is achieved in different ways: through interactions with MT binding proteins (MTBP) or by posttranslational modifications (PTMs) of tubulin. Polyglutamylation and tyrosination are two foremost PTMs that regulate the interaction between MTs and MTBPs, and play, therefore, a role in neurodegeneration. In this review, we summarize key information on tubulin PTMs in relation to AD and VaD and address the importance of studying further the tubulin code to reveal sites of potential intervention in development of novel and effective dementia therapy.
Collapse
Affiliation(s)
- Estibaliz Santiago-Mujika
- Department of Neuroscience, Behavior and Psychology, University of Leicester, Leicester, United Kingdom
| | - Ruth Luthi-Carter
- Department of Neuroscience, Behavior and Psychology, University of Leicester, Leicester, United Kingdom
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeta B. Mukaetova-Ladinska
- Department of Neuroscience, Behavior and Psychology, University of Leicester, Leicester, United Kingdom
- Evington Centre, Leicester General Hospital, Leicester, United Kingdom
| |
Collapse
|
53
|
Alzheimer's disease clinical trial update 2019-2021. J Neurol 2021; 269:1038-1051. [PMID: 34609602 DOI: 10.1007/s00415-021-10790-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
The current clinical trial landscape targeting Alzheimer's disease (AD) is reviewed in the context of studies completed from 2019 to 2021. This review focuses on available data for observational and phase II/III clinical trial results, which will have the most impact on the field. ClinicalTrials.gov, the United States (US) comprehensive federal registry, was queried to identify completed trials. There are currently 226 interventional clinical trials and 51 observational studies completed, suspended, terminated, or withdrawn within our selected time frame. This review reveals that the role of biomarkers is expanding and although many lessons have been learned, many challenges remain when targeting disease modification of AD through amyloid and tau. In addition, to halt or slow clinical progression of AD, new clinical and observational trials are focusing on prevention as well as the role of more diverse biological processes known to influence AD pathology.
Collapse
|
54
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
55
|
Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, Buée L, Cacace AM, Chételat G, Citron M, DeVos SL, Diaz K, Feldman HH, Frost B, Goate AM, Gold M, Hyman B, Johnson K, Karch CM, Kerwin DR, Koroshetz WJ, Litvan I, Morris HR, Mummery CJ, Mutamba J, Patterson MC, Quiroz YT, Rabinovici GD, Rommel A, Shulman MB, Toledo-Sherman LM, Weninger S, Wildsmith KR, Worley SL, Carrillo MC. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement 2021; 18:988-1007. [PMID: 34581500 DOI: 10.1002/alz.12452] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.
Collapse
Affiliation(s)
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Pat Brannelly
- Alzheimer's Disease Data Initiative, Kirkland, WI, USA
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Buée
- Univ Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, Lille, France
| | | | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Martin Citron
- Neuroscience TA, Braine l'Alleud, UCB Biopharma, Brussels, Belgium
| | - Sarah L DeVos
- Translational Sciences, Denali Therapeutics, San Francisco, California, USA
| | | | - Howard H Feldman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders, Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Gold
- AbbVie, Neurosciences Development, North Chicago, Illinois, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Johnson
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Diana R Kerwin
- Kerwin Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | | | - Marc C Patterson
- Departments of Neurology, Pediatrics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yakeel T Quiroz
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Amy Rommel
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, Texas, USA
| | - Melanie B Shulman
- Neurodegeneration Development Unit, Biogen, Boston, Massachusetts, USA
| | | | | | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech, South San Francisco, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | | |
Collapse
|
56
|
Imbimbo BP, Ippati S, Watling M, Balducci C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement 2021; 18:1008-1037. [PMID: 34533272 DOI: 10.1002/alz.12453] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary tauopathies are neurological disorders in which tau protein deposition is the predominant pathological feature. Alzheimer's disease is a secondary tauopathy with tau forming hyperphosphorylated insoluble aggregates. Tau pathology can propagate from region to region in the brain, while alterations in tau processing may impair tau physiological functions. METHODS We reviewed literature on tau biology and anti-tau drugs using PubMed, meeting abstracts, and ClnicalTrials.gov. RESULTS The past 15 years have seen >30 drugs interfering with tau aggregation, processing, and accumulation reaching the clinic. Initial results with tau aggregation inhibitors and anti-tau monoclonal antibodies have not shown clinical efficacy. DISCUSSION The reasons for these clinical failures are unclear but could be linked to the clearing of physiological forms of tau by non-specific drugs. Research is now concentrating efforts on developing reliable translational animal models and selective compounds targeting specific tau epitopes, neurotoxic tau aggregates, and post-translational tau modifications.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| |
Collapse
|
57
|
Bomasang-Layno E, Bronsther R. Diagnosis and Treatment of Alzheimer's Disease:: An Update. Dela J Public Health 2021; 7:74-85. [PMID: 34604768 PMCID: PMC8482985 DOI: 10.32481/djph.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
58
|
Przewodowska D, Marzec W, Madetko N. Novel Therapies for Parkinsonian Syndromes-Recent Progress and Future Perspectives. Front Mol Neurosci 2021; 14:720220. [PMID: 34512258 PMCID: PMC8427499 DOI: 10.3389/fnmol.2021.720220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Atypical parkinsonian syndromes are rare, fatal neurodegenerative diseases associated with abnormal protein accumulation in the brain. Examples of these syndromes include progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. A common clinical feature in parkinsonism is a limited improvement with levodopa. So far, there are no disease-modifying treatments to address these conditions, and therapy is only limited to the alleviation of symptoms. Diagnosis is devastating for patients, as prognosis is extremely poor, and the disease tends to progress rapidly. Currently, potential causes and neuropathological mechanisms involved in these diseases are being widely investigated. Objectives: The goal of this review is to summarize recent advances and gather emerging disease-modifying therapies that could slow the progression of atypical parkinsonian syndromes. Methods: PubMed and Google Scholar databases were searched regarding novel perspectives for atypical parkinsonism treatment. The following medical subject headings were used: "atypical parkinsonian syndromes-therapy," "treatment of atypical parkinsonian syndromes," "atypical parkinsonian syndromes-clinical trial," "therapy of tauopathy," "alpha-synucleinopathy treatment," "PSP therapy/treatment," "CBD therapy/treatment," "MSA therapy/treatment," and "atypical parkinsonian syndromes-disease modifying." All search results were manually reviewed prior to inclusion in this review. Results: Neuroinflammation, mitochondrial dysfunction, microglia activation, proteasomal impairment, and oxidative stress play a role in the neurodegenerative process. Ongoing studies and clinical trials target these components in order to suppress toxic protein accumulation. Various approaches such as stem cell therapy, anti-aggregation/anti-phosphorylation agent administration, or usage of active and passive immunization appear to have promising results. Conclusion: Presently, disease-modifying strategies for atypical parkinsonian syndromes are being actively explored, with encouraging preliminary results. This leads to an assumption that developing accurate, safe, and progression-halting treatment is not far off. Nevertheless, the further investigation remains necessary.
Collapse
Affiliation(s)
- Dominika Przewodowska
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Marzec
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
59
|
Wang D, Huang X, Yan L, Zhou L, Yan C, Wu J, Su Z, Huang Y. The Structure Biology of Tau and Clue for Aggregation Inhibitor Design. Protein J 2021; 40:656-668. [PMID: 34401998 DOI: 10.1007/s10930-021-10017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein that is mainly expressed in central and peripheral nerve systems. Tau binds to tubulin and regulates assembly and stabilization of microtubule, thus playing a critical role in neuron morphology, axon development and navigation. Tau is highly stable under normal conditions; however, there are several factors that can induce or promote aggregation of tau, forming neurofibrillary tangles. Neurofibrillary tangles are toxic to neurons, which may be related to a series of neurodegenerative diseases including Alzheimer's disease. Thus, tau is widely accepted as an important therapeutic target for neurodegenerative diseases. While the monomeric structure of tau is highly disordered, the aggregate structure of tau is formed by closed packing of β-stands. Studies on the structure of tau and the structural transition mechanism provide valuable information on the occurrence, development, and therapy of tauopathies. In this review, we summarize recent progress on the structural investigation of tau and based on which we discuss aggregation inhibitor design.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Xianlong Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Lu Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Luoqi Zhou
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Chang Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jinhu Wu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
60
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:ijms22158208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-Y.L.); (C.-H.L.); Tel.: +886-921-067-260 (H.-Y.L.); +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-4-2236-1042 (H.-Y.L.); +886-7-7326817 (C.-H.L.)
| |
Collapse
|
61
|
McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ. The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener 2021; 16:49. [PMID: 34289882 PMCID: PMC8293489 DOI: 10.1186/s13024-021-00467-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease (AD) prevention trials hold the promise to delay or prevent cognitive decline and dementia onset by intervening before significant neuronal damage occurs. In recent years, the first AD prevention trials have launched and are yielding important findings on the biology of targeting asymptomatic AD pathology. However, there are limitations that impact the design of these prevention trials, including the translation of animal models that recapitulate key stages and multiple pathological aspects of the human disease, missing target validation in asymptomatic disease, uncertain causality of the association of pathophysiologic changes with cognitive and clinical symptoms, and limited biomarker validation for novel targets. The field is accelerating advancements in key areas including the development of highly specific and quantitative biomarker measures for AD pathology, increasing our understanding of the course and relationship of amyloid and tau pathology in asymptomatic through symptomatic stages, and the development of powerful interventions that can slow or reverse AD amyloid pathology. We review the current status of prevention trials and propose key areas of needed research as a call to basic and translational scientists to accelerate AD prevention. Specifically, we review (1) sporadic and dominantly inherited primary and secondary AD prevention trials, (2) proposed targets, mechanisms, and drugs including the amyloid, tau, and inflammatory pathways and combination treatments, (3) the need for more appropriate prevention animal models and experiments, and (4) biomarkers and outcome measures needed to design human asymptomatic prevention trials. We conclude with actions needed to effectively move prevention targets and trials forward.
Collapse
Affiliation(s)
- Eric McDade
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Jorge J. Llibre-Guerra
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - John C. Morris
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| | - Randall J. Bateman
- Department of Neurology, Washington University in St Louis, 660 S. Euclid Avenue, Campus Box, St Louis, MO 8111 USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Dominantly Inherited Alzheimer’s Network Trials Unit, St. Louis, MO 63110 USA
| |
Collapse
|
62
|
Bluett B, Pantelyat AY, Litvan I, Ali F, Apetauerova D, Bega D, Bloom L, Bower J, Boxer AL, Dale ML, Dhall R, Duquette A, Fernandez HH, Fleisher JE, Grossman M, Howell M, Kerwin DR, Leegwater-Kim J, Lepage C, Ljubenkov PA, Mancini M, McFarland NR, Moretti P, Myrick E, Patel P, Plummer LS, Rodriguez-Porcel F, Rojas J, Sidiropoulos C, Sklerov M, Sokol LL, Tuite PJ, VandeVrede L, Wilhelm J, Wills AMA, Xie T, Golbe LI. Best Practices in the Clinical Management of Progressive Supranuclear Palsy and Corticobasal Syndrome: A Consensus Statement of the CurePSP Centers of Care. Front Neurol 2021; 12:694872. [PMID: 34276544 PMCID: PMC8284317 DOI: 10.3389/fneur.2021.694872] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS; the most common phenotype of corticobasal degeneration) are tauopathies with a relentless course, usually starting in the mid-60s and leading to death after an average of 7 years. There is as yet no specific or disease-modifying treatment. Clinical deficits in PSP are numerous, involve the entire neuraxis, and present as several discrete phenotypes. They center on rigidity, bradykinesia, postural instability, gait freezing, supranuclear ocular motor impairment, dysarthria, dysphagia, incontinence, sleep disorders, frontal cognitive dysfunction, and a variety of behavioral changes. CBS presents with prominent and usually asymmetric dystonia, apraxia, myoclonus, pyramidal signs, and cortical sensory loss. The symptoms and deficits of PSP and CBS are amenable to a variety of treatment strategies but most physicians, including many neurologists, are reluctant to care for patients with these conditions because of unfamiliarity with their multiplicity of interacting symptoms and deficits. CurePSP, the organization devoted to support, research, and education for PSP and CBS, created its CurePSP Centers of Care network in North America in 2017 to improve patient access to clinical expertise and develop collaborations. The directors of the 25 centers have created this consensus document outlining best practices in the management of PSP and CBS. They formed a writing committee for each of 12 sub-topics. A 4-member Steering Committee collated and edited the contributions. The result was returned to the entire cohort of authors for further comments, which were considered for incorporation by the Steering Committee. The authors hope that this publication will serve as a convenient guide for all clinicians caring for patients with PSP and CBS and that it will improve care for patients with these devastating but manageable disorders.
Collapse
Affiliation(s)
- Brent Bluett
- Neurology, Pacific Central Coast Health Center, Dignity Health, San Luis Obispo, CA, United States
- Neurology, Stanford University, Stanford, CA, United States
| | - Alexander Y. Pantelyat
- Neurology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Irene Litvan
- Neurology, University of California, San Diego, San Diego, CA, United States
| | - Farwa Ali
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Diana Apetauerova
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Danny Bega
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lisa Bloom
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - James Bower
- Neurology, Mayo Clinic, Rochester, MN, United States
| | - Adam L. Boxer
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Marian L. Dale
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Rohit Dhall
- Neurology, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Antoine Duquette
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Hubert H. Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jori E. Fleisher
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Murray Grossman
- Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Howell
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Diana R. Kerwin
- Geriatrics, Presbyterian Hospital of Dallas, Dallas, TX, United States
| | | | - Christiane Lepage
- Service de Neurologie, Département de Médecine, Unité de Troubles du Mouvement André-Barbeau, Centre Hospitalier de l'Université de Service de Neurologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | | | - Martina Mancini
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Nikolaus R. McFarland
- Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Paolo Moretti
- Neurology, The University of Utah, Salt Lake City, UT, United States
| | - Erica Myrick
- Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, United States
| | - Pritika Patel
- Neurology, Lahey Hospital and Medical Center, Burlington, MA, United States
| | - Laura S. Plummer
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Julio Rojas
- Neurology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Miriam Sklerov
- Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leonard L. Sokol
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paul J. Tuite
- Neurology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Lawren VandeVrede
- Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Wilhelm
- Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Anne-Marie A. Wills
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Tao Xie
- Neurology, Surgery, University of Chicago, Chicago, IL, United States
| | - Lawrence I. Golbe
- Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
63
|
Ceyzériat K, Zilli T, Millet P, Frisoni GB, Garibotto V, Tournier BB. Learning from the Past: A Review of Clinical Trials Targeting Amyloid, Tau and Neuroinflammation in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:112-125. [PMID: 32129164 DOI: 10.2174/1567205017666200304085513] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease and cause of dementia. Characterized by amyloid plaques and neurofibrillary tangles of hyperphosphorylated Tau, AD pathology has been intensively studied during the last century. After a long series of failed trials of drugs targeting amyloid or Tau deposits, currently, hope lies in the positive results of one Phase III trial, highly debated, and on other ongoing trials. In parallel, some approaches target neuroinflammation, another central feature of AD. Therapeutic strategies are initially evaluated on animal models, in which the various drugs have shown effects on the target (decreasing amyloid, Tau and neuroinflammation) and sometimes on cognitive impairment. However, it is important to keep in mind that rodent models have a less complex brain than humans and that the pathology is generally not fully represented. Although they are indispensable tools in the drug discovery process, results obtained from animal models must be viewed with caution. In this review, we focus on the current status of disease-modifying therapies targeting amyloid, Tau and neuroinflammation with particular attention on the discrepancy between positive preclinical results on animal models and failures in clinical trials.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University and Geneva University Hospitals, Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University and Geneva University Hospitals, Geneva, Switzerland.,IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
64
|
Giunta M, Solje E, Gardoni F, Borroni B, Benussi A. Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. J Exp Pharmacol 2021; 13:359-376. [PMID: 33790662 PMCID: PMC8005747 DOI: 10.2147/jep.s262352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia is a clinically, genetically and pathologically heterogeneous neurodegenerative disorder, enclosing a wide range of different pathological entities, associated with the accumulation of proteins such as tau and TPD-43. Characterized by a high hereditability, mutations in three main genes, MAPT, GRN and C9orf72, can drive the neurodegenerative process. The connection between different genes and proteinopathies through specific mechanisms has shed light on the pathophysiology of the disease, leading to the identification of potential pharmacological targets. New experimental strategies are emerging, in both preclinical and clinical settings, which focus on small molecules rather than gene therapy. In this review, we provide an insight into the aberrant mechanisms leading to FTLD-related proteinopathies and discuss recent therapies with the potential to ameliorate neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
65
|
Broce IJ, Castruita PA, Yokoyama JS. Moving Toward Patient-Tailored Treatment in ALS and FTD: The Potential of Genomic Assessment as a Tool for Biological Discovery and Trial Recruitment. Front Neurosci 2021; 15:639078. [PMID: 33732107 PMCID: PMC7956998 DOI: 10.3389/fnins.2021.639078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and intertwined neurodegenerative diseases. Historically, ALS and FTD were considered distinct disorders given differences in presenting clinical symptoms, disease duration, and predicted risk of developing each disease. However, research over recent years has highlighted the considerable clinical, pathological, and genetic overlap of ALS and FTD, and these two syndromes are now thought to represent different manifestations of the same neuropathological disease spectrum. In this review, we discuss the need to shift our focus from studying ALS and FTD in isolation to identifying the biological mechanisms that drive these diseases-both common and distinct-to improve treatment discovery and therapeutic development success. We also emphasize the importance of genomic data to facilitate a "precision medicine" approach for treating ALS and FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
66
|
FTLD Treatment: Current Practice and Future Possibilities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:297-310. [PMID: 33433882 DOI: 10.1007/978-3-030-51140-1_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
While behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA) remain unrelenting and universally fatal conditions, there is a framework for supportive treatment in patients diagnosed with these frontotemporal dementia (FTD) syndromes and the larger spectrum of clinical syndromes associated with frontotemporal lobar degeneration (FTLD) pathology on autopsy. A managing physician has an important role in weighing therapeutic options, organizing caregiver support, and framing long-term expectations for patients and caregivers. Additionally, a dedicated neurologist may assist patients and caregivers in navigating a growing range of FTD research, including exciting opportunities in clinical therapeutic trials. This chapter will review current therapeutic options for patients with bvFTD and PPA and detail the landscape of potential new disease-modifying therapies targeting the pathophysiology or FTLD.
Collapse
|
67
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ. Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:1615. [PMID: 33562713 PMCID: PMC7915613 DOI: 10.3390/ijms22041615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jules A. A. C. Heuberger
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
68
|
Gasca-Salas C, Fernández-Rodríguez B, Pineda-Pardo JA, Rodríguez-Rojas R, Obeso I, Hernández-Fernández F, Del Álamo M, Mata D, Guida P, Ordás-Bandera C, Montero-Roblas JI, Martínez-Fernández R, Foffani G, Rachmilevitch I, Obeso JA. Blood-brain barrier opening with focused ultrasound in Parkinson's disease dementia. Nat Commun 2021; 12:779. [PMID: 33536430 PMCID: PMC7859400 DOI: 10.1038/s41467-021-21022-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
MR-guided focused ultrasound (MRgFUS), in combination with intravenous microbubble administration, has been applied for focal temporary BBB opening in patients with neurodegenerative disorders and brain tumors. MRgFUS could become a therapeutic tool for drug delivery of putative neurorestorative therapies. Treatment for Parkinson’s disease with dementia (PDD) is an important unmet need. We initiated a prospective, single-arm, non-randomized, proof-of-concept, safety and feasibility phase I clinical trial (NCT03608553), which is still in progress. The primary outcomes of the study were to demonstrate the safety, feasibility and reversibility of BBB disruption in PDD, targeting the right parieto-occipito-temporal cortex where cortical pathology is foremost in this clinical state. Changes in β-amyloid burden, brain metabolism after treatments and neuropsychological assessments, were analyzed as exploratory measurements. Five patients were recruited from October 2018 until May 2019, and received two treatment sessions separated by 2–3 weeks. The results are set out in a descriptive manner. Overall, this procedure was feasible and reversible with no serious clinical or radiological side effects. We report BBB opening in the parieto-occipito-temporal junction in 8/10 treatments in 5 patients as demonstrated by gadolinium enhancement. In all cases the procedures were uneventful and no side effects were encountered associated with BBB opening. From pre- to post-treatment, mild cognitive improvement was observed, and no major changes were detected in amyloid or fluorodeoxyglucose PET. MRgFUS-BBB opening in PDD is thus safe, reversible, and can be performed repeatedly. This study provides encouragement for the concept of BBB opening for drug delivery to treat dementia in PD and other neurodegenerative disorders. Blood brain barrier (BBB) opening is being investigated as a therapeutic approach for neurodegenerative diseases. Here, the authors report the results of a phase I trial to evaluate the feasibility and safety of BBB opening of the right parieto-occipito-temporal cortex in Parkinson´s disease with dementia.
Collapse
Affiliation(s)
- Carmen Gasca-Salas
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Beatriz Fernández-Rodríguez
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Rafael Rodríguez-Rojas
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ignacio Obeso
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Frida Hernández-Fernández
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Department of Nursing, Universidad Europea de Madrid. Faculty of Biomedical and Health Sciences, Villaviciosa de Odón, Madrid, Spain
| | - Marta Del Álamo
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - David Mata
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Pasqualina Guida
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | | | | | - Raúl Martínez-Fernández
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Guglielmo Foffani
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.,Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | - José A Obeso
- HM CINAC, Fundación HM Hospitales de Madrid, University Hospital HM Puerta del Sur. CEU-San Pablo University, Móstoles, Madrid, Spain. .,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
69
|
Advances in Drug Therapy for Alzheimer's Disease. Curr Med Sci 2021; 40:999-1008. [PMID: 33428127 DOI: 10.1007/s11596-020-2281-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that mainly causes dementia. It is a serious threat to the health of the global elderly population. Considerable money and effort has been invested in the development of drug therapy for AD worldwide. Many drug therapies are currently under development or in clinical trials, based on two known mechanisms of AD, namely, Aβ toxicity and the abnormal Tau hyperphosphorylation. Numerous drugs are also being developed for other AD associated mechanisms such as neuroinflammation, neurotransmitter imbalance, oxidative damage and mitochondrial dysfunction, neuron loss and degeneration. Even so, the number of drugs that can successfully improve symptoms or delay the progression of the disease remains very limited. However, multi-drug combinations may provide a new avenue for drug therapy for AD. In addition, early diagnosis of AD and timely initiation of treatment may allow drugs that act on the early pathological processes of AD to help improve the symptoms and prevent the progression of the condition.
Collapse
|
70
|
Duquette A, Pernègre C, Veilleux Carpentier A, Leclerc N. Similarities and Differences in the Pattern of Tau Hyperphosphorylation in Physiological and Pathological Conditions: Impacts on the Elaboration of Therapies to Prevent Tau Pathology. Front Neurol 2021; 11:607680. [PMID: 33488502 PMCID: PMC7817657 DOI: 10.3389/fneur.2020.607680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Tau protein, a neuronal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases called tauopathies. Hyperphosphorylation of tau is correlated to its redistribution from the axon to the somato-dendritic compartment at early stages of tauopathies. Interestingly, tau hyperphosphorylation begins in different regions of the brain in each tauopathy. In some regions, both neurons and glial cells develop tau hyperphosphorylation. Tau hyperphosphorylation is also observed in physiological conditions such as hibernation and brain development. In the first section of present article, we will review the spatiotemporal and cellular distribution of hyperphosphorylated tau in the most frequent tauopathies. In the second section, we will compare the pattern of tau hyperphosphorylation in physiological and pathological conditions and discuss the sites that could play a pivotal role in the conversion of non-toxic to toxic forms of hyperphosphorylated tau. Furthermore, we will discuss the role of hyperphosphorylated tau in physiological and pathological conditions and the fact that tau hyperphosphorylation is reversible in physiological conditions but not in a pathological ones. In the third section, we will speculate how the differences and similarities between hyperphosphorylated tau in physiological and pathological conditions could impact the elaboration of therapies to prevent tau pathology. In the fourth section, the different therapeutic approaches using tau as a direct or indirect therapeutic target will be presented.
Collapse
Affiliation(s)
- Antoine Duquette
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ariane Veilleux Carpentier
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
71
|
Kang YJ, Diep YN, Tran M, Cho H. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer's Disease. Int J Mol Sci 2020; 21:E9591. [PMID: 33339351 PMCID: PMC7766709 DOI: 10.3390/ijms21249591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, typically showing progressive neurodegeneration in aging brains. The key signatures of the AD progression are the deposition of amyloid-beta (Aβ) peptides, the formation of tau tangles, and the induction of detrimental neuroinflammation leading to neuronal loss. However, conventional pharmacotherapeutic options are merely relying on the alleviation of symptoms that are limited to mild to moderate AD patients. Moreover, some of these medicines discontinued to use due to either the insignificant effectiveness in improving the cognitive impairment or the adverse side effects worsening essential bodily functions. One of the reasons for the failure is the lack of knowledge on the underlying mechanisms that can accurately explain the major causes of the AD progression correlating to the severity of AD. Therefore, there is an urgent need for the better understanding of AD pathogenesis and the development of the disease-modifying treatments, particularly for severe and late-onset AD, which have not been covered thoroughly. Here, we review the underlying mechanisms of AD progression, which have been employed for the currently established therapeutic strategies. We believe this will further spur the discovery of a novel disease-modifying treatment for mild to severe, as well as early- to late-onset, AD.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA;
- Department of Biological Sciences, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Yen N. Diep
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| |
Collapse
|
72
|
[The future of dementia prevention and treatment strategies]. Nihon Ronen Igakkai Zasshi 2020; 57:374-396. [PMID: 33268621 DOI: 10.3143/geriatrics.57.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
Boiarska Z, Passarella D. Microtubule-targeting agents and neurodegeneration. Drug Discov Today 2020; 26:604-615. [PMID: 33279455 DOI: 10.1016/j.drudis.2020.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
The association of microtubule (MT) breakdown with neurodegeneration and neurotoxicity has provided an emerging therapeutic approach for neurodegenerative diseases. Tubulin binders are able to modulate MT dynamics and, as a result, are of particular interest both as potential therapeutics and experimental tools used to validate this strategy. Here, we provide a comprehensive overview of current knowledge and recent advancements regarding MT-targeting approaches for neurodegeneration and evaluate the potential application of MT-targeting agents (MTAs) based on available preclinical and clinical data.
Collapse
Affiliation(s)
- Zlata Boiarska
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
74
|
Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting Tau to Treat Clinical Features of Huntington's Disease. Front Neurol 2020; 11:580732. [PMID: 33329322 PMCID: PMC7710872 DOI: 10.3389/fneur.2020.580732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by severe motor, cognitive and psychiatric impairments. While motor deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the disease process and are consistently ranked among the leading factors that impact the patients' quality of life. The genetic component of HD, a mutation in the huntingtin (HTT) gene, is traditionally presented as the main contributor to disease pathology. However, accumulating evidence suggests the implication of the microtubule-associated tau protein to the pathogenesis and therefore, proposes an alternative conceptual framework where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and cognitive dysfunction. This perspective on disease etiology offers new avenues to design therapeutic interventions and could leverage decades of research on Alzheimer's disease (AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we examine the breadth of tau-targeting treatments currently tested in the preclinical and clinical settings for AD and other tauopathies, and discuss the potential application of these strategies to HD.
Collapse
Affiliation(s)
- Maria Masnata
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
75
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
76
|
Miller JH, Das V. Potential for Treatment of Neurodegenerative Diseases with Natural Products or Synthetic Compounds that Stabilize Microtubules. Curr Pharm Des 2020; 26:4362-4372. [DOI: 10.2174/1381612826666200621171302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find
drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s
disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in
vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent
stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing
agents, either natural products or synthetic compounds that can prevent the axonal destruction caused
by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant
natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain,
epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical
trials in humans have been disappointing. This review aims to summarize the research that has been carried out in
this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat
neurodegenerative disease.
Collapse
Affiliation(s)
- John H. Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínska 5, 77900 Olomouc, Czech Republic
| |
Collapse
|
77
|
VandeVrede L, Ljubenkov PA, Rojas JC, Welch AE, Boxer AL. Four-Repeat Tauopathies: Current Management and Future Treatments. Neurotherapeutics 2020; 17:1563-1581. [PMID: 32676851 PMCID: PMC7851277 DOI: 10.1007/s13311-020-00888-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Four-repeat tauopathies are a neurodegenerative disease characterized by brain parenchymal accumulation of a specific isoform of the protein tau, which gives rise to a wide breadth of clinical syndromes encompassing diverse symptomatology, with the most common syndromes being progressive supranuclear palsy-Richardson's and corticobasal syndrome. Despite the lack of effective disease-modifying therapies, targeted treatment of symptoms can improve quality of life for patients with 4-repeat tauopathies. However, managing these symptoms can be a daunting task, even for those familiar with the diseases, as they span motor, sensory, cognitive, affective, autonomic, and behavioral domains. This review describes current approaches to symptomatic management of common clinical symptoms in 4-repeat tauopathies with a focus on practical patient management, including pharmacologic and nonpharmacologic strategies, and concludes with a discussion of the history and future of disease-modifying therapeutics and clinical trials in this population.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA.
| | - Peter A Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Ariane E Welch
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
78
|
Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:3-50. [PMID: 32739008 DOI: 10.1016/bs.irn.2020.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyloid-β (Aβ) senile plaques and neurofibrillary tangles of tau are generally recognized as the culprits of Alzheimer's disease (AD) and related dementia. About 25 years ago, the amyloid cascade hypotheses postulated a direct correlation of plaques with the development of AD, and it has been the dominant theory since then. In this period, more than 200 clinical trials focused mainly on targeting components of the Aβ cascade have dramatically failed, some of them in Phase III. With a greater than 99.6% failure rate at a cost of several billion from governments, industry, and private funders, therapeutic strategies targeting amyloid and tau are now under scrutiny. Therefore, it is time to reevaluate alternatives to targeting Aβ and tau as effective therapeutic strategies for AD. The diagnosis of AD is currently based on medical examination of symptoms including tests to assess memory impairment, attention, language, and other thinking skills. This is complemented with brain scans, such as computed tomography, magnetic resonance imaging, or positron emission tomography with the help of imaging probes targeting Aβ or tau deposits. This approach has contributed to the tunnel vision focus on Aβ and tau as the main culprits of AD. However, events upstream of these proteopathies (age-related impaired neuronal bioenergetics, lysosome function, neurotrophic signaling, and neuroinflammation, among others) are almost surely where the development of alternative therapeutic interventions should be targeted. Here, we present the current status of therapeutic candidates targeting diverse mechanisms and strategies including Aβ and tau, proteins involved in Aβ production and trafficking (ApoE, α/β/γ-secretases), neuroinflammation, neurotransmitters, neuroprotective agents antimicrobials, and gene and stem cell therapy. There are currently around 33 compounds in Phase III, 78 in Phase II, and 32 more in Phase I trials. With the current world health crisis of increased dementia in a rapidly aging population, effective AD therapies are desperately needed.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States
| | - George Perry
- Department of Biology and Neurosciences Institute, The University of Texas at San Antonio (UTSA), 1 UTSA Circle, San Antonio, TX, United States.
| |
Collapse
|
79
|
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer's disease drug development pipeline: 2020. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12050. [PMID: 32695874 PMCID: PMC7364858 DOI: 10.1002/trc2.12050] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a growing public health concern affecting millions of patients worldwide and costing billions of dollars annually. We review the pipeline of drugs and biologics in clinical trials for the treatment of AD. We use the Common Alzheimer's and Related Dementias Research Ontology (CADRO) to classify treatment targets and mechanisms of action. We review our annual pipeline reports for the past 5 years to provide longitudinal insight into clinical trials and drug development for AD. METHODS We reviewed ClinicalTrials.gov as of February 27, 2020, and identified all trials of pharmacologic agents currently being developed for treatment of AD as represented on this widely used U.S. Food and Drug Administration registry. RESULTS There are 121 agents in clinical trials for the treatment of AD. Twenty-nine agents are in 36 Phase 3 trials, 65 agents are in 73 Phase 2 trials, and 27 agents are in 27 Phase 1 trials. Twelve agents in trials target cognitive enhancement and 12 are intended to treat neuropsychiatric and behavioral symptoms. There are 97 agents in disease modification trials. Compared to the 2019 pipeline, there is an increase in the number of disease-modifying agents targeting pathways other than amyloid or tau. DISCUSSION The 2020 pipeline has innovations in clinical trials and treatment targets that provide hope for greater success in AD drug development programs. Review of clinical trials over the past 5 years show that there is progressive emphasis on non-amyloid targets, including candidate treatments for inflammation, synapse and neuronal protection, vascular factors, neurogenesis, and epigenetic interventions. There has been a marked growth in repurposed agents in the pipeline.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada, Las Vegas (UNLV)Las VegasNevadaUSA
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
| | | |
Collapse
|
80
|
VandeVrede L, Dale ML, Fields S, Frank M, Hare E, Heuer HW, Keith K, Koestler M, Ljubenkov PA, McDermott D, Ohanesian N, Richards J, Rojas JC, Thijssen EH, Walsh C, Wang P, Wolf A, Quinn JF, Tsai R, Boxer AL. Open-Label Phase 1 Futility Studies of Salsalate and Young Plasma in Progressive Supranuclear Palsy. Mov Disord Clin Pract 2020; 7:440-447. [PMID: 32373661 PMCID: PMC7197321 DOI: 10.1002/mdc3.12940] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a neurodegenerative disease without approved therapies, and therapeutics are often tried off-label in the hope of slowing disease progression. Results from these experiences are seldom shared, which limits evidence-based knowledge to guide future treatment decisions. OBJECTIVES To describe an open-label experience, including safety/tolerability, and longitudinal changes in biomarkers of disease progression in PSP-Richardson's syndrome (PSP-RS) patients treated with either salsalate or young plasma and compare to natural history data from previous multicenter studies. METHODS For 6 months, 10 PSP-RS patients received daily salsalate 2,250 mg, and 5 patients received monthly infusions of four units of young plasma. Every 3 months, clinical severity was assessed with the Progressive Supranuclear Palsy Rating Scale (PSPRS), and MRI was obtained for volumetric measurement of midbrain. A range of exploratory biomarkers, including cerebrospinal fluid levels of neurofilament light chain, were collected at baseline and 6 months. Interventional data were compared to historical PSP-RS patients from the davunetide clinical trial and the 4-Repeat Tauopathy Neuroimaging Initiative. RESULTS Salsalate and young plasma were safe and well tolerated. PSPRS change from baseline (mean ± standard deviation [SD]) was similar in salsalate (+5.6 ± 9.6), young plasma (+5.0 ± 7.1), and historical controls (+5.6 ± 7.1), and change in midbrain volume (cm3 ± SD) did not differ between salsalate (-0.07 ± 0.03), young plasma (-0.06 ± 0.03), and historical controls (-0.06 ± 0.04). No differences were observed between groups on any exploratory endpoint. CONCLUSIONS Neither salsalate nor young plasma had a detectable effect on disease progression in PSP-RS. Focused open-label clinical trials incorporating historical clinical, neuropsychological, fluid, and imaging biomarkers provide useful preliminary data about the promise of novel PSP-directed therapies.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marian L. Dale
- OHSU Parkinson Center and Movement Disorder Program, Department of NeurologyOregon Health and Science UniversityPortland, OregonUSA
| | - Scott Fields
- Department of Pharmaceutical ServicesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Megan Frank
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Emma Hare
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Hilary W. Heuer
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Kellie Keith
- OHSU Parkinson Center and Movement Disorder Program, Department of NeurologyOregon Health and Science UniversityPortland, OregonUSA
| | - Mary Koestler
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Peter A. Ljubenkov
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Dana McDermott
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Noelle Ohanesian
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jennifer Richards
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Julio C. Rojas
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Elisabeth H. Thijssen
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Neurochemistry Laboratory, Department of Clinical ChemistryVU University Medical CenterAmsterdamThe Netherlands
| | - Christine Walsh
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ping Wang
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Amy Wolf
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joseph F. Quinn
- OHSU Parkinson Center and Movement Disorder Program, Department of NeurologyOregon Health and Science UniversityPortland, OregonUSA
| | - Richard Tsai
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Adam L. Boxer
- Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
81
|
Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 2020; 16:213-228. [PMID: 32203398 DOI: 10.1038/s41582-020-0330-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Frontotemporal dementia (FTD) encompasses a spectrum of clinical syndromes characterized by progressive executive, behavioural and language dysfunction. The various FTD spectrum disorders are associated with brain accumulation of different proteins: tau, the transactive response DNA binding protein of 43 kDa (TDP43), or fused in sarcoma (FUS) protein, Ewing sarcoma protein and TATA-binding protein-associated factor 15 (TAF15) (collectively known as FET proteins). Approximately 60% of patients with FTD have autosomal dominant mutations in C9orf72, GRN or MAPT genes. Currently available treatments are symptomatic and provide limited benefit. However, the increased understanding of FTD pathogenesis is driving the development of potential disease-modifying therapies. Most of these drugs target pathological tau - this category includes tau phosphorylation inhibitors, tau aggregation inhibitors, active and passive anti-tau immunotherapies, and MAPT-targeted antisense oligonucleotides. Some of these therapeutic approaches are being tested in phase II clinical trials. Pharmacological approaches that target the effects of GRN and C9orf72 mutations are also in development. Key results of large clinical trials will be available in a few years. However, clinical trials in FTD pose several challenges, and the development of specific brain imaging and molecular biomarkers could facilitate the recruitment of clinically homogenous groups to improve the chances of positive clinical trial results.
Collapse
|
82
|
Rao CV, Asch AS, Carr DJJ, Yamada HY. "Amyloid-beta accumulation cycle" as a prevention and/or therapy target for Alzheimer's disease. Aging Cell 2020; 19:e13109. [PMID: 31981470 PMCID: PMC7059149 DOI: 10.1111/acel.13109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
The cell cycle and its regulators are validated targets for cancer drugs. Reagents that target cells in a specific cell cycle phase (e.g., antimitotics or DNA synthesis inhibitors/replication stress inducers) have demonstrated success as broad-spectrum anticancer drugs. Cyclin-dependent kinases (CDKs) are drivers of cell cycle transitions. A CDK inhibitor, flavopiridol/alvocidib, is an FDA-approved drug for acute myeloid leukemia. Alzheimer's disease (AD) is another serious issue in contemporary medicine. The cause of AD remains elusive, although a critical role of latent amyloid-beta accumulation has emerged. Existing AD drug research and development targets include amyloid, amyloid metabolism/catabolism, tau, inflammation, cholesterol, the cholinergic system, and other neurotransmitters. However, none have been validated as therapeutically effective targets. Recent reports from AD-omics and preclinical animal models provided data supporting the long-standing notion that cell cycle progression and/or mitosis may be a valid target for AD prevention and/or therapy. This review will summarize the recent developments in AD research: (a) Mitotic re-entry, leading to the "amyloid-beta accumulation cycle," may be a prerequisite for amyloid-beta accumulation and AD pathology development; (b) AD-associated pathogens can cause cell cycle errors; (c) thirteen among 37 human AD genetic risk genes may be functionally involved in the cell cycle and/or mitosis; and (d) preclinical AD mouse models treated with CDK inhibitor showed improvements in cognitive/behavioral symptoms. If the "amyloid-beta accumulation cycle is an AD drug target" concept is proven, repurposing of cancer drugs may emerge as a new, fast-track approach for AD management in the clinic setting.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Adam S. Asch
- Stephenson Cancer CenterDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Daniel J. J. Carr
- Department of OphthalmologyUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| |
Collapse
|