51
|
Meeker TJ, Jupudi R, Lenz FA, Greenspan JD. New Developments in Non-invasive Brain Stimulation in Chronic Pain. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:280-292. [PMID: 33473332 DOI: 10.1007/s40141-020-00260-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of Review The goal of this review is to present a summary of the recent literature of a non-invasive brain stimulation (NIBS) to alleviate pain in people with chronic pain syndromes. This article reviews the current evidence for the use of transcranial direct current (tDCS) and repetitive transcranial magnetic stimulation (rTMS) to improve outcomes in chronic pain. Finally, we introduce the reader to novel stimulation methods that may improve therapeutic outcomes in chronic pain. Recent Findings While tDCS is approved for treatment of fibromyalgia in Canada and the European Union, no NIBS method is currently approved for chronic pain in the United States. Increasing sample sizes in randomized clinical trials (RCTs) seems the most efficient way to increase confidence in initial promising results. Trends at funding agencies reveal increased interest and support for NIBS such as recent Requests for Application from the National Institutes of Health. NIBS in conjunction with cognitive behavioral therapy and physical therapy may enhance outcomes in chronic pain. Novel stimulation methods, such as transcranial ultrasound stimulation, await rigorous study in chronic pain.
Collapse
Affiliation(s)
- Timothy J Meeker
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.,Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| | - Rithvic Jupudi
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Frederik A Lenz
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Joel D Greenspan
- Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
52
|
Cardenas-Rojas A, Pacheco-Barrios K, Giannoni-Luza S, Rivera-Torrejon O, Fregni F. Noninvasive brain stimulation combined with exercise in chronic pain: a systematic review and meta-analysis. Expert Rev Neurother 2020; 20:401-412. [PMID: 32130037 DOI: 10.1080/14737175.2020.1738927] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: The use of noninvasive brain stimulation (NIBS) combined with exercise could produce synergistic effects on chronic pain conditions. This study aims to evaluate the efficacy and safety of NIBS combined with exercise to treat chronic pain as well as to describe the parameters used to date in this combination.Methods: The search was carried out in Medline, Central, Scopus, Embase, and Pedro until November 2019. Randomized clinical trials (RCTs) and quasi-experimental studies reporting the use of noninvasive brain stimulation and exercise on patients with chronic pain were selected and revised.Results: The authors included eight studies (RCTs), reporting eight comparisons (219 participants). Authors found a significant and homogeneous pain decrease (ES: -0.62, 95% CI:-0.89 to -0.34; I2 = 0.0%) in favor of the combined intervention compared to sham NIBS + exercise, predominantly by excitatory (anodal tDCS/rTMS) motor cortex stimulation. Regarding NIBS techniques, the pooled effect sizes were significant for both tDCS (ES: -0.59, 95% CI: -0.89 to -0.29, I2 = 0.0%) and rTMS (ES: -0.76, 95% CI: -1.41 to -0.11, I2 = 0.0%).Conclusions: This meta-analysis suggests a significant moderate to large effects of the NIBS and exercise combination in chronic pain. The authors discuss the potential theoretical framework for this synergistic effect.
Collapse
Affiliation(s)
- Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA.,Unidad De Investigación Para La Generación Y Síntesis De Evidencias En Salud, Universidad San Ignacio De Loyola, Lima, Perú.,SYNAPSIS Mental Health and Neurology, Non-Profit Organization, Lima, Peru
| | - Stefano Giannoni-Luza
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA
| | | | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
53
|
Aamir A, Girach A, Sarrigiannis PG, Hadjivassiliou M, Paladini A, Varrassi G, Zis P. Repetitive Magnetic Stimulation for the Management of Peripheral Neuropathic Pain: A Systematic Review. Adv Ther 2020; 37:998-1012. [PMID: 31989485 DOI: 10.1007/s12325-020-01231-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Repetitive magnetic stimulation (rMS) is a safe and well-tolerated intervention. Transcranial magnetic stimulation (TMS) is used for the treatment of depression and for the treatment and prevention of migraine. Over the last few years, several reports and randomised controlled studies of the use of rMS for the treatment of pain have been published. The aim of this systematic review was to identify the available literature regarding the use of rMS in the treatment of peripheral neuropathic pain. METHODS After a systematic Medline search we identified 12 papers eligible to be included in this review. RESULTS The majority of the studies were on patients with phantom limb pain, followed by radiculopathy, plexopathy, post-traumatic pain and peripheral neuropathy. The treatment protocols vary significantly from study to study and, therefore, pooling the results together is currently difficult. However, rMS has a definite immediate effect in pain relief which, in the majority of studies, is maintained for a few weeks. CONCLUSION rMS seems to be a promising intervention in the treatment of peripheral neuropathic pain. Further research is in the field is needed. Use of neuronavigation might increase the precision of stimulation and subsequently its effectiveness.
Collapse
Affiliation(s)
| | - Ayesha Girach
- Medical School, University of Sheffield, Sheffield, UK
| | | | - Marios Hadjivassiliou
- Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | | | | |
Collapse
|
54
|
Krewer C, Thibaut A. Non-invasive brain stimulation for treatment of severe disorders of consciousness in people with acquired brain injury. Hippokratia 2020. [DOI: 10.1002/14651858.cd013533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carmen Krewer
- Schoen Clinic Bad Aibling; Clinical Human Movement Science; Kolbermoorer Str.72 Bad Aibling Germany 83043
| | - Aurore Thibaut
- Harvard Medical School; Department of Physical Medicine and Rehabilitation; 79/96, 13th Street Charlestown Massachusetts USA 02145
| |
Collapse
|
55
|
Iglesias AH. Transcranial Magnetic Stimulation as Treatment in Multiple Neurologic Conditions. Curr Neurol Neurosci Rep 2020; 20:1. [PMID: 32020300 DOI: 10.1007/s11910-020-1021-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Transcranial magnetic stimulation (TMS) is a method of Non-Invasive Brain Stimulation that is based on electro-physical principles discovered by Michael Faraday. A TMS device is made of one or two copper coils, positioned superficially to a site of interest in the brain, to non-invasively produce a brief magnetic pulse to an estimated depth from the surface of the scalp with the following axonal depolarization. This axonal depolarization activates cortical and subcortical networks with multiple effects. There are different methods of TMS used, all with different mechanisms of action. TMS is well tolerated with very few side effects. RECENT FINDINGS TMS is now approved for major depression disorder and obsessive-compulsive disorder. There is significant data to consider approval of TMS for many neurological disorders. This is a review of the uses of TMS in diverse neurological conditions, including stroke and spasticity, migraine, and dementia. TMS is a device that utilizes non-invasive brain stimulation, and it has shown promising results with objective clinical and basic science data. Its ability to trigger neuronal plasticity and potentiating synaptic transmission gives it incredible therapeutic potential. There are diverse mechanisms of action, and this could be troublesome in elaborating clinical trials and standardization of therapy.
Collapse
Affiliation(s)
- Antonio H Iglesias
- Neurology, Department of Neurology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
56
|
Kim E, Sanchez-Casanova J, Anguluan E, Kim H, Kim JG. Mobile Wireless Low-intensity Transcranial Ultrasound Stimulation System for Freely Behaving Small Animals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6282-6285. [PMID: 31947278 DOI: 10.1109/embc.2019.8857372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcranial ultrasound stimulation (tUS) is a promising noninvasive approach to modulate brain circuits. While low-intensity tUS is putatively safe and has already been used for human participants, pre-clinical studies that aim to determine the effects of tUS on the brain still need to be carried out. Conventional tUS stimulation, however, requires the use of the anesthetized or immobilized animal model, which can place considerable restrictions on behavior. Thus, this work presents a portable, low cost, wireless system to achieve ultrasound brain stimulation in freely behaving animals. The tUS system was developed based on a commercial 16 MHz microcontroller and amplifier circuit. The acoustic wave with a central frequency of 450 kHz was generated from a 5mm PZT with a peak pressure of 426 kPa. The wireless tUS with a total weight of 20 g was placed on the back of the rat allowing the animal a full range of unimpeded motion. The mobile ultrasound system was able to induce a robust ear movement as a response to stimulation of the motor cortex. The outcome demonstrates the ability of wireless tUS to modulate the brain circuit of a freely behaving rat. The portability of the whole system provides a more natural environment for investigating the effect of tUS on behavior and chronic studies.
Collapse
|
57
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
58
|
Zeng FG, Tran P, Richardson M, Sun S, Xu Y. Human Sensation of Transcranial Electric Stimulation. Sci Rep 2019; 9:15247. [PMID: 31649289 PMCID: PMC6813324 DOI: 10.1038/s41598-019-51792-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Noninvasive transcranial electric stimulation is increasingly being used as an advantageous therapy alternative that may activate deep tissues while avoiding drug side-effects. However, not only is there limited evidence for activation of deep tissues by transcranial electric stimulation, its evoked human sensation is understudied and often dismissed as a placebo or secondary effect. By systematically characterizing the human sensation evoked by transcranial alternating-current stimulation, we observed not only stimulus frequency and electrode position dependencies specific for auditory and visual sensation but also a broader presence of somatic sensation ranging from touch and vibration to pain and pressure. We found generally monotonic input-output functions at suprathreshold levels, and often multiple types of sensation occurring simultaneously in response to the same electric stimulation. We further used a recording circuit embedded in a cochlear implant to directly and objectively measure the amount of transcranial electric stimulation reaching the auditory nerve, a deep intercranial target located in the densest bone of the skull. We found an optimal configuration using an ear canal electrode and low-frequency (<300 Hz) sinusoids that delivered maximally ~1% of the transcranial current to the auditory nerve, which was sufficient to produce sound sensation even in deafened ears. Our results suggest that frequency resonance due to neuronal intrinsic electric properties need to be explored for targeted deep brain stimulation and novel brain-computer interfaces.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA.
| | - Phillip Tran
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
| | - Matthew Richardson
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
| | - Shuping Sun
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
- Department of Otolaryngology - Head and Neck Surgery, The First Affiliated Hospital, Zhengzhou University, Henan, 450052, China
| | - Yuchen Xu
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, California, 92697, USA
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
59
|
Garcia-Larrea L, Perchet C, Hagiwara K, André-Obadia N. At-Home Cortical Stimulation for Neuropathic Pain: a Feasibility Study with Initial Clinical Results. Neurotherapeutics 2019; 16:1198-1209. [PMID: 31062295 PMCID: PMC6985395 DOI: 10.1007/s13311-019-00734-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The clinical use of noninvasive cortical stimulation procedures is hampered by the limited duration of the analgesic effects and the need to perform stimulation in hospital settings. Here, we tested the feasibility and pilot efficacy of an internet-based system for at-home, long-duration, medically controlled transcranial motor cortex stimulation (H-tDCS), via a double-blinded, sham-controlled trial in patients with neuropathic pain refractory to standard-of-care drug therapy. Each patient was first trained at hospital, received a stimulation kit, allotted a password-protected Web space, and completed daily tDCS sessions during 5 weeks, via a Bluetooth connection between stimulator and a minilaptop. Each session was validated and internet-controlled by hospital personnel. Daily pain ratings were obtained during 11 consecutive weeks, and afterwards via iterative visits/phone contacts. Twenty full procedures were completed in 12 consecutive patients (500 daily tDCS sessions, including 20% sham). No serious adverse effects were recorded. Superficial burning at electrode position occurred in 2 patients, and nausea/headache in two others, all of whom wished to pursue stimulation. Six out of the 12 patients achieved satisfactory relief on a scale combining pain scores, drug intake, and quality of life. Daily pain reports correlated with such combined assessment, and differentiated responders from nonresponders without overlap. Clinical improvement in responders could last up to 6 months. Five patients asked to repeat the whole procedure when pain resumed again, with comparable results. At-home, long-duration tDCS proved safe and technically feasible, and provided long-lasting relief in 50% of a small sample of patients with drug-resistant neuropathic pain.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard Lyon 1, F-69677, Bron, France.
- Centre D'évaluation et de Traitement de la Douleur (CETD), Hôpital Neurologique, F-69000, Lyon, France.
| | - Caroline Perchet
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard Lyon 1, F-69677, Bron, France
| | - Koichi Hagiwara
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard Lyon 1, F-69677, Bron, France
| | - Nathalie André-Obadia
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard Lyon 1, F-69677, Bron, France
- Service de Neurologie Fonctionnelle et d'Epileptologie, Hôpital Neurologique, Hospices Civils de Lyon, F-69677, Bron, France
| |
Collapse
|
60
|
Liu M, Fan S, Xu Y, Cui L. Non-invasive brain stimulation for fatigue in multiple sclerosis patients: A systematic review and meta-analysis. Mult Scler Relat Disord 2019; 36:101375. [PMID: 31491597 DOI: 10.1016/j.msard.2019.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/05/2019] [Accepted: 08/18/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND To investigate the efficacy and safety of non-invasive brain stimulation for fatigue in multiple sclerosis patients. METHODS We searched MEDLINE, Embase, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure, and Wanfang databases up to October 25, 2018 (PROSPERO registration number: CRD42018112823). Randomized or pseudo-randomized, sham-controlled clinical trials evaluating the effect of non-invasive brain stimulation (NIBS) such as transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), cranial electrotherapy stimulation, and reduced impedance non-invasive cortical electrostimulation were included. Two authors independently performed data extraction and risk of bias assessment according to Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.1. The primary outcome was fatigue scores before and after stimulation and the secondary outcome was adverse events. RESULTS Data from cross-over and parallel group studies were pooled using a generic inverse-variance approach. A total of 14 studies (11 for tDCS, 2 for TMS, and 1 for tRNS) recruiting 207 patients were included in the systematic review and meta-analysis. No eligible tACS, cranial electrotherapy stimulation or reduced impedance non-invasive cortical electrostimulation studies were found. Short-term and long-term treatment effects were significant for tDCS, whereas TMS and tRNS were not superior to sham stimulation. The available evidence supported the effectiveness of the 1.5 mA subgroup and bilateral S1 subgroup of tDCS. Adverse events were minor and transient but comparable between real and sham stimulation. CONCLUSIONS tDCS is a safe and effective treatment for fatigue in MS patients. However, further studies are required to confirm our results in a large-scale population and to investigate the effectiveness of other NIBS subtypes.
Collapse
Affiliation(s)
- Mange Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
61
|
Ferreira NR, Junqueira YN, Corrêa NB, Fonseca EO, Brito NBM, Menezes TA, Magini M, Fidalgo TKS, Ferreira DMTP, de Lima RL, Carvalho AC, DosSantos MF. The efficacy of transcranial direct current stimulation and transcranial magnetic stimulation for chronic orofacial pain: A systematic review. PLoS One 2019; 14:e0221110. [PMID: 31415654 PMCID: PMC6695170 DOI: 10.1371/journal.pone.0221110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (TMS) have been described as promising alternatives to treat different pain syndromes. This study evaluated the effects of TMS and tDCS in the treatment of chronic orofacial pain, through a systematic review. METHODS An electronic search was performed in major databases: MEDLINE, Scopus, Web of Science, Cochrane, Embase, LILACS, BBO, Open Gray and CINAHL. The eligibility criteria comprised randomized clinical trials (RCTs) that applied TMS or tDCS to treat chronic orofacial pain. The variables analyzed were pain, functional limitation, quality of life, tolerance to treatment, somatosensory changes, and adverse effects. The risk of bias was assessed through the Cochrane Collaboration tool, and the certainty of evidence was evaluated through GRADE. The protocol was registered in the PROSPERO database (CRD42018090774). RESULTS The electronic search resulted in 636 studies. Thereafter, the eligibility criteria were applied and the duplicates removed, resulting in eight RCTs (four TMS and four tDCS). The findings of these studies suggest that rTMS applied to the Motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC) and the secondary somatosensory cortex (S2) provide adequate orofacial pain relief. Two studies reported significant pain improvement with tDCS applied over M1 while the other two failed to demonstrate significant effects compared to placebo. CONCLUSIONS rTMS, applied to M1, DLPFC or S2, is a promising approach for the treatment of chronic orofacial pain. Moreover, tDCS targeting M1 seems to be also effective in chronic orofacial pain treatment. The included studies used a wide variety of therapeutic protocols. In addition, most of them used small sample sizes, with a high risk of biases in their methodologies, thus producing a low quality of evidence. The results indicate that further research should be carried out with caution and with better-standardized therapeutic protocols.
Collapse
Affiliation(s)
- Natália R. Ferreira
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ygor N. Junqueira
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Nathália B. Corrêa
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Estevão O. Fonseca
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Nathália B. M. Brito
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Thayná A. Menezes
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Márcio Magini
- Laboratório de Análise e Processamento de Sinais, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, Rio de Janeiro, Brazil
| | - Tatiana K. S. Fidalgo
- Departamento de Odontologia Preventiva e Comunitária, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele M. T. P. Ferreira
- Biblioteca do Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo L. de Lima
- Departamento de Ortodontia e Odontopediatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio C. Carvalho
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos F. DosSantos
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
62
|
Fitzgibbon BM, Schabrun SM. Transcranial Direct Current Stimulation for Pain Disorders: Challenges and New Frontiers. Clin Pharmacol Ther 2019; 106:717-719. [PMID: 31309544 DOI: 10.1002/cpt.1544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Bernadette M Fitzgibbon
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Siobhan M Schabrun
- Neuroscience Research Australia, Randwick, Sydney, New South Wales, Australia
| |
Collapse
|
63
|
Indahlastari A, Albizu A, Nissim NR, Traeger KR, O'Shea A, Woods AJ. Methods to monitor accurate and consistent electrode placements in conventional transcranial electrical stimulation. Brain Stimul 2019; 12:267-274. [PMID: 30420198 PMCID: PMC6348875 DOI: 10.1016/j.brs.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Inaccurate electrode placement and electrode drift during a transcranial electrical stimulation (tES) session have been shown to alter predicted field distributions in the brain and thus may contribute to a large variation in tES study outcomes. Currently, there is no objective and independent measure to quantify electrode placement accuracy/drift in tES clinical studies. OBJECTIVE/HYPOTHESIS We proposed and tested novel methods to quantify accurate and consistent electrode placements in tES using models generated from a 3D scanner. METHODS Accurate electrode placements were quantified as Discrepancy in eight tES participants by comparing landmark distances of physical electrode locations F3/F4 to their model counterparts. Distances in models were computed using curve and linear based methods. Variability of landmark locations in a single subject was computed for multiple stimulation sessions to determine consistent electrode placements across four experimenters. MAIN RESULTS We obtained an average of 0.4 cm in Discrepancy, which was within the placement accuracy/drift threshold (1 cm) for conventional tES electrodes (∼35 cm2) to achieve reliable tES sessions suggested in the literature. Averaged Variability was 5.2%, with F4 electrode location as the least consistent placement. CONCLUSIONS These methods provide objective feedback for experimenters on their performance in placing tES electrodes. Applications of these methods can be used to monitor electrode locations in tES studies of a larger cohort using F3/F4 montage and other conventional electrode arrangements. Future studies may include co-registering the landmark locations with imaging-derived head models to quantify the effects of electrode accuracy/drift on predicted field distributions in the brain.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Alejandro Albizu
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kelsey R Traeger
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, Department of Neuroscience, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
64
|
Berra E, Bergamaschi R, De Icco R, Dagna C, Perrotta A, Rovaris M, Grasso MG, Anastasio MG, Pinardi G, Martello F, Tamburin S, Sandrini G, Tassorelli C. The Effects of Transcutaneous Spinal Direct Current Stimulation on Neuropathic Pain in Multiple Sclerosis: Clinical and Neurophysiological Assessment. Front Hum Neurosci 2019; 13:31. [PMID: 30809137 PMCID: PMC6379270 DOI: 10.3389/fnhum.2019.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/21/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Central neuropathic pain represents one of the most common symptoms in multiple sclerosis (MS) and it seriously affects quality of life. Spinal mechanisms may contribute to the pathogenesis of neuropathic pain in MS. Converging evidence from animal models and neurophysiological and clinical studies in humans suggests a potential effect of transcranial direct current stimulation (tc-DCS) on neuropathic pain. Spinal application of DCS, i.e., transcutaneous spinal DCS (ts-DCS), may modulate nociception through inhibition of spinal reflexes. Therefore, ts-DCS could represents an effective, safe and well-tolerated treatment for neuropathic pain in MS, a largely unexplored topic. This study is a pilot randomized double-blind sham-controlled trial to evaluate the efficacy of ts-DCS on central neuropathic pain in MS patients. Methods: Thirty-three MS patients with central neuropathic pain were enrolled and randomly assigned to two groups in a double-blind sham-controlled design: anodal ts-DCS group (n = 19, 10 daily 20-min sessions, 2 mA) or sham ts-DCS group (n = 14, 10 daily 20-min sessions, 0 mA). The following clinical outcomes were evaluated before ts-DCS treatment (T0), after 10 days of treatment (T1) and 1 month after the end of treatment (T2): neuropathic pain symptoms inventory (NPSI), Ashworth Scale (AS) for spasticity and Fatigue Severity Scale (FSS). A subgroup of patients treated with anodal ts-DCS (n = 12) and sham ts-DCS (n = 11) also underwent a parallel neurophysiological study of the nociceptive withdrawal reflex (NWR) and the NWR temporal summation threshold (TST), two objective markers of pain processing at spinal level. Results: Anodal ts-DCS group showed a significant improvement in NPSI at T1, which persisted at T2, while we did not detect any significant change in AS and FSS. Sham ts-DCS group did not show any significant change in clinical scales. We observed a non-significant trend towards an inhibition of NWR responses in the anodal ts-DCS group at T1 and T2 when compared to baseline. Conclusions: Anodal ts-DCS seems to have an early and persisting (i.e., 1 month after treatment) clinical efficacy on central neuropathic pain in MS patients, probably through modulation of spinal nociception. Clinical Trial Registration:www.ClinicalTrials.gov, identifier #NCT02331654.
Collapse
Affiliation(s)
- Eliana Berra
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy
| | - Roberto Bergamaschi
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Multiple Sclerosis Center, IRCCS C. Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlotta Dagna
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Marco Rovaris
- Neurorehabilitation Unit and Multiple Sclerosis Center, IRCCS Santa Maria Nascente, Don Carlo Gnocchi Foundation, Milan, Italy
| | - Maria Grazia Grasso
- Multiple Sclerosis Unit, Rehabilitation Hospital Santa Lucia Foundation, Rome, Italy
| | | | - Giovanna Pinardi
- Neurorehabilitation Unit and Multiple Sclerosis Center, IRCCS Santa Maria Nascente, Don Carlo Gnocchi Foundation, Milan, Italy
| | - Federico Martello
- Multiple Sclerosis Unit, Rehabilitation Hospital Santa Lucia Foundation, Rome, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giorgio Sandrini
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
65
|
Brighina F, Curatolo M, Cosentino G, De Tommaso M, Battaglia G, Sarzi-Puttini PC, Guggino G, Fierro B. Brain Modulation by Electric Currents in Fibromyalgia: A Structured Review on Non-invasive Approach With Transcranial Electrical Stimulation. Front Hum Neurosci 2019; 13:40. [PMID: 30804771 PMCID: PMC6378756 DOI: 10.3389/fnhum.2019.00040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/24/2019] [Indexed: 01/13/2023] Open
Abstract
Fibromyalgia syndrome (FMS) is a complex disorder where widespread musculoskeletal pain is associated with many heterogenous symptoms ranging from affective disturbances to cognitive dysfunction and central fatigue. FMS is currently underdiagnosed and often very poorly responsive to pharmacological treatment. Pathophysiology of the disease remains still obscure even if in the last years fine structural and functional cerebral abnormalities have been identified, principally by neurophysiological and imaging studies delineating disfunctions in pain perception, processing and control systems. On such basis, recently, neurostimulation of brain areas involved in mechanism of pain processing and control (primary motor cortex: M1 and dorsolateral prefrontal cortex: DLPFC) has been explored by means of different approaches and particularly through non-invasive brain stimulation techniques (transcranial magnetic and electric stimulation: TMS and tES). Here we summarize studies on tES application in FMS. The great majority of reports, based on direct currents (transcranial direct currents stimulation: tDCS) and targeting M1, showed efficacy on pain measures and less on cognitive and affective symptoms, even if several aspects as maintenance of therapeutical effects and optimal stimulation parameters remain to be established. Differently, stimulation of DLPFC, explored in a few studies, was ineffective on pain and showed limited effects on cognitive and affective symptoms. Very recently new tES techniques as high-density tDCS (HD-tDCS), transcranial random noise stimulation (tRNS) and tDCS devices for home-based treatment have been explored in FMS with interesting even if very preliminary results opening interesting perspectives for more effective, well tolerated, cheap and easy therapeutic approaches.
Collapse
Affiliation(s)
- Filippo Brighina
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND), Università degli Studi di Palermo, Palermo, Italy
| | - Massimiliano Curatolo
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND), Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Marina De Tommaso
- Unità di Neurofisiopatologia del Dolore, Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso (SMBNOS), Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giuseppe Battaglia
- Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio Fisico e della Formazione, Università degli Studi di Palermo, Palermo, Italy
| | | | - Giuliana Guggino
- Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), Università degli Studi di Palermo, Palermo, Italy
| | - Brigida Fierro
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
66
|
Distinction of self-produced touch and social touch at cortical and spinal cord levels. Proc Natl Acad Sci U S A 2019; 116:2290-2299. [PMID: 30670645 PMCID: PMC6369791 DOI: 10.1073/pnas.1816278116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The earliest way humans can learn what their body is and where the outside world begins is through the tactile sense, especially through touch between parent and baby. In this study, we demonstrated differential processing of touch from self and others at cortical and spinal levels. Our results support top-down modulation of dorsal horn somatosensory processing, as recently shown in animal studies. We provide evidence that the individual self-concept relates to differential self- vs. other-processing in the tactile domain. Self- vs. other-distinction is necessary for successful social interaction with others and for establishing a coherent self. Our results suggest an association between impaired somatosensory processing and a dysfunctional self-concept, as seen in many psychiatric disorders. Differentiation between self-produced tactile stimuli and touch by others is necessary for social interactions and for a coherent concept of “self.” The mechanisms underlying this distinction are unknown. Here, we investigated the distinction between self- and other-produced light touch in healthy volunteers using three different approaches: fMRI, behavioral testing, and somatosensory-evoked potentials (SEPs) at spinal and cortical levels. Using fMRI, we found self–other differentiation in somatosensory and sociocognitive areas. Other-touch was related to activation in several areas, including somatosensory cortex, insula, superior temporal gyrus, supramarginal gyrus, striatum, amygdala, cerebellum, and prefrontal cortex. During self-touch, we instead found deactivation in insula, anterior cingulate cortex, superior temporal gyrus, amygdala, parahippocampal gyrus, and prefrontal areas. Deactivation extended into brain areas encoding low-level sensory representations, including thalamus and brainstem. These findings were replicated in a second cohort. During self-touch, the sensorimotor cortex was functionally connected to the insula, and the threshold for detection of an additional tactile stimulus was elevated. Differential encoding of self- vs. other-touch during fMRI correlated with the individual self-concept strength. In SEP, cortical amplitudes were reduced during self-touch, while latencies at cortical and spinal levels were faster for other-touch. We thus demonstrated a robust self–other distinction in brain areas related to somatosensory, social cognitive, and interoceptive processing. Signs of this distinction were evident at the spinal cord. Our results provide a framework for future studies in autism, schizophrenia, and emotionally unstable personality disorder, conditions where symptoms include social touch avoidance and poor self-vs.-other discrimination.
Collapse
|
67
|
Latin American and Caribbean consensus on noninvasive central nervous system neuromodulation for chronic pain management (LAC 2-NIN-CP). Pain Rep 2019; 4:e692. [PMID: 30801041 PMCID: PMC6370142 DOI: 10.1097/pr9.0000000000000692] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Chronic pain (CP) is highly prevalent and generally undertreated health condition. Noninvasive brain stimulation may contribute to decrease pain intensity and influence other aspects related to CP. Objective: To provide consensus-based recommendations for the use of noninvasive brain stimulation in clinical practice. Methods: Systematic review of the literature searching for randomized clinical trials followed by consensus panel. Recommendations also involved a cost-estimation study. Results: The systematic review wielded 24 transcranial direct current stimulation (tDCS) and 22 repetitive transcranial magnetic stimulation (rTMS) studies. The following recommendations were provided: (1) Level A for anodal tDCS over the primary motor cortex (M1) in fibromyalgia, and level B for peripheral neuropathic pain, abdominal pain, and migraine; bifrontal (F3/F4) tDCS and M1 high-definition (HD)-tDCS for fibromyalgia; Oz/Cz tDCS for migraine and for secondary benefits such as improvement in quality of life, decrease in anxiety, and increase in pressure pain threshold; (2) level A recommendation for high-frequency (HF) rTMS over M1 for fibromyalgia and neuropathic pain, and level B for myofascial or musculoskeletal pain, complex regional pain syndrome, and migraine; (3) level A recommendation against the use of anodal M1 tDCS for low back pain; and (4) level B recommendation against the use of HF rTMS over the left dorsolateral prefrontal cortex in the control of pain. Conclusion: Transcranial DCS and rTMS are recommended techniques to be used in the control of CP conditions, with low to moderate analgesic effects, and no severe adverse events. These recommendations are based on a systematic review of the literature and a consensus made by experts in the field. Readers should use it as part of the resources available to decision-making.
Collapse
|
68
|
Duarte D, Castelo-Branco LEC, Uygur Kucukseymen E, Fregni F. Developing an optimized strategy with transcranial direct current stimulation to enhance the endogenous pain control system in fibromyalgia. Expert Rev Med Devices 2018; 15:863-873. [PMID: 30501532 PMCID: PMC6644718 DOI: 10.1080/17434440.2018.1551129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Fibromyalgia affects more than 5 million people in the United States and has a detrimental impact on individuals' quality of life. Current pharmacological treatments provide limited benefits to relieve the pain of fibromyalgia, along with a risk of adverse effects; a scenario that explains the increasing interest for multimodal approaches. A tailored strategy to focus on this dysfunctional endogenous pain inhibitory system is transcranial direct current stimulation (tDCS) of the primary motor cortex. By combining tDCS with aerobic exercise, the effects can be optimized. Areas covered: The relevant literature was reviewed and discussed the methodological issues for designing a mechanistic clinical trial to test this combined intervention. Also, we reviewed the neural control of different pathways that integrate the endogenous pain inhibitory system, as well as the effects of tDCS and aerobic exercise both alone and combined. In addition, potential neurophysiological assessments are addressed: conditioned pain modulation, temporal slow pain summation, transcranial magnetic stimulation, and electroencephalography in the context of fibromyalgia. Expert commentary: By understanding the neural mechanisms underlying pain processing and potential optimized interventions in fibromyalgia with higher accuracy, the field has an evident potential of advancement in the direction of new neuromarkers and tailored therapies.
Collapse
Affiliation(s)
- Dante Duarte
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| | - Luis Eduardo Coutinho Castelo-Branco
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| | - Elif Uygur Kucukseymen
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| | - Felipe Fregni
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
69
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|