51
|
Sun B, Ning L, Zeng HC. Confirmation of Suzuki–Miyaura Cross-Coupling Reaction Mechanism through Synthetic Architecture of Nanocatalysts. J Am Chem Soc 2020; 142:13823-13832. [DOI: 10.1021/jacs.0c04804] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bo Sun
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Lulu Ning
- College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
52
|
Hu J, Zhang M, Liu L, Zheng J, Alsulami H, Kutbi MA, Xu J. Structural Evolution of Cu2O-Derived Hybrids Comprised of Copper Cores, a Silica Interlayer, and Carbon as the Outlayer. Inorg Chem 2020; 59:9356-9363. [DOI: 10.1021/acs.inorgchem.0c01227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiamin Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Libin Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Hamed Alsulami
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Marwan Amin Kutbi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| |
Collapse
|
53
|
Kumar A, Kumari N, Dubbu S, Kumar S, Kwon T, Koo JH, Lim J, Kim I, Cho Y, Rho J, Lee IS. Nanocatalosomes as Plasmonic Bilayer Shells with Interlayer Catalytic Nanospaces for Solar‐Light‐Induced Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sumit Kumar
- Center for Soft and Living MatterInstitute for Basic Science (IBS) and Department of Biomedical EngineeringSchool of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Inki Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Yoon‐Kyoung Cho
- Center for Soft and Living MatterInstitute for Basic Science (IBS) and Department of Biomedical EngineeringSchool of Life Sciences Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Junsuk Rho
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
54
|
Kosari M, Seayad AM, Xi S, Kozlov SM, Borgna A, Zeng HC. Synthesis of Mesoporous Copper Aluminosilicate Hollow Spheres for Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23060-23075. [PMID: 32345013 DOI: 10.1021/acsami.0c03052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hollow functional metal silicate materials have received the most interest due to their large inner space, permeable and functional shell, lighter density, and better use of material compared to their solid counterparts. While tremendous success has been made in the synthesis of individual metal silicates with uniform morphology, the synthesis of multiphase hollow silicates has not been explored yet, although their direct applications could be promising. In this study, mesoporous aluminosilicate spheres (MASS) are transformed to submicrometer copper aluminosilicate hollow spheres (CASHS) via a one-pot hydrothermal process. CASHS has a hollow interior with Cu-Al-Si thorn-like moieties in a lamellar structure on its outer shell. The structure and morphology of CASHS are unique and different from the previously reported tubular copper silicates that are emanated from Stöber silica spheres. Herein, we also demonstrate that the extent of hollowing in CASHS can be attained by controlling the aluminum content of pristine MASS, highlighting the existence of parameters for in situ controlling the shell thickness of hollow materials. The application of CASHS as a potential heterogeneous catalyst has been directed to important oxidation processes such as olefin oxidation and the advanced oxidation process (AOP). In cyclohexene oxidation, for instance, high selectivity to cyclohex-2-en-1-one is achieved under moderate conditions using tert-butyl hydroperoxide as the oxidant. CASHS is a robust heterogeneous catalyst and recyclable for this reaction. CASHS-derived catalysts also favor AOP and enhance the removal of cationic dyes together with H2O2 through an adsorption-degradation process.
Collapse
Affiliation(s)
- Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Abdul Majeed Seayad
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | - Armando Borgna
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| |
Collapse
|
55
|
Liu D, Liu J, Zhou Y, Chen J, Zhan P, Yang G, Wu Z. Assembly of lignin-based colloidal particles: effects of cationic surfactants, molecular weight, and solvent on morphology. RSC Adv 2020; 10:18594-18600. [PMID: 35518291 PMCID: PMC9054004 DOI: 10.1039/d0ra01444c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
Sodium lignosulfonate (LS) is a lignin derivative, which has abundant resources and is an environmentally friendly raw material. In this study, cetyltrimethylammonium bromide (CTAB) and stearyltrimethylammonium bromide (STAB) were combined with LS at the isoelectric point for hydrophobic self-assembly. Transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and static contact angle data proved that LS/CTAB could form colloidal spheres, while LS/STAB could not form such spheres. The impact of the molecular weight of LS on the self-assembly of LS/CTAB was investigated by using the TEM, FTIR, and static contact angle data. The obtained results showed that LS/CTAB with 10 000–50 000 Da of LS could form colloidal spheres, while LS/CTAB with 3000–5000 Da of LS could not. In addition, the TEM images revealed that the solvent plays an important role in the morphology of LS/CTAB colloidal spheres. Finally, LS/CTAB colloidal spheres were used for the encapsulation of ibuprofen (IBU). The in vitro release behavior of IBU was proven to be pH-sensitive and exhibited controlled release properties. More than 85% IBU could be preserved in simulated gastric fluid, and over 75% could be released in simulated intestinal fluid. This work provides a theoretical basis for the preparation of LS/CTAB colloidal spheres and facilitates the expansion of its applications as a drug carrier. Effect of cationic surfactants, molecular weight and solvent on the morphology of lignin based particles and in vitro release behavior.![]()
Collapse
Affiliation(s)
- Dexiang Liu
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Jinyu Liu
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Yingxiang Zhou
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Jienan Chen
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China .,Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology Changsha 410004 China.,Hunan Engineering Research Center for Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China.,Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China
| | - Peng Zhan
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China .,Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology Changsha 410004 China.,Hunan Engineering Research Center for Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China.,Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China
| | - Guoen Yang
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China
| | - Zhiping Wu
- School of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 China .,Ministry of Forestry Bioethanol Research Center, Central South University of Forestry and Technology Changsha 410004 China.,Hunan Engineering Research Center for Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China.,Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology Changsha 410004 China
| |
Collapse
|
56
|
Zheng X, Jiang R, Qu X, Li Q, Zeng F, Wang W, Dai Z, Xu Z, Peng J, Xu Z. Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes. NANOTECHNOLOGY 2020; 31:195301. [PMID: 31766044 DOI: 10.1088/1361-6528/ab5b36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fabricating large-scale nanoarrays is a significant and challenging work in the field of nanometer devices. Anodic aluminum oxide (AAO) membrane is considered as a promising mask due to its inherent advantages such as low-cost and tunable pore diameter. However, there are few reports on the use of non-through-hole large-area AAO membrane as a mask. Due to its higher mechanical strength, non-through-hole AAO membrane has the advantage of self-supporting for large-area fabrication. Herein, we present a robust approach to transferring nanopattern to substrates with high fidelity by using the non-through-hole AAO membrane as an etching mask. A novel two-step inductively coupled plasma (ICP) etching method is adopted. The morphological evolution of the AAO during ICP etching is systematically investigated. The aspect ratio of the AAO can be quantitatively controlled by adjusting etching time. The AAO nanopore arrays with an area of 7.1 cm2 are successfully transferred to gallium nitride wafer to enhance photoluminescence. The luminous intensity of the nano-array LED with a pore diameter of 400 nm and a depth of 150 nm is improved by 3.4 times compared with the LED without the nano-array. This method extends the opportunities for AAO mask to serve as generic templates for novel applications that are previously impractical due to the difficulty of large-scale nano-pattern transfer.
Collapse
Affiliation(s)
- Xue Zheng
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kumar A, Kumari N, Dubbu S, Kumar S, Kwon T, Koo JH, Lim J, Kim I, Cho YK, Rho J, Lee IS. Nanocatalosomes as Plasmonic Bilayer Shells with Interlayer Catalytic Nanospaces for Solar-Light-Induced Reactions. Angew Chem Int Ed Engl 2020; 59:9460-9469. [PMID: 32237185 DOI: 10.1002/anie.202001531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Interest and challenges remain in designing and synthesizing catalysts with nature-like complexity at few-nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce "nanocatalosomes"-a bio-inspired bilayer-vesicular design of nanoreactor with metallic bilayer shell-in-shell structure, having numerous controllable confined cavities within few-nm interlayer space, customizable with different noble metals. The intershell-confined plasmonically coupled hot-nanospaces within the few-nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by "acceptorless dehydrogenation", "Suzuki-Miyaura cross-coupling" and "alkynyl annulation" affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state-of-the-art Au-nanorod-based plasmonic catalysts. This work paves the way towards next-generation nanoreactors for chemical transformations with solar energy.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sateesh Dubbu
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS) and Department of Biomedical Engineering, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
58
|
Zhang CY, Wang WN, Chu ZY, Qian HS. Highly Active Zinc Sulfide Composite Microspheres: A Versatile Template for Synthesis of a Family of Hollow Nanostructures of Sulfides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1523-1529. [PMID: 31995982 DOI: 10.1021/acs.langmuir.9b03577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hollow nanostructures of metal sulfides have gained tremendous attention in catalysis, biomedicine, and energy storage and conversion owing to their intriguing structural features and fascinating physicochemical properties. Here, we reported a hard template-engaged cation exchange method to fabricate a family of binary or ternary metal sulfide (CuS, Ag2S, Bi2S3, CuxBi1-xS, ZnxCo1-xS, ZnxCd1-xS, ZnxNi1-xS, and ZnxMn1-xS) hollow microspheres via adjusting the reaction kinetic parameters including solvent and temperature in the presence of unique ZnS composite microspheres. Particularly, the shell layer thickness of metal sulfide hollow microspheres could be modulated by manipulating the reaction temperature during the cation exchanging procedure. Meanwhile, the desired elementary composition of ternary metal sulfide hollow microspheres could be achieved by varying the mole ratio and species of the metal source. This synthetic strategy could be extended to rationally design and construct other metal sulfide hollow nanostructures and provide a deep insight into the nucleation and growth process of the metal sulfide hollow microspheres with well-controlled composition and microstructures.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Wan-Ni Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Zhao-You Chu
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , P. R. China
| | - Hai-Sheng Qian
- School of Biomedical Engineering , Anhui Medical University , Hefei 230032 , P. R. China
- Research and Engineering Center of Biomedical Materials , Anhui Medical University , Hefei 230032 , P. R. China
| |
Collapse
|
59
|
Gao Z, Ye H, Wang Q, Kim MJ, Tang D, Xi Z, Wei Z, Shao S, Xia X. Template Regeneration in Galvanic Replacement: A Route to Highly Diverse Hollow Nanostructures. ACS NANO 2020; 14:791-801. [PMID: 31917543 DOI: 10.1021/acsnano.9b07781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability to produce a diverse spectrum of hollow nanostructures is central to the advances in many current and emerging areas of technology. Herein, we report a general method to craft hollow nanostructures with highly tunable physical and chemical parameters. The key strategy is to regenerate the nanoscale sacrificial templates in a galvanic replacement reaction through site-selective overgrowth. As examples, we demonstrate the syntheses of nanocages and nanotubes made of silver, gold, palladium, and/or platinum with well-controlled wall thicknesses and elemental distributions. Using the nanocages of silver and gold as models, we demonstrate they possess intriguing plasmonic properties and offer superior performance in biosensing applications. This study provides a powerful platform to customize hollow nanostructures with desired properties and therefore is expected to enable a variety of fundamental studies and technologically important applications.
Collapse
Affiliation(s)
- Zhuangqiang Gao
- Department of Chemistry , University of Central Florida , Orlando , Florida 32816 , United States
| | - Haihang Ye
- Department of Chemistry , University of Central Florida , Orlando , Florida 32816 , United States
| | - Qingxiao Wang
- Department of Materials Science and Engineering , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Moon J Kim
- Department of Materials Science and Engineering , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Dianyong Tang
- International Academy of Targeted Therapeutics and Innovation , Chongqing University of Arts and Sciences , Chongqing 402160 , People's Republic of China
| | - Zheng Xi
- Department of Chemistry , University of Central Florida , Orlando , Florida 32816 , United States
| | - Zhiyuan Wei
- Department of Chemistry , University of Central Florida , Orlando , Florida 32816 , United States
| | - Shikuan Shao
- Department of Chemistry , University of Central Florida , Orlando , Florida 32816 , United States
| | - Xiaohu Xia
- Department of Chemistry , University of Central Florida , Orlando , Florida 32816 , United States
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32816 , United States
| |
Collapse
|
60
|
Zhou H, Zheng M, Tang H, Xu B, Tang Y, Pang H. Amorphous Intermediate Derivative from ZIF-67 and Its Outstanding Electrocatalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904252. [PMID: 31821688 DOI: 10.1002/smll.201904252] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Indexed: 05/25/2023]
Abstract
Increasing active sites is an effective method to enhance the catalytic activity of catalysts. Amorphous materials have attracted considerable attention in catalysis because of their abundant catalytic active sites. Herein, a series of derivatives is prepared via the low-temperature heat treatment of ZIF-67 hollow sphere at different temperatures. An intermediate product with an amorphous structure is formed during transformation from ZIF-67 to Co3 O4 nanocrystallines when ZIF-67 hollow sphere is heat treated at 260 °C for 3 h. The chemical composition of the amorphous derivative is similar to that of ZIF-67, and the carbon and nitrogen contents of the amorphous derivative are obviously higher than those of crystalline samples obtained at 270 °C or higher. As electrocatalysts for the oxygen evolution reaction (OER) and nonenzymatic glucose sensing, the amorphous derivative exhibits significantly better catalytic activity than crystalline Co3 O4 samples. The amorphous sample as an OER catalyst has a low overpotential of 352 mV at 10 mA cm-2 . The amorphous sample as an enzyme-free glucose sensing catalyst can provide a low detection limit of 3.9 × 10-6 m and a high sensitivity of 1074.22 µA mM-1 cm-2 .
Collapse
Affiliation(s)
- Huijie Zhou
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Mingbo Zheng
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Hao Tang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Bingyan Xu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yue Tang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
61
|
Mesoporous Silica Nanosheets with Tunable Pore Lengths Supporting Metal Nanoparticles for Enhanced Hydrogenation Reactions. Catalysts 2019. [DOI: 10.3390/catal10010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The channel lengths of mesoporous materials have a crucial impact on the catalytic performances of as-loaded active components. However, it remains a challenge to precisely tune the mesochannel length in a wide range from ≤50 nm to 200 nm. In this paper, we developed a top-down strategy, that is to say, crushing hollow microspheres, for preparing mesoporous silica nanosheets (MSSs) with perpendicular mesochannels and tunable thicknesses. Owing to the heterogeneous growth of the mesoporous silica layer on the surfaces of polystyrene microspheres (hard template), it was achieved to regulate the mesochannel length continuously in the range of 20–200 nm. The obtained materials were characterized by X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of channel lengths on the catalytic activity of metal nanoparticles was then investigated in the selective hydrogenation reaction of nitroarenes. It was found that a short channel not only favored dispersing metal nanoparticles uniformly and then avoiding pore blocking, but also improved the accessibility of metal nanoparticles largely during reactions.
Collapse
|
62
|
Liu N, Zhao S, Yang Z, Liu B. Patchy Templated Synthesis of Macroporous Colloidal Hollow Spheres and Their Application as Catalytic Microreactors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47008-47014. [PMID: 31742987 DOI: 10.1021/acsami.9b18355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Porous colloidal hollow spheres have been applied to diversified fields over the past few decades. However, developing simple and efficient methods to prepare such porous hollow spheres with macro pores remains a challenge. To address this problem, we present a patchy templated synthesis route, which can be used to prepare such colloidal hollow spheres that have macro pores through the shells. This was achieved by using patchy poly(styrene-co-sodium styrenesulfonate) spheres as the template and poly(allylamine hydrochloride) as binding molecules. SiO2 can site-selectively only grow on one kind of patch, resulting in the formation of porous hollow spheres. The pore sizes can be tuned from ∼50 to 400 nm. The resulting porous hollow spheres have a Janus character so that Au nanoparticles can only be attached to the interior surfaces in situ, which can be used as catalytic microreactors and show the catalytic performance of pore size dependence.
Collapse
Affiliation(s)
- Na Liu
- School of Chemistry and Material Science , Ludong University , Yantai 264025 , China
| | - Shuping Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100149 , China
| | - Zhenglong Yang
- School of Chemistry and Material Science , Ludong University , Yantai 264025 , China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100149 , China
| |
Collapse
|
63
|
Wang G, Zhou X, Qin J, Liang Y, Feng B, Deng Y, Zhao Y, Wei J. General Synthesis of Mixed Semiconducting Metal Oxide Hollow Spheres with Tunable Compositions for Low-Temperature Chemiresistive Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35060-35067. [PMID: 31469272 DOI: 10.1021/acsami.9b08694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal oxide hollow spheres (MOHSs) with multicomponent metal elements exhibit intriguing properties due to the synergistic effects of different components. However, it remains a great challenge to develop a general method to synthesize multicomponent MOHSs due to the different hydrolysis and condensation rates of precursors for different metal oxides. Herein, we demonstrate a general strategy for the controllable synthesis of MOHSs with up to five metal elements by decomposition of metal-phenolic coordination polymers (MPCPs), which are prepared by chelation of tannic acid with various metal ions. After calcination to burn out the organic component and induce heterogeneous contraction of MPCPs, a series of MOHSs with multishell structure, high specific surface area (55-171 m2/g), and crystalline mesoporous framework are synthesized, including binary (Fe-Co, Ni-Zn, and Ni-Co oxides), ternary (Ni-Co-Mn and Ni-Co-Zn oxides), and quinary (Ni-Co-Fe-Cu-Zn oxides) MOHSs. The gas sensing nanodevices based on quinary MOHSs show much higher response (10.91) than those based on single component toward 50 ppm of ethanol at 80 °C with the response/recovery time of 85/160 s. The quinary oxides sensor also displays high selectivity toward ethanol against other interfering gases (e.g., methanol, formadehyde, toluene, methane, and hydrogen) and long-term stability (∼94.0% after 4 weeks), which are extremely favorable for practical applications.
Collapse
Affiliation(s)
- Gen Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , P. R. China
| | - Xinran Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Jing Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , P. R. China
| | - Yan Liang
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Bingxi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , P. R. China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , P. R. China
| | - Yongxi Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , P. R. China
| | - Jing Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , P. R. China
| |
Collapse
|
64
|
Chen H, Shen K, Tan Y, Li Y. Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties. ACS NANO 2019; 13:7800-7810. [PMID: 31287293 DOI: 10.1021/acsnano.9b01953] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Multishell hollow nanoarchitectures are one of the most important branches in the nanomaterial field due to their enormous potential in many fields, but synthesizing them in a well-controlled manner remains challenging. Herein, we present a general strategy for the construction of multishell hollow metal/nitrogen/carbon dodecahedrons (metal@NC) with well-defined and precisely controlled architectures. This strategy is based on the pyrolysis of multilayer solid ZIFs prepared by a step-by-step crystal growth approach, which enables precise control over the shell number and composition of the resultant hollow metal@NC. Impressively, our strategy can be further extended to the synthesis of yolk@multishell hollow structures or multishell hollow structures that are assembled by carbon nanotubes. The multishell hollow structures can efficiently facilitate the mass diffusion, which together with the high dispersity and increased surface area are responsible for their significantly enhanced catalytic performances for the selective hydrogenation of biomass-derived furfural to cyclopentanol when compared with their solid and single-shell counterparts. We anticipate that our general strategy would shed light on the rational design and accurate construction of other complex multishell hollow materials for various important yet challenging applications.
Collapse
Affiliation(s)
- Huirong Chen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yongpeng Tan
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yingwei Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
65
|
Tan YC, Zeng HC. Low‐Dimensional Metal‐Organic Frameworks and their Diverse Functional Roles in Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900191] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Chuan Tan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 10 Kent Ridge Crescent Singapore 119260 Singapore
- Cambridge Centre for Advanced Research and Education in Singapore 1 Create Way Singapore 138602 Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 10 Kent Ridge Crescent Singapore 119260 Singapore
- Cambridge Centre for Advanced Research and Education in Singapore 1 Create Way Singapore 138602 Singapore
| |
Collapse
|
66
|
Qin Y, Lu Y, Pan W, Yu D, Zhou J. One-pot synthesis of hollow hydrangea Au nanoparticles as a dual catalyst with SERS activity for in situ monitoring of a reduction reaction. RSC Adv 2019; 9:10314-10319. [PMID: 35520936 PMCID: PMC9062310 DOI: 10.1039/c9ra00733d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022] Open
Abstract
The controlled synthesis of metallic nanomaterials has attracted the interest of many researchers due to their shape-dependent physical and chemical properties. However, most of the synthesized nanocrystals cannot be combined with spectroscopy to measure the reaction kinetics, thus limiting their use in monitoring the catalytic reaction process to elucidate its mechanism. As a powerful analytical tool, surface-enhanced Raman spectroscopy (SERS) can be used to achieve in situ monitoring of catalytic reactions by developing bifunctional metal nanocrystals with both SERS and catalytic activities. Herein, we have developed a simple one-pot synthesis method for the large-scale and size-controllable preparation of highly rough hydrangea Au hollow nanoparticles. The growth mechanism of flower-like Au hollow nanostructures was also discussed. The hollow nanostructure with a 3D hierarchical flower shell combines the advantages of hollow nanostructure and hierarchical nanostructure, which possess high SERS activity and good catalytic activity simultaneously. Furthermore, the hydrangea Au hollow crystals were used as a bifunctional nanocatalyst for in situ monitoring of the reduction reaction of 4-nitrothiophenol to the 4-aminothiophenol.
Collapse
Affiliation(s)
- Yazhou Qin
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
| | - Yuxiang Lu
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Wufan Pan
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Dongdong Yu
- Hospital of Zhejiang University, Zhejiang University Hangzhou 310027 China
| | - Jianguang Zhou
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 P. R. China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
67
|
Yao D, Wang Y, Hassan-Legault K, Li A, Zhao Y, Lv J, Huang S, Ma X. Balancing Effect between Adsorption and Diffusion on Catalytic Performance Inside Hollow Nanostructured Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00282] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dawei Yao
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Katherine Hassan-Legault
- Department of Chemical and Biological Engineering, University of Ottawa, Ontario K1N 6N5, Canada
| | - Antai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Shouying Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
68
|
Zou H, Dai J, Wang R. Encapsulating mesoporous metal nanoparticles: towards a highly active and stable nanoreactor for oxidative coupling reactions in water. Chem Commun (Camb) 2019; 55:5898-5901. [DOI: 10.1039/c9cc02704a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We design and prepare a highly active and stable nanoreactor by encapsulating mesoporous metal nanoparticles for efficient production of α,β-unsaturated ketones via a one-pot oxidative coupling reaction.
Collapse
Affiliation(s)
- Houbing Zou
- School of Chemistry and Chemical Engineering
- Shanxi University
- 92 Wucheng Road
- Taiyuan
- P. R. China
| | - Jinyu Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Runwei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|