51
|
Zuo J, Zhu E, Yin W, Yao C, Liao J, Ping X, Zhu Y, Cai X, Rao Y, Feng H, Zhang K, Qian Z. Long-term spatiotemporal and highly specific imaging of the plasma membrane of diverse plant cells using a near-infrared AIE probe. Chem Sci 2023; 14:2139-2148. [PMID: 36845931 PMCID: PMC9945320 DOI: 10.1039/d2sc05727a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Fluorescent probes are valuable tools to visualize plasma membranes intuitively and clearly and their related physiological processes in a spatiotemporal manner. However, most existing probes have only realized the specific staining of the plasma membranes of animal/human cells within a very short time period, while almost no fluorescent probes have been developed for the long-term imaging of the plasma membranes of plant cells. Herein, we designed an AIE-active probe with NIR emission to achieve four-dimensional spatiotemporal imaging of the plasma membranes of plant cells based on a collaboration approach involving multiple strategies, demonstrated long-term real-time monitoring of morphological changes of plasma membranes for the first time, and further proved its wide applicability to plant cells of different types and diverse plant species. In the design concept, three effective strategies including the similarity and intermiscibility principle, antipermeability strategy and strong electrostatic interactions were combined to allow the probe to specifically target and anchor the plasma membrane for an ultralong amount of time on the premise of guaranteeing its sufficiently high aqueous solubility. The designed APMem-1 can quickly penetrate cell walls to specifically stain the plasma membranes of all plant cells in a very short time with advanced features (ultrafast staining, wash-free, and desirable biocompatibility) and the probe shows excellent plasma membrane specificity without staining other areas of the cell in comparison to commercial FM dyes. The longest imaging time of APMem-1 can be up to 10 h with comparable performance in both imaging contrast and imaging integrity. The validation experiments on different types of plant cells and diverse plants convincingly proved the universality of APMem-1. The development of plasma membrane probes with four-dimensional spatial and ultralong-term imaging ability provides a valuable tool to monitor the dynamic processes of plasma membrane-related events in an intuitive and real-time manner.
Collapse
Affiliation(s)
- Jiaqi Zuo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Engao Zhu
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Wenjing Yin
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Chuangye Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Jiajia Liao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Xinni Ping
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Yuqing Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Xuting Cai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Kewei Zhang
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| |
Collapse
|
52
|
Gao WJ, Wang MM, Su Y, Yu ZH, Liu HK, Su Z. Self-Assembly Mitochondria-Targeting Donor-Acceptor Type Theranostic Nanosphere Activates ROS Storm for Multimodal Cancer Therapy. ACS APPLIED BIO MATERIALS 2023; 6:722-732. [PMID: 36626248 DOI: 10.1021/acsabm.2c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The rational design of cancer theranostics with natural diagnostic information and therapeutic behavior has been considered to be a big challenge, since common theranostics from photothermal and photodynamic therapy need to be activated with external stimuli of photoirradiation to enable the chemotherapeutic effects. In this contribution, we have designed and synthesized a series of simple theranostic agents, TPA-N-n (n = 4, 8, 12), which could accumulate at the tumor site over 48 h and indicate superior antiproliferative performance in vivo. TPA-N-n was constructed with electron donor triphenylamine-acceptor benzothiadiazole-mitochondria-targeting moiety pyridinium. Complex TPA-N-8 indicated the best cytotoxicity to cancerous HeLa cells, with an IC50 value of 4.3 μM, and could self-assemble to a nanosphere with a size of 161.2 nm in the DMSO/PBS solution. It is worth noting that TPA-N-8 could accumulate in the mitochondria and produce major ROS species O2•- and OH• as well as small amounts of 1O2 without photoirradiation. Oxidative DNA damage is initiated due to the imbalance of intracellular redox homeostasis from the significant ROS storm. Multimodal synergistic therapy for HeLa cells was activated, as the PINK1-mediated mitophagy from the damaged mitochondria and DNA damage responsive (DDR) induced necroptosis and autophagy. This work not only provided a successful D-A type theranostic agent with superior anticancer performance from multimodal synergistic therapy but also further demonstrated the high efficacy of a mitochondria-targeting strategy for cancer treatment.
Collapse
Affiliation(s)
- Wen-Juan Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
53
|
Zhang Z, Chen H, Wang Y, Zhang N, Trépout S, Tang BZ, Gasser G, Li MH. Polymersomes with Red/Near-Infrared Emission and Reactive Oxygen Species Generation. Macromol Rapid Commun 2023; 44:e2200716. [PMID: 36254854 DOI: 10.1002/marc.202200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Indexed: 11/09/2022]
Abstract
In photodynamic therapy (PDT), the uses of nanoparticles bearing photosensitizers (PSs) can overcome some of the drawbacks of using a PS alone (e.g., poor water solubility and low tumor selectivity). However, numerous nano-formulations are developed by physical encapsulation of PSs through Van der Waals interactions, which have not only a limited load efficiency but also some in vivo biodistribution problems caused by leakage or burst release. Herein, polymersomes made from an amphiphilic block copolymer, in which a PS with aggregation-induced emission (AIE-PS) is covalently attached to its hydrophobic poly(amino acid) block, are reported. These AIE-PS polymersomes dispersed in aqueous solution have a high AIE-PS load efficiency (up to 46% as a mass fraction), a hydrodynamic diameter of 86 nm that is suitable for in vivo applications, and an excellent colloidal stability for at least 1 month. They exhibit a red/near-infrared photoluminescence and ability to generate reactive oxygen species (ROS) under visible light. They are non-cytotoxic in the dark as tested on Hela cells up to concentration of 100 µm. Benefiting from colloidal stability, AIE property and ROS generation capability, such a family of polymersomes can be great candidates for image-guided PDT.
Collapse
Affiliation(s)
- Zhihua Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Hui Chen
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Youchao Wang
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Nian Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Sylvain Trépout
- Institut Curie, Université Paris-Saclay, Inserm US43, CNRS UMS2016, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, Orsay, Cedex, 91401, France
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Gilles Gasser
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Min-Hui Li
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
54
|
Zhang Y, Pan X, Shi H, Wang Y, Liu W, Cai L, Wang L, Wang H, Chen Z. Molecular engineering to red-shift the absorption band of AIE photosensitizers and improve their ROS generation ability. J Mater Chem B 2023; 11:3252-3261. [PMID: 36971133 DOI: 10.1039/d2tb02829h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Increasing the number of acceptors and extending their π-conjugation will red-shift the absorption-emission band, increase the maximum molar extinction coefficient, and improve the ROS generation ability of AIE-photosensitizers.
Collapse
Affiliation(s)
- Yuhui Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
- Fujian Agriculture and Forestry University Fuzhou, Fuzhou, Fujian 350002, China
| | - Xiaohong Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
| | - Haixing Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
- Fujian Agriculture and Forestry University Fuzhou, Fuzhou, Fujian 350002, China
| | - Yaqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
- Fujian Agriculture and Forestry University Fuzhou, Fuzhou, Fujian 350002, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
| | - Liangzhi Cai
- Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Le Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
55
|
Li H, Kim H, Zhang C, Zeng S, Chen Q, Jia L, Wang J, Peng X, Yoon J. Mitochondria-targeted smart AIEgens: Imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
56
|
The commercial antibiotics with inherent AIE feature: In situ visualization of antibiotic metabolism and specifically differentiation of bacterial species and broad-spectrum therapy. Bioact Mater 2022; 23:223-233. [PMID: 36439086 PMCID: PMC9673049 DOI: 10.1016/j.bioactmat.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
The research on pharmacology usually focuses on the structure-activity relationships of drugs, such as antibiotics, to enhance their activity, but often ignores their optical properties. However, investigating the photophysical properties of drugs is of great significance because they could be used to in situ visualize their positions and help us to understand their working metabolism. In this work, we identified a class of commercialized antibiotics, such as levofloxacin, norfloxacin, and moxifloxacin (MXF) hydrochloride, featuring the unique aggregation-induced emission (AIE) characteristics. By taking advantage of their AIE feature, antibiotic metabolism in cells could be in situ visualized, which clearly shows that the luminescent aggregates accumulate in the lysosomes. Moreover, after a structure-activity relationship study, we found an ideal site of MXF to be modified with a triphenylphosphonium and an antibiotic derivative MXF-P was prepared, which is able to specifically differentiate bacterial species after only 10 min of treatment. Moreover, MXF-P shows highly effective broad-spectrum antibacterial activity, excellent therapeutic effects and biosafety for S. aureus-infected wound recovery. Thus, this work not only discovers the multifunctionalities of the antibiotics but also provides a feasible strategy to make the commercialized drugs more powerful.
Collapse
|
57
|
Duan L, Zheng Q, Tu T. Instantaneous High-Resolution Visual Imaging of Latent Fingerprints in Water Using Color-Tunable AIE Pincer Complexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202540. [PMID: 35771543 DOI: 10.1002/adma.202202540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Instant visualization of latent fingerprints is developed by using a series of water-soluble terpyridine zinc complexes as aggregation-induced emission probes in pure water, under UV light or ambient sunlight. By simply soaking, or spraying with an aqueous solution of the probe, bright yellow fluorescence images with high contrast and resolution are readily developed on various surfaces including tinfoil, glass, paper, steel, leather, and ceramic tile. Remarkably, latent fingerprints can be visualized within seconds including details of whorl and sweat pores. The color of emission can be tuned from blue to orange by modifying the pincer ligands, allowing direct imaging under sunlight. These inexpensive, water-resistant, and color-tunable probes provide a practical approach for latent fingerprints recording and analysis, security protection, as well as criminal investigation in different scenarios.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Kexue avenue, Zhengzhou, 450001, P. R. China
| |
Collapse
|
58
|
Li T, Wu Y, Cai W, Wang D, Ren C, Shen T, Yu D, Qiang S, Hu C, Zhao Z, Yu J, Peng C, Tang BZ. Vision Defense: Efficient Antibacterial AIEgens Induced Early Immune Response for Bacterial Endophthalmitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202485. [PMID: 35794437 PMCID: PMC9443450 DOI: 10.1002/advs.202202485] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/04/2022] [Indexed: 05/28/2023]
Abstract
Bacterial endophthalmitis (BE) is an acute eye infection and potentially irreversible blinding ocular disease. The empirical intravitreous injection of antibiotic is the primary treatment once diagnosed as BE. However, the overuse of antibiotic contributes to the drug resistance of pathogens and the retinal toxicity of antibiotic limits its application in clinic. Herein, a cationic aggregation-induced emission luminogens named with triphenylamine thiophen pyridinium (TTPy) is reported for photodynamic treatment of BE. TTPy can selectively discriminate and kill bacteria efficiently over normal ocular cells. More importantly, TTPy shows excellent antibacterial ability in BE rat models infected by Staphylococcus aureus. Meanwhile, the bacterial killing behavior triggered by TTPy induces innate immune response at an early stage of infection, limiting subsequent robust inflammation and protecting retina from bacterial toxins and inflammation-induced bystander damage. In addition, TTPy performs better antibacterial ability than commercially used Rose Bengal, suggesting its excellent capability of vision salvage in acute BE. This study exhibits an efficient photodynamic antibacterial treatment to BE, which induces an early intraocular immune response and saves useful vision, endowing TTPy a promising potential for clinical application of ocular infections.
Collapse
Affiliation(s)
- Tingting Li
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yan Wu
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Wenting Cai
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Dong Wang
- Center for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060China
| | - Chengda Ren
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Tianyi Shen
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Donghui Yu
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Sujing Qiang
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Chengyu Hu
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zheng Zhao
- Shenzhen Institute of Molecular Aggregate Science and EngineeringSchool of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
| | - Jing Yu
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Chen Peng
- Department of OphthalmologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- Department of RadiologyShanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and EngineeringSchool of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
| |
Collapse
|
59
|
Abrahamse H, Hamblin MR, George S. Structure and functions of Aggregation-Induced Emission-Photosensitizers in anticancer and antimicrobial theranostics. Front Chem 2022; 10:984268. [PMID: 36110134 PMCID: PMC9468771 DOI: 10.3389/fchem.2022.984268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Photosensitizers with Aggregation-Induced Emission (AIE) can allow the efficient light-mediated generation of Reactive Oxygen Species (ROS) based on their complex molecular structure, while interacting with living cells. They achieve better tissue targeting and allow penetration of different wavelengths of Ultraviolet-Visible-Infrared irradiation. Not surprisingly, they are useful for fluorescence image-guided Photodynamic Therapy (PDT) against cancers of diverse origin. AIE-photosensitizers can also function as broad spectrum antimicrobials, capable of destroying the outer wall of microbes such as bacteria or fungi without the issues of drug resistance, and can also bind to viruses and deactivate them. Often, they exhibit poor solubility and cellular toxicity, which compromise their theranostic efficacy. This could be circumvented by using suitable nanomaterials for improved biological compatibility and cellular targeting. Such dual-function AIE-photosensitizers nanoparticles show unparalleled precision for image-guided detection of tumors as well as generation of ROS for targeted PDT in living systems, even while using low power visible light. In short, the development of AIE-photosensitizer nanoparticles could be a better solution for light-mediated destruction of unwanted eukaryotic cells and selective elimination of prokaryotic pathogens, although, there is a dearth of pre-clinical and clinical data in the literature.
Collapse
Affiliation(s)
- Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Michael R. Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Sajan George
- Laser Research Centre, University of Johannesburg, Doornfontein, South Africa
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, India
- *Correspondence: Sajan George, ,
| |
Collapse
|
60
|
Su HF, Peng QC, Liu YU, Xie T, Liu PP, Cai YC, Wen W, Yu YH, Li K, Zang SQ. A near-infrared AIE probe and its applications for specific in vitro and in vivo two-photon imaging of lipid droplets. Biomaterials 2022; 288:121691. [DOI: 10.1016/j.biomaterials.2022.121691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
|
61
|
Wang Y, Pan X, Dai T, Wang L, Shi H, Wang H, Chen Z. An AIE photosensitizer with unquenched fluorescence based on nitrobenzoic acid for tumor-targeting and image-guided photodynamic therapy. Biomater Sci 2022; 10:4866-4875. [PMID: 35861254 DOI: 10.1039/d2bm00704e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fluorescence quenching occurs in most nitroaromatic compounds due to photoinduced electron transfer (PET) effects, limiting their use as image-guided photosensitizers for anticancer photodynamic therapy (PDT) or as probes for nitroreductase in hypoxic cells. Herein, we developed a tumor-targeting aggregation-induced emission photosensitizer (AIE-PS), Biotin-TTVBA, by binding TTVBA (a nitrobenzoic acid-based AIE-PS with a free carboxylic acid group) to biotin. Biotin-TTVBA has near-infrared emission characteristics in DMSO containing 99% toluene, a large Stoke's shift (210 nm), high photostability, wash-free cell staining ability and type I/II photosensitivity. Compared with TTVBA, Biotin-TTVBA significantly increased cellular uptake (a 60-fold increase) and selective uptake of tumor cells (a 250% increase in the ratio of tumor cells to normal cells), resulting in enhanced antitumor activity against tumor cells (HeLa and MCF-7) and a decreased IC50 value (from >40 μM to 2.5 μM). Taken together, the results of this study call attention to AIE-PSs based on nitroaromatic groups because of their strong fluorescence and ROS generation ability, which can be used in image-guided photodynamic therapy and provide a new approach for tumor-targeting design of AIE-PSs.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, China
| | - Xiaohong Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Tao Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixing Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, China
| | - Huanhuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
62
|
Lv S, Liu Y, Zhao Y, Fan X, Lv F, Feng E, Liu D, Song F. Rational design of a small organic photosensitizer for NIR-I imaging-guided synergistic photodynamic and photothermal therapy. Biomater Sci 2022; 10:4785-4795. [PMID: 35852125 DOI: 10.1039/d2bm00661h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing a small molecular photosensitizer to achieve multimodal phototherapy has recently garnered attention as a promising strategy for efficient cancer treatment. However, synthesis of a multifunctional small molecular photosensitizer has remained challenging. Here we report an aggregation-induced-emission (AIE)-featured luminogen (AIEgen) TPA-BTZ decorated with long and branched alkyl chains. TPA-BTZ shows long-wavelength emission at ca. 800 nm in the NIR-I region. Moreover, upon laser irradiation, TPA-BTZ could produce O2˙- and 1O2via both type I and type II mechanisms for enhanced photodynamic therapy (PDT). The propeller-like structure triphenylamine (TPA) rotators not only endow TPA-BTZ with AIE characteristics but also facilitate heat generation by intramolecular rotation for photothermal therapy (PTT). More importantly, long and branched alkyl chains can create intermolecular spatial isolation in the fabricated TPA-BTZ@PEG2000 nanoparticles (NPs) to allow sufficient intramolecular motion for photothermal conversion. Due to these unique features, in vitro and in vivo evaluations demonstrate that the TPA-BTZ@PEG2000 NPs exhibited long-term NIR-imaging ability, superior tumoricidal activity, and suppressed tumor growth. This research provides new insights for developing new AIEgens for NIR imaging-guided multimodal phototherapy.
Collapse
Affiliation(s)
- Shibo Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Yuhan Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Yanliang Zhao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Xiaoxue Fan
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Fangyuan Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Erting Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China.
| | - Dapeng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China.
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science. Shandong University, Qingdao, Shandong, 266237, China. .,State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China.
| |
Collapse
|
63
|
Dutta T, Pal K, Koner AL. Intracellular Physical Properties with Small Organic Fluorescent Probes: Recent Advances and Future Perspectives. CHEM REC 2022; 22:e202200035. [PMID: 35801859 DOI: 10.1002/tcr.202200035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Indexed: 11/09/2022]
Abstract
The intracellular physical parameters i. e., polarity, viscosity, fluidity, tension, potential, and temperature of a live cell are the hallmark of cellular health and have garnered immense interest over the past decade. In this context, small molecule organic fluorophores exhibit prominent useful properties including easy functionalizability, environmental sensitivity, biocompatibility, and fast yet efficient cellular uptakability which has made them a popular tool to understand intra-cellular micro-environmental properties. Throughout this discussion, we have outlined the basic design strategies of small molecules for specific organelle targeting and quantification of physical properties. The values of these parameters are indicative of cellular homeostasis and subtle alteration may be considered as the onset of disease. We believe this comprehensive review will facilitate the development of potential future probes for superior insight into the physical parameters that are yet to be quantified.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| | - Kaushik Pal
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| |
Collapse
|
64
|
Dong MJ, Li W, Xiang Q, Tan Y, Xing X, Wu C, Dong H, Zhang X. Engineering Metal-Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29599-29612. [PMID: 35737456 DOI: 10.1021/acsami.2c05860] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE)-active luminogens (AIEgens) have demonstrated exciting potential for the application in cancer phototheranostics. However, simultaneously achieving tumor-activated bright emission, enhanced reactive oxygen species (ROS) generation, high tumor accumulation, and minimized ROS depletion remains challenging. Here, a metal-organic framework (MOF) hybrid AIEgen theranostic platform is designed, termed A-NUiO@DCDA@ZIF-Cu, composed of an AIEgen-loaded hydrophobic UiO-66 (A-NUiO@DCDA) core and a Cu-doped hydrophilic ZIF-8 (ZIF-Cu) shell. The fluorescence emission and therapeutic ROS activity of AIEgens are restrained during delivery. After uptake by tumor tissues, ZIF-Cu decomposition occurs in response to an acidic tumor microenvironment (TME), and the hydrophobic A-NUiO@DCDA cores self-assemble into large particles, extremely increasing the tumor accumulation of AIEgens. This results in enhanced fluorescence imaging (FLI) and highly improved 1O2 generation ability during photodynamic therapy (PDT). Meanwhile, the released Cu2+ reacts to glutathione (GSH) to generate Cu+, which provides an extra chemodynamic therapy (CDT) function through Fenton-like reactions with overexpressed H2O2, resulting in the GSH depletion-enhanced ROS therapy. As a result of these characteristics, the MOF hybrid AIEgens can selectively kill tumors with excellent efficacy.
Collapse
Affiliation(s)
- Ming-Jie Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Weiqun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qin Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaotong Xing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chaoxiong Wu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
65
|
Xia M, Li C, Liu L, He Y, Li Y, Jiang G, Wang J. A Fast-Response AIE-Active Ratiometric Fluorescent Probe for the Detection of Carboxylesterase. BIOSENSORS 2022; 12:bios12070484. [PMID: 35884287 PMCID: PMC9313056 DOI: 10.3390/bios12070484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022]
Abstract
Hepatocellular carcinoma (HCC) is associated with a high mortality rate worldwide. The therapeutic outcomes can be significantly improved if diagnosis and treatment are initiated earlier in the disease process. Recently, the carboxylesterase (CaE) activity/level in human plasma was reported to be a novel serological biomarker candidate for HCC. In this article, we fabricated a new fluorescent probe with AIE characteristics for the rapid detection of CaE with a more reliable ratiometric response mode. The TCFISE probe showed high sensitivity (LOD: 93.0 μU/mL) and selectivity toward CaE. Furthermore, the good pH stability, superior resistance against photobleaching, and low cytotoxicity highlight the high potential of the TCFISE probe for application in the monitoring of CaE activity in complex biological samples and in live cells, tissues, and animals.
Collapse
Affiliation(s)
- Mengting Xia
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China; (M.X.); (Y.L.)
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Yumao He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China; (M.X.); (Y.L.)
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (C.L.); (L.L.); (Y.H.); (G.J.)
- Correspondence:
| |
Collapse
|
66
|
Hao L, Ling YY, Huang ZX, Pan ZY, Tan CP, Mao ZW. Real-time tracking of ER turnover during ERLAD by a rhenium complex via lifetime imaging. Natl Sci Rev 2022; 9:nwab194. [PMID: 35958681 PMCID: PMC9362766 DOI: 10.1093/nsr/nwab194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Endoplasmic reticulum (ER) degradation by autophagy (ER-phagy) is a recently revealed selective autophagy pathway that plays important roles in organelle turnover and protein degradation, but the biological functions of ER-phagy are largely unknown. Here, we present an ER-targeting Re(I) tricarbonyl complex (Re-ERLAD) that can accumulate in the ER, induce ER-to-lysosome-associated degradation (ERLAD) upon visible light irradiation, and label ER buds and track their morphological alterations during ER-phagy. The emission of Re-ERLAD is sensitive to viscosity, which is a key parameter reflecting the amount of unfolded protein in the ER. Quantitative detection using two-photon fluorescence lifetime imaging microscopy shows that ER viscosity initially increases and then decreases during ERLAD, which reveals that ERLAD is a pathway for alleviating ER stress caused by unfolded proteins. In conclusion, our work presents the first specific photoinducer and tracker of ERLAD, which can be used in studying the regulatory mechanism and function of this process.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhi-Xin Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
67
|
Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules 2022; 27:molecules27123914. [PMID: 35745035 PMCID: PMC9229065 DOI: 10.3390/molecules27123914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented.
Collapse
|
68
|
Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nat Commun 2022; 13:3384. [PMID: 35697679 PMCID: PMC9192653 DOI: 10.1038/s41467-022-31106-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/31/2022] [Indexed: 01/17/2023] Open
Abstract
Although two-dimensional (2D) layered double hydroxides (LDHs) have been widely used as efficient nanoagents for biological diagnosis and treatment, they have been found to be inert as photosensitizers (PSs) for photodynamic therapy (PDT). Herein, we report the defect engineering of ultrathin 2D CoMo-LDH and NiMo-LDH nanosheets as highly active inorganic PSs for PDT in the third near-infrared (NIR-III) window. Hydrothermal-synthesized 2D CoMo-LDH and NiMo-LDH nanosheets are etched via a simple acid treatment to obtain defect-rich CoMo-LDH and NiMo-LDH nanosheets. Importantly, the defect-rich CoMo-LDH nanosheets exhibit much higher activity (~97 times) for generation of reactive oxygen species than that of the pristine CoMo-LDH nanosheets under a NIR-III 1567 nm laser irradiation. Therefore, after modification with polyethylene glycol, the defect-rich CoMo-LDH nanosheets can be used as an efficient inorganic PS for PDT to efficiently induce cancer cells apoptosis in vitro and eradicate tumors in vivo under 1567 nm laser irradiation. Defect engineering of 2 dimensional layered double hydroxide sheets improves their photocatalytic activity. Here, the authors etch sheets in acid and show that the etched sheets generate substantially more reactive oxygen species that untreated sheets and the treated sheets can be used to kill cancer cells in vitro and in vivo.
Collapse
|
69
|
Bu Y, Rong M, Wang J, Zhu X, Zhang J, Wang L, Yu Z, Tian Y, Zhou H, Xie Y. Cancer Cell Membrane Labeling Fluorescent Doppelganger Enables In Situ Photoactivated Membrane Dynamics Tracking via Two-Photon Fluorescence Imaging Microscopy. Anal Chem 2022; 94:8373-8381. [PMID: 35647787 DOI: 10.1021/acs.analchem.2c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various suborganelles are delimited by lipid bilayers, in which high spatial and temporal morphological changes are essential to many physiological and pathological processes of cells. However, almost all the amphiphilic fluorescent molecules reported until now are not available for in situ precise tracking of membrane dynamics in cell apoptosis. Here, the MO (coumarin pyridine derivatives) was devised by engineering lipophilic coumarin and cationic pyridine salt, which not only lastingly anchored onto the plasma membrane in dark due to appropriate amphipathicity and electrostatic interactions but also in situ reflected the membrane damage and heterogeneity with secretion of extracellular vesicles (EVs) under reactive oxygen species regulation and was investigated by two-photon fluorescence lifetime imaging microscopy. This work opens up a new avenue for the development of plasma membrane staining and EV-based medicines for the early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Yingcui Bu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Mengtao Rong
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Junjun Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Xiaojiao Zhu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Jie Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Lianke Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Zhipeng Yu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Yupeng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Hongping Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at Microscale, iChem, University of Science and Technology of China, Hefei230051, P. R. China
| |
Collapse
|
70
|
Xu FZ, Wang CY, Wang Q, Zou JW, Qiao YJ, Guo ZQ, Zhao W, Zhu WH. Water-soluble bright NIR AIEgens with hybrid ROS for wash-free mitochondrial "off-on" imaging and photodynamic therapy. Chem Commun (Camb) 2022; 58:6393-6396. [PMID: 35543244 DOI: 10.1039/d2cc01559e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several aggregation-induced emission luminogens (AIEgens) with excellent water-solubility and near-infrared emission were designed and synthesized for wash-free "off-on" mitochondrial imaging and photodynamic therapy of HeLa cells. The AIEgen TEPP exhibits both bright near-infrared emission (φF = 17.8%) and high hybrid ROS productivity (including OH˙ and 1O2).
Collapse
Affiliation(s)
- Fang-Zhou Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Jian-Wei Zou
- NingboTech University, Ningbo, 315100, Zhejiang, P. R. China
| | - Yi-Jie Qiao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Zhi-Qian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Weijun Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| |
Collapse
|
71
|
Li S, Chen Y, He P, Ma Y, Cai Y, Hou X, Zhang G, Zhang X, Wang Z. Aggregation-Induced Emission (AIE) Photosensitizer Combined Polydopamine Nanomaterials for Organelle-Targeting Photodynamic and Photothermal Therapy by the Recognition of Sialic Acid. Adv Healthc Mater 2022; 11:e2200242. [PMID: 35613621 DOI: 10.1002/adhm.202200242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/22/2022] [Indexed: 12/13/2022]
Abstract
The construction of organelle-targeting nanomaterials is an effective way to improve tumor imaging and treatment. Here, a new type of composite nanomaterial named as PTTPB is developed. PTTPB is composed of organelle-targeting aggregation-induced emission photosensitizer TTPB and polydopamine nanomaterials. With the functional modification of TTPB, PTTPB can recognize sialic acid on the cell membrane and present mitochondrial targeted capabilities. The intake of PTTPB in cancerous cells can be increased by the recognition process of cell membrane. PTTPB can generate singlet oxygen for photodynamic therapy (PDT), and present good photothermal conversion ability with irradiation. The PTTPB with organelle-targeting imaging-guided can realize the tumor ablation with the synergistic effect of PDT and photothermal therapy.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Peinan He
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yajie Cai
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xinhui Hou
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
72
|
Yu H, Chen B, Huang H, He Z, Sun J, Wang G, Gu X, Tang BZ. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. BIOSENSORS 2022; 12:bios12050348. [PMID: 35624649 PMCID: PMC9139150 DOI: 10.3390/bios12050348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy. In this review, we review the development of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed for the first time, including consideration of the aggregation of photosensitizers, polymerization, and aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy, and synergistic treatment are also outlined.
Collapse
Affiliation(s)
- Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Binjie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Huiming Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Zhentao He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
- Correspondence: (G.W.); (X.G.)
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Correspondence: (G.W.); (X.G.)
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China;
| |
Collapse
|
73
|
Duo Y, Suo M, Zhu D, Li Z, Zheng Z, Tang BZ. AIEgen-Based Bionic Nanozymes for the Interventional Photodynamic Therapy-Based Treatment of Orthotopic Colon Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26394-26403. [PMID: 35543331 PMCID: PMC9204689 DOI: 10.1021/acsami.2c04210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Relative to traditional photosensitizer (PS) agents, those that exhibit aggregation-induced emission (AIE) properties offer key advantages in the context of photodynamic therapy (PDT). At present, PDT efficacy is markedly constrained by the hypoxic microenvironment within tumors and the limited depth to which lasers can penetrate in a therapeutic context. Herein, we developed platelet-mimicking MnO2 nanozyme/AIEgen composites (PMD) for use in the interventional PDT treatment of hypoxic tumors. The resultant biomimetic nanoparticles (NPs) exhibited excellent stability and were able to efficiently target tumors. Moreover, they were able to generate O2 within the tumor microenvironment owing to their catalase-like activity. Notably, through an interventional approach in which an optical fiber was introduced into the abdominal cavity of mice harboring orthotopic colon tumors, good PDT efficacy was achieved. We thus propose that a novel strategy consisting of a combination of an AIEgen-based bionic nanozyme and a biomimetic cell membrane coating represents an ideal therapeutic platform for targeted antitumor PDT. This study is the first to have combined interventional therapy and AIEgen-based PDT, thereby overcoming the limited light penetration that typically constrains the therapeutic efficacy of this technique, highlighting a promising new AIEgen-based PDT treatment strategy.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, The Second Clinical
Medical College of Jinan University, 1st Affiliated Hospital of Southern
University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, China
- Department
of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Sports Medicine and Rehabilitation, Shenzhen
Hospital Peking University, Shenzhen 518036, China
| | - Meng Suo
- Department
of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Daoming Zhu
- Department
of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zihuang Li
- Department
of Radiation Oncology, The Second Clinical
Medical College of Jinan University, 1st Affiliated Hospital of Southern
University of Science and Technology, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Zheng Zheng
- School
of Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
- AnHui
Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid
Functionalized Materials, Anhui University, Hefei 230601, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
74
|
Li L, Yuan G, Qi Q, Lv C, Liang J, Li H, Cao L, Zhang X, Wang S, Cheng Y, He H. Synthesis of tetraphenylethene-based D-A conjugated molecules with near-infrared AIE features, and their application in photodynamic therapy. J Mater Chem B 2022; 10:3550-3559. [PMID: 35420087 DOI: 10.1039/d1tb02598h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, five aggregation-induced emission (AIE) photosensitizers (PSs) with D-π-A structures are smoothly designed and synthesized through donor and acceptor engineering. The photophysical properties and theoretical calculation results show that the synergistic effect of methoxy substituted tetraphenylethene (MTPE), 3,4-ethylenedioxythiophene can enhance the intramolecular charge transfer effect (ICT), and promote the intersystem crossing (ISC) process of the whole molecule. In these AIE-PSs, the best-performing AIE-PS (MTPE-DT-Py) has bright NIR (740 nm) emission, the highest 1O2 generation efficiency (5.9-fold that of Rose Bengal) and efficient mitochondrial targeting ability. Subsequently, PDT anti-cancer and anti-bacterial experiments indicate that MTPE-DT-Py could obviously target mitochondria and kill breast cancer cells (MCF-7), and selectively inactivate S. aureus (G(+)) under white light irradiation. This work mainly proposes a practical design strategy for high effect AIE-PSs and provides more excellent candidates for fluorescence imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Li Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Gang Yuan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Qianjiao Qi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Cheng Lv
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, P. R. China.
| | - Jichao Liang
- College of Life Science, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, P. R. China
| | - Hongjie Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Lei Cao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, P. R. China.
| | - Hanping He
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei, 430062, P. R. China.
| |
Collapse
|
75
|
Shi H, Pan X, Wang Y, Wang H, Liu W, Wang L, Chen Z. Restricting Bond Rotations by Ring Fusion: A Novel Molecular Design Strategy to Improve Photodynamic Antibacterial Efficacy of AIE Photosensitizers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17055-17064. [PMID: 35380770 DOI: 10.1021/acsami.1c24329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, aggregation-induced emission photosensitizers (AIE-PSs) for antibacterial photodynamic therapy (aPDT) have received increasing attention because of their ability to increase reactive oxygen species (ROS) generation in the aggregation state. However, their antibacterial effect still has great room for improvement. Herein, we propose that if the rotation of some bonds in AIE-PSs is restricted, the nonradiative decay could be further suppressed to boost the generation of fluorescence and ROS, so as to improve their antibacterial efficacy. Following this molecular design strategy, we developed a new class of carbazole group-based AIE-PSs (CPVBA, CPVBP, CPVBP2, and CPVBP3), in which the rotation of phenyl-N bonds is restricted in the carbazole ring. Compared with diphenylamine group-based AIE-PSs with free rotation of phenyl-N bonds, carbazole group-based AIE-PSs showed stronger fluorescence, ROS generation, and antibacterial abilities, demonstrating the feasibility of this new design strategy. Notably, CPVBP3 can enter the entire cell of E. coli to exert its antibacterial effect, and there are few reports of photosensitizers with similar functions. Furthermore, to the best of our knowledge, the light dose (1.2 J/cm2) we used for CPVBP2 to kill Staphylococcus aureus is much lower than that of many reported photosensitizers, indicating great prospects for AIE antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Haixing Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, China
| | - Xiaohong Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yaqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Agriculture and Forestry University Fuzhou, Fujian 350002, China
| | - Huanhuan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Le Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian Academy, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
76
|
Nguyen VN, Ha J, Jeong H, Cho M, Kim G, Yoon J. Rational Molecular Design of Efficient Heavy‐Atom‐Free Photosensitizers for Cancer Photodynamic Therapy. Chempluschem 2022; 87:e202200086. [DOI: 10.1002/cplu.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Van-Nghia Nguyen
- Ewha Womans University Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Jeongsun Ha
- Ewha Womans University Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Hyunsun Jeong
- Ewha Womans University Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Moonyeon Cho
- Ewha Womans University Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Gyongmi Kim
- Ewha Womans University Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Juyoung Yoon
- Ewha Womans University Department of Chemistry 11-1 Daehyun-DongSeodaemun-Gu 120-750 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
77
|
Wang Q, Liu X, Tang F, Lu Z. 基于大环多胺[12]aneN<sub>3</sub>多功能非病毒基因载体的合成及性质研究. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
78
|
Abstract
Supramolecular assemblies are essential components of living organisms. Cellular scaffolds, such as the cytoskeleton or the cell membrane, are formed via secondary interactions between proteins or lipids and direct biological processes such as metabolism, proliferation and transport. Inspired by nature’s evolution of function through structure formation, a range of synthetic nanomaterials has been developed in the past decade, with the goal of creating non-natural supramolecular assemblies inside living mammalian cells. Given the intricacy of biological pathways and the compartmentalization of the cell, different strategies can be employed to control the assembly formation within the highly crowded, dynamic cellular environment. In this Review, we highlight emerging molecular design concepts aimed at creating precursors that respond to endogenous stimuli to build nanostructures within the cell. We describe the underlying reaction mechanisms that can provide spatial and temporal control over the subcellular formation of synthetic nanostructures. Showcasing recent advances in the development of bioresponsive nanomaterials for intracellular self-assembly, we also discuss their impact on cellular function and the challenges associated with establishing structure–bioactivity relationships, as well as their relevance for the discovery of novel drugs and imaging agents, to address the shortfall of current solutions to pressing health issues. ![]()
Creating artificial nanostructures inside living cells requires the careful design of molecules that can transform into active monomers within a complex cellular environment. This Review explores the recent development of bioresponsive precursors for the controlled formation of intracellular supramolecular assemblies.
Collapse
|
79
|
A peptide-AIEgen nanocomposite mediated whole cancer immunity cycle-cascade amplification for improved immunotherapy of tumor. Biomaterials 2022; 285:121528. [DOI: 10.1016/j.biomaterials.2022.121528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
|
80
|
Tian M, Chen W, Wu Y, An J, Hong G, Chen M, Song F, Zheng WH, Peng X. Liposome-Based Nanoencapsulation of a Mitochondria-Stapling Photosensitizer for Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12050-12058. [PMID: 35234031 DOI: 10.1021/acsami.1c23156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria-targeting photodynamic therapy (PDT) can block mitochondrial function and trigger the inherent proapoptotic cascade signal of mitochondria, which has been considered to have the potential to amplify the efficiency of PDT. However, the dynamic change of mitochondrial membrane potential (MMP) makes most cationic photosensitizers easily fall off from the mitochondria, which greatly limits the efficiency of PDT. Here, we have developed a smart liposome encapsulation method based on a mitochondria-stapling photosensitizer for efficient theranostic photodynamic therapy. The stapling photosensitizer can be covalently bound inside mitochondria via two reaction sites without a falloff effect, regardless of the change of MMP. As a result, the liposome-based nanophotosensitizer showed a high efficiency of PDT (IC50 = 0.98 μM) under 630 nm light. At the same time, the nanophotosensitizer had fluorescence imaging-guided ability to monitor abnormal mitochondrial morphology during PDT. Importantly, the results of mice experiments also showed that the liposome-based nanophotosensitizer possessed excellent antitumor PDT activity because the released photosensitizer can stay inside mitochondria during the whole process of PDT.
Collapse
Affiliation(s)
- Mingyu Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Jing An
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Miaomiao Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Wen-Heng Zheng
- Department of Interventional Therapy, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
81
|
Wang H, Wang Y, Zheng Z, Yang F, Ding X, Wu A. Reasonable design of NIR AIEgens for fluorescence imaging and effective photothermal/photodynamic cancer therapy. J Mater Chem B 2022; 10:1418-1426. [PMID: 35142757 DOI: 10.1039/d1tb02610k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of a multifunctional single molecule phototherapeutic agent with excellent fluorescence imaging, photothermal therapy and photodynamic therapy at the same time is still a challenging task, which mainly arises from the low absorbance of the molecule, and the complexity of energy dissipation and molecular design. Herein, four donor-acceptor (D-A) compounds were synthesized by linking triphenylamine (TPA), thiophene/thieno[3,2-b]thiophene and different cyano acceptor structures. In this design, we propose a molecular design strategy to redshift absorption and increase the molar extinction coefficient (ε) by enhancing electron-withdrawing acceptors and enlarging the π-conjugation plane unit. Due to the twisted structure of TPA, these compounds exhibit aggregation-induced emission (AIE) characteristics. Notably, these AIEgens have long emission wavelengths, excellent photostability, biocompatibility, photothermal stability and singlet oxygen (1O2) generation performance. Among them, the photothermal conversion efficiency of a compound (named TCF-SS-TPA NPs) can reach 84.5%. Cellular internalization and therapy showed that TCF-SS-TPA NPs have good biocompatibility, excellent cell bioimaging and cancer phototherapy capabilities in vitro. This study will stimulate the molecular design of multifunctional phototherapeutics to realize effective synergistic cancer therapy.
Collapse
Affiliation(s)
- Hongsen Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui Zheng
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, P. R. China.
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Xiaobin Ding
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, P. R. China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
82
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
83
|
Xiao YF, Chen WC, Chen JX, Lu G, Tian S, Cui X, Zhang Z, Chen H, Wan Y, Li S, Lee CS. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5112-5121. [PMID: 35048696 DOI: 10.1021/acsami.1c23797] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Type-I photodynamic therapy (PDT) with less oxygen consumption shows great potential for overcoming the vicious hypoxia typically observed in solid tumors. However, the development of type-I PDT is hindered by insufficient radical generation and the ambiguous design strategy of type-I photosensitizers (PSs). Therefore, developing highly efficient type-I PSs and unveiling their structure-function relationship are still urgent and challenging. Herein, we develop two phenanthro[9,10-d]imidazole derivatives (AQPO and AQPI) with aggregation-induced emission (AIE) characteristics and boost their reactive oxygen species (ROS) generation efficiency by reducing singlet-triplet splitting (ΔEST). Both AQPO and AQPI show ultrasmall ΔEST values of 0.09 and 0.12 eV, respectively. By incorporating electron-rich anisole, the categories of generated ROS by AIE PSs are changed from type-II (singlet oxygen, 1O2) to type-I (superoxide anion radical, O2•- and hydroxyl radical, •OH). We demonstrate that the assembled AQPO nanoparticles (NPs) achieve a 3.2- and 2.9-fold increase in the O2•- and •OH generation efficiencies, respectively, compared to those of AQPI NPs (without anisole) in water, whereas the 1O2 generation efficiency of AQPO NPs is lower (0.4-fold) than that of AQPI NPs. The small ΔEST and anisole group endow AQPO with an excellent capacity for type-I ROS generation. In vitro and in vivo experiments show that AQPO NPs achieve an excellent hypoxia-overcoming PDT effect by efficiently eliminating tumor cells upon white light irradiation with good biosafety.
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jia-Xiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhong Guan Cun, Beijing 100190, China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Zhen Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Huan Chen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 000000 Hong Kong SAR, P. R. China
| |
Collapse
|
84
|
Fang F, Yuan Y, Wan Y, Li J, Song Y, Chen WC, Zhao D, Chi Y, Li M, Lee CS, Zhang J. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106215. [PMID: 35018711 DOI: 10.1002/smll.202106215] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials with extremely small singlet-triplet energy offsets have opened new horizons for the development of metal-free photosensitizers for photodynamic therapy (PDT) in recent years. However, the exploration of near-infrared (NIR) TADF emitters for efficient two-photon-excited (TPE) PDT is still a formidable challenge, thus it has not been reported yet. In this study, purely organic photosensitizers (PSs) based on the TADF nanoparticles (NIR-TADF NPs) are designed for efficient TPE-PDT, which show excellent singlet oxygen generation ability. Thanks to the intrinsic two-photon excitation and NIR emission characteristics, the NIR-TADF NPs demonstrate promising potential in both single-photon-excited (SPE) and TPE NIR imaging. More importantly, the anti-tumor efficiency and biosafety of TADF-based PSs at the small animal level are confirmed in A549 tumor xenograft models under TPE laser irradiance, which will facilitate the practical biomedical applications of TADF materials. This work not only provides a promising strategy to develop metal-free PSs, but also expands the applied scope of TADF-based nanotherapeutics and advances their possible clinical translation in cancer therapy.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yi Yuan
- Department of Materials Science and Engineering, and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jing Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yun Chi
- Department of Materials Science and Engineering, and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
85
|
Wu H, Xia F, Zhang L, Fang C, Lee J, Gong L, Gao J, Ling D, Li F. A ROS-Sensitive Nanozyme-Augmented Photoacoustic Nanoprobe for Early Diagnosis and Therapy of Acute Liver Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108348. [PMID: 34839560 DOI: 10.1002/adma.202108348] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Early diagnosis of acute liver failure (ALF) is critical for curable treatment of patients, because most existing ALF therapies have narrow therapeutic time windows after disease onset. Reactive oxygen species (ROS), which lead to the sequential occurrences of hepatocyte necrosis and the leakage of alanine aminotransferase (ALT), represent early biomarkers of ALF. Photoacoustic imaging is emerging as a powerful tool for in vivo imaging of ROS. However, high-performance imaging probes that can boost the photoacoustic signals of the short-lived ROS of ALF are yet to be developed, and there remains a great challenge for ROS-based imaging of ALF. Herein, a ROS-sensitive nanozyme-augmented photoacoustic nanoprobe for successful in vivo imaging of ALF is presented. The deep-penetrating photoacoustic signals of the nanoprobe can be activated by the overexpressed ROS in ALF due to the synergy between nanocatalytic bubbles generation and thermoelastic expansion. Impressively, the nanozyme-augmented ROS imaging enables earlier diagnosis of ALF than the clinical ALT method, and the ROS-activated catalytic activity of nanoprobe permits timely nanocatalytic therapy of ALF.
Collapse
Affiliation(s)
- Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310012, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310012, P. R. China
| |
Collapse
|
86
|
|
87
|
Chen Y, Zhao R, Tang C, Zhang C, Xu W, Wu L, Wang Y, Ye D, Liang Y. Design and Development of a Bioorthogonal, Visualizable and Mitochondria‐Targeted Hydrogen Sulfide (H
2
S) Delivery System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yinghan Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Chun Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Wenyuan Xu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| |
Collapse
|
88
|
Huang H, Xie W, Wan Q, Mao L, Hu D, Sun H, Zhang X, Wei Y. A Self-Degradable Conjugated Polymer for Photodynamic Therapy with Reliable Postoperative Safety. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104101. [PMID: 34898054 PMCID: PMC8811814 DOI: 10.1002/advs.202104101] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
As a noninvasive therapeutic technique, photodynamic therapy (PDT) has attracted numerous research interests for cancer therapy. Nevertheless, the residual photosensitizers (PSs) still produce reactive oxygen species (ROS) and damage normal cells under sunlight after PDT, which limits their practical application in clinic. Herein, the authors propose a self-degradable type-I PS based on conjugated polymer, which is composed of aggregation-induced emission (AIE) and imidazole units. Due to the effective conjugated skeleton and unique AIE properties, thus-obtained polymers can effectively generate superoxide radical (O2-• ) through the type-I process under light irradiation, which is ideal for hypoxic tumors treatment. Intriguingly, under light irradiation, O2-• produced by the conjugated polymers can further lead to the self-degradation of the polymer to form nontoxic micro-molecules. It not only helps to resolve the potential phototoxicity problems of residual PSs, but also can accelerate the metabolism of the conjugated polymers to avoid the potential biotoxicity of drug accumulation. This work develops a self-degradable type-I PS, which can turn off the generation of ROS in time after PDT, providing a novel strategy to balance the PDT effect and postoperative safety.
Collapse
Affiliation(s)
- Hongye Huang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Qing Wan
- School of Materials Science and EngineeringNanchang Hangkong UniversityNanchang330063China
| | - Liucheng Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Danning Hu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Sun
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Xiaoyong Zhang
- Department of ChemistryNanchang UniversityNanchang330031China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
89
|
Liu X, Zhu C, Tang BZ. Bringing Inherent Charges into Aggregation-Induced Emission Research. Acc Chem Res 2022; 55:197-208. [PMID: 34985255 DOI: 10.1021/acs.accounts.1c00630] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged organic molecules, such as DNA, RNA, proteins, and polysaccharides, are ubiquitous and indispensable in natural living systems, which possess specific biological functions to interact with oppositely charged species via electrostatic attraction. The molecules with inherent charges typically differentiate themselves from the neutral ones with unique attributes (e.g., ionic interactions and high polarity), thereby playing a pivotal role in a broad spectrum of areas, including supramolecular chemistry, structural biology, and materials science. It is thus of great importance to explore and develop various charged organic systems for biomimicry and the creation of functional materials. In 2001, our group reported a peculiar luminogen that exhibited weak emission in solution but had significantly enhanced emission in aggregates, and we, for the first time, coined this phenomenon as aggregation-induced emission (AIE). The AIE concept significantly changes the cognition of the scientific community toward classic photophysical phenomena. Since the discovery of this unusual luminescence phenomenon, AIE luminogens (AIEgens) have attracted extensive attention from researchers in a plethora of disciplines because of their high brightness in aggregates, large Stokes shift, excellent photostability, and good biocompatibility. In the past 10 years, our laboratory has expended a great amount of effort to bring inherent charges into AIE research and acquired fruitful achievements.In this Account, we summarize the progress of charged AIE systems primarily made by our laboratory. We start with a brief introduction to charged AIEgens and then discuss their design strategies from molecular and topological perspectives, respectively. Next, we review the unique properties of charged AIEgens, including D-A interactions, anion-π+ interactions, and intermolecular electrostatic interactions, with an emphasis on how they differentiate themselves from the neutral analogs. On the one hand, positively charged AIEgens exhibit unique photophysical properties by forming typical donor-acceptor structures to manipulate the emission wavelength or initiate ultralong persistent luminescence. On the other hand, positively charged AIEgens exhibit unique physiochemical properties, such as an adjustable targeting capability toward biological targets and a strong capability for the generation of reactive oxygen species. Furthermore, we showcase the applications of charged AIEgens in imaging and diagnosis, photodynamic therapy, gas separation, and solar desalination. Finally, we conclude this Account with a summary and some perspectives regarding the existing challenges and future directions. We hope that this Account can spark new ideas and inspire scientists from different disciplines to explore this nascent yet promising research area.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| |
Collapse
|
90
|
Li C, Wang Y, Wu S, Zhuang W, Huang Z, Zhou L, Li Y, Chen M, You J. Direct [4 + 2] Cycloaddition to Isoquinoline-Fused Porphyrins for Near-Infrared Photodynamic Anticancer Agents. Org Lett 2022; 24:175-180. [PMID: 34889619 DOI: 10.1021/acs.orglett.1c03804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis of efficient porphyrin-based photosensitizers with intense near-infrared (NIR) absorption is in high demand for photodynamic therapy (PDT) but remains a challenging task. Herein we show the construction of a type of isoquinoline-fused porphyrins 3 and 4 with an impressive NIR-absorbing capacity. In light of the extraordinary singlet oxygen generation capabilities of 3 upon NIR irradiation, the representative nanoparticles (3a-NPs) assembled show excellent tumoricidal behavior with good biocompatibility in the phototherapeutic window (650-850 nm).
Collapse
Affiliation(s)
- Chengming Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Yinchan Wang
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Sisi Wu
- Core Facility of West China Hospital, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Zhenmei Huang
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Linsen Zhou
- Institute of Materials, Chinese Academy of Engineering Physics, Jiangyou 621908, P. R. China
| | - Yinggang Li
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
91
|
|
92
|
Liang T, Qiang T, Ren L, Cheng F, Wang B, Li M, Hu W, James TD. Near-infrared fluorescent probe for hydrogen sulfide: high-fidelity ferroptosis evaluation in vivo during stroke. Chem Sci 2022; 13:2992-3001. [PMID: 35382463 PMCID: PMC8905919 DOI: 10.1039/d1sc05930k] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Ferroptosis is closely associated with cancer, neurodegenerative diseases and ischemia-reperfusion injury and the detection of its pathological process is very important for early disease diagnosis. Fluorescence based sensing technologies have become excellent tools due to the real-time detection of cellular physiological or pathological processes. However, to date the detection of ferroptosis using reducing substances as markers has not been achieved since the reducing substances are not only present at extremely low concentrations during ferroptosis but also play a key role in the further development of ferroptosis. Significantly, sensors for reducing substances usually consume reducing substances, instigating a redox imbalance, which further aggravates the progression of ferroptosis. In this work, a H2S triggered and H2S releasing near-infrared fluorescent probe (HL-H2S) was developed for the high-fidelity in situ imaging of ferroptosis. In the imaging process, HL-H2S consumes H2S and releases carbonyl sulfide, which is then catalyzed by carbonic anhydrase to produce H2S. Importantly, this strategy does not intensify ferroptosis since it avoids disruption of the redox homeostasis. Furthermore, using erastin as an inducer for ferroptosis, the observed trends for Fe2+, MDA, and GSH, indicate that the introduction of the HL-H2S probe does not exacerbate ferroptosis. In contrast, ferroptosis progression was significantly promoted when the release of H2S from HL-H2S was inhibited using AZ. These results indicate that the H2S triggered and H2S releasing fluorescent probe did not interfere with the progression of ferroptosis, thus enabling high-fidelity in situ imaging of ferroptosis. A H2S triggered and H2S releasing near-infrared fluorescent probe (HL-H2S) was developed. HL-H2S does not interfere with the progression of ferroptosis by consuming H2S, thus enabling high-fidelity in situ imaging of ferroptosis.![]()
Collapse
Affiliation(s)
- Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Fei Cheng
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Baoshuai Wang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Mingli Li
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Department of Chemistry, University of Bath, Bath, BA27AY, UK
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, BA27AY, UK
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
93
|
Zhou S, Li R, Li Y, Wang Y, Feng L. A tailored and red-emissive type I photosensitizer to potentiate photodynamic immunotherapy. J Mater Chem B 2022; 10:8003-8012. [DOI: 10.1039/d2tb01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic immunotherapy (PDIT) emerges and shows great potentials in eradicating malignant tumors for the advantages on simultaneously damaging primary tumors, inhibiting tumors metastasis and recurrence. However, hypoxic microenvironment of tumor...
Collapse
|
94
|
Xu S, Liu X, Cai P, Li J, Wang X, Liu B. Machine-Learning-Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101074. [PMID: 34821473 PMCID: PMC8760175 DOI: 10.1002/advs.202101074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/01/2021] [Indexed: 06/13/2023]
Abstract
For practical applications, molecules often exist in an aggregate state. Therefore, it is of great value if one can predict the performance of molecules when forming aggregates, for example, aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ). Herein, a database containing AIE/ACQ molecules reported in the literature is first established. Through training, these machine learning (ML) models can build up the structure-property relationship and thus implement fast prediction of AIE/ACQ properties. To this end, a multi-modal approach is proposed, multiple prediction methods are compared and designed, and thus an ensemble strategy is developed. First, multiple molecular descriptors are considered at the same time, major features are extracted by dimensionality reduction, and multi-modal features are synthesized. Then, several state-of-the-art methods are designed and compared to analyze the advantages of the different methods. Finally, the ensemble strategy combines the advantages of the multiple methods to obtain the final prediction result. The reliability of this approach in an unknown molecular space is further verified by three newly designed molecules. Reasonable consistency between model predictions and experimental outcomes is obtained. The result indicates that ML can be a powerful tool to predict molecular properties in the aggregated state, thus accelerating the development of solid-state optical materials.
Collapse
Affiliation(s)
- Shidang Xu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Xiaoli Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Pengfei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Jiali Li
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Xiaonan Wang
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New City, Fuzhou350207China
| |
Collapse
|
95
|
Li Y, Zhuang J, Lu Y, Li N, Gu M, Xia J, Zhao N, Tang BZ. High-Performance Near-Infrared Aggregation-Induced Emission Luminogen with Mitophagy Regulating Capability for Multimodal Cancer Theranostics. ACS NANO 2021; 15:20453-20465. [PMID: 34843216 DOI: 10.1021/acsnano.1c08928] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of intelligent near-infrared (NIR) fluorophores for high specificity to cancer cells and application in multiple therapeutic modalities is crucial for precise cancer diagnostic and therapy. In this study, an aggregation-induced emission-active NIR fluorophore (TACQ) with mitophagy-modulating activity was synthesized and developed for mitochondrial targeting multimodal cancer theranostics. The strengthened push-pull interaction extended the emission of TACQ into the NIR-II region (>1000 nm). Further, the rotor structure and twisted molecular conformation enables nanoaggregates of TACQ to balance the radiative and nonradiative decays to simultaneously exhibit bright NIR emission, high photothermal conversion efficiency (55%), and efficient generation of reactive oxygen species. The lipocationic property of TACQ allows it to selectively accumulate in the mitochondria of cancer cells. TACQ can induce mitophagy and block mitophagic flux facilitating cancer cell apoptosis. Both in vitro and in vivo evaluations revealed that TACQ is an efficient theranostic agent for NIR fluorescence and photothermal imaging-guided synergistic chemo-photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiabao Zhuang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ying Lu
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Xia
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Na Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| |
Collapse
|
96
|
Hua Y, Wang Y, Kang X, Xu F, Han Z, Zhang C, Wang ZY, Liu JQ, Zhao X, Chen X, Zang SQ. A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. J Nanobiotechnology 2021; 19:438. [PMID: 34930279 PMCID: PMC8686291 DOI: 10.1186/s12951-021-01191-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As cancer is one of the main leading causes of mortality, a series of monotherapies such as chemotherapy, gene therapy and radiotherapy have been developed to overcome this thorny problem. However, a single treatment approach could not achieve satisfactory effect in many experimental explorations. RESULTS In this study, we report the fabrication of cyclic RGD peptide (cRGD) modified Au4-iron oxide nanoparticle (Au4-IO NP-cRGD) based on aggregation-induced emission (AIE) as a multifunctional theranostic system. Besides Au4 cluster-based fluorescence imaging and enhanced radiotherapy, iron oxide (IO) nanocluster could realize magnetic resonance (MR) imaging and Fenton reaction-based chemotherapy. Abundant toxic reactive oxygen species generated from X-ray irradiation and in situ tumor-specific Fenton reaction under acidic microenvironment leads to the apoptotic and necrotic death of cancer cells. In vivo studies demonstrated good biocompatibility of Au4-IO NP-cRGD and a high tumor suppression rate of 81.1% in the synergistic therapy group. CONCLUSIONS The successful dual-modal imaging and combined tumor therapy demonstrated AIE as a promising strategy for constructing multifunctional cancer theranostic platform.
Collapse
Affiliation(s)
- Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue Kang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fan Xu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun-Qi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xueli Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, National University of Singapore, Singapore, 117545, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
97
|
Wang X, Liu L, Wang L, Guo L, Li Y, Bai B, Fu F, Lu H, Zhao X. Optimizing Comprehensive Performance of Aggregation-Induced Emission Nanoparticles through Molecular Packing Modulation for Multimodal Image-Guided Synergistic Phototherapy. Adv Healthc Mater 2021; 10:e2100360. [PMID: 33960129 DOI: 10.1002/adhm.202100360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Indexed: 01/10/2023]
Abstract
Fluorescent nanoparticles (NPs) with aggregation-induced emission (AIE) characteristics hold remarkable potential for image-guided phototherapy. The molecular packing is the key point for optimizing the performance of AIE luminogens (AIEgens) in the aggregated or solid state. However, so far, the packing mode of AIEgens in NPs is still vague, causing some challenges for understanding the relationship between the photophysical property and packing mode, as well as further optimizing the performance of NPs for biomedical applications. In this contribution, by simply controlling the length of alkoxy chains in the donor-acceptor conjugated OPTPA, a packing balance between the twisted molecular structure and effective π-conjugation is actualized. Subsequently, the possibility of amorphous-crystalline transition of AIEgens in the polymer-encapsulated NPs is presented for the first time, and the comprehensive performance of NPs is further optimized. Both in vitro and in vivo experiments indicate that crystalline AIEgen-based NPs are remarkably effective in trimodal imaging-guided synergistic phototherapy.
Collapse
Affiliation(s)
- Xian Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion College of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Luqi Liu
- Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion College of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Li‐Juan Wang
- School of Materials Science and Engineering Harbin Institute of Technology Weihai 264209 China
| | - Lianqin Guo
- Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion College of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Yanbin Li
- Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion College of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Bing Bai
- Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion College of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Fan Fu
- Department of Cardiovascular Surgery Second Affiliated Hospital of Harbin Medical University Harbin 150001 China
| | - Hongguang Lu
- Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion College of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Xiaowei Zhao
- Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion College of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
98
|
Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102970. [PMID: 34705318 PMCID: PMC8693050 DOI: 10.1002/advs.202102970] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The development of simple, efficient, and biocompatible organic luminescent molecules is of great significance to the clinical transformation of biomaterials. In recent years, purely organic thermally activated delayed fluorescence (TADF) materials with an extremely small single-triplet energy gap (ΔEST ) have been considered as the most promising new-generation electroluminescence emitters, which is an enormous breakthrough in organic optoelectronics. By merits of the unique photophysical properties, high structure flexibility, and reduced health risks, such metal-free TADF luminophores have attracted tremendous attention in biomedical fields, including conventional fluorescence imaging, time-resolved imaging and sensing, and photodynamic therapy. However, there is currently no systematic summary of the TADF materials for biomedical applications, which is presented in this review. Besides a brief introduction of the major developments of TADF material, the typical TADF mechanisms and fundamental principles on design strategies of TADF molecules and nanomaterials are subsequently described. Importantly, a specific emphasis is placed on the discussion of TADF materials for various biomedical applications. Finally, the authors make a forecast of the remaining challenges and future developments. This review provides insightful perspectives and clear prospects towards the rapid development of TADF materials in biomedicine, which will be highly valuable to exploit new luminescent materials.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
99
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
100
|
Chen H, Wan Y, Cui X, Li S, Lee C. Recent Advances in Hypoxia-Overcoming Strategy of Aggregation-Induced Emission Photosensitizers for Efficient Photodynamic Therapy. Adv Healthc Mater 2021; 10:e2101607. [PMID: 34674386 DOI: 10.1002/adhm.202101607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/06/2021] [Indexed: 12/17/2022]
Abstract
Hypoxia is an inherent physiologic barrier in the microenvironment of solid tumor and has badly restricted the therapeutic effect of photodynamic therapy (PDT). Meanwhile, the photosensitizer (PS) agents used for PDT applications regularly encounter the tiresome aggregation-caused quenching effect that seriously decreases the production efficiency of cytotoxic reactive oxygen species. The aggregation-induced emission (AIE) PSs with antiquenching characteristics in the aggregate state are considered as a promising tool for achieving highly efficient PDT applications, and plenty of studies have widely demonstrated their advantages in various diseases. Herein, the recent progress of AIE PSs in the battle of antitumor hypoxia issue is summarized and the practical molecular principles of hypoxia-overcoming AIE PSs are highlighted. According to the hypoxia-overcoming mechanism, these representative cases are divided into low O2 -dependent (type I PDT) and O2 -dependent tactics (mainly including O2 -enrichment type II PDT and combination therapy). Furthermore, the underlying challenges and prospects of AIE PSs in hypoxia-overcoming PDT are proposed and thus expect to promote the next development of AIE PSs.
Collapse
Affiliation(s)
- Huan Chen
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Yingpeng Wan
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiao Cui
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Shengliang Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| |
Collapse
|