51
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
52
|
Rajput J, Hotha S, Vangala M. AuBr 3-catalyzed azidation of per- O-acetylated and per- O-benzoylated sugars. Beilstein J Org Chem 2018; 14:682-687. [PMID: 29623131 PMCID: PMC5870170 DOI: 10.3762/bjoc.14.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/05/2018] [Indexed: 12/23/2022] Open
Abstract
Herein we report, for the first time, the successful anomeric azidation of per-O-acetylated and per-O-benzoylated sugars by catalytic amounts of oxophilic AuBr3 in good to excellent yields. The method is applicable to a wide range of easily accessible per-O-acetylated and per-O-benzoylated sugars. While reaction with per-O-acetylated and per-O-benzoylated monosaccharides was complete within 1-3 h at room temperature, the per-O-benzoylated disaccharides needed 2-3 h of heating at 55 °C.
Collapse
Affiliation(s)
- Jayashree Rajput
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| | - Madhuri Vangala
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
53
|
Abstract
Naturally occurring glycans and glycoconjugates have extremely diverse structures and biological functions. Syntheses of these molecules and their artificial mimics, which have attracted the interest of those developing new therapeutic agents, rely on glycosylation methodologies to construct the various glycosidic linkages. In this regard, a wide array of glycosylation methods have been developed, and they mainly involve the substitution of a leaving group on the anomeric carbon of a glycosyl donor with an acceptor (a nucleophile) under the action of a particular promoter (usually a stoichiometric electrophile). However, glycosylations involving inherently unstable or unreactive donors/acceptors are still problematic. In those systems, reactions involving nucleophilic, electrophilic, or acidic species present on the leaving group and the promoter could become competitive and detrimental to the glycosylation. To address this problem, we applied the recently developed chemistry of alkynophilic gold(I) catalysts to the development of new glycosylation reactions that would avoid the use of the conventional leaving groups and promoters. Gratifyingly, glycosyl o-alkynylbenzoates (namely, glycosyl o-hexynyl- and o-cyclopropylethynylbenzoates) turned out to be privileged donors under gold(I) catalysis with Ph3PAuNTf2 and Ph3PAuOTf. The merits of this new glycosylation protocol include the following: (1) the donors are easily prepared and are generally shelf-stable; (2) the promotion is catalytic; (3) the substrate scope is extremely wide; (4) relatively few side reactions are observed; (5) the glycosylation conditions are orthogonal to those of conventional methods; and (6) the method is operationally simple. Indeed, this method has been successfully applied in the synthesis of a wide variety of complex glycans and glycoconjugates, including complex glycosides of epoxides, nucleobases, flavonoids, lignans, steroids, triterpenes, and peptides. The direct glycosylation of some sensitive aglycones, such as dammarane C20-ol and sugar oximes, and the glycosylation-initiated polymerization of tetrahydrofuran were achieved for the first time. The gold(I) catalytic cycle of the present glycosylation protocol has been fully elucidated. In particular, key intermediates, such as the 1-glycosyloxyisochromenylium-4-gold(I) and isochromen-4-ylgold(I) complexes, have been unambiguously characterized. Exploiting the former glycosyloxypyrylium intermediate, SN2-type glycosylations were realized in specific cases, such as β-mannosylation/rhamnosylation. The protodeauration of the latter vinylgold(I) intermediate has been reported to be critically important for the gold(I) catalytic cycle. Thus, the addition of a strong acid as a cocatalyst can dramatically reduce the required loading of the gold(I) catalyst (down to 0.001 equiv). C-Glycosylation with silyl nucleophiles can proceed catalytically when moisture, which is sequestered by molecular sieves, can serve as the H+ donor for the required protodeauration step. Indeed, the unique mechanism explains the merits and broad applicability of the present glycosylation method and provides a foundation for future developments in glycosylation methodologies that mainly involve improving the diastereoselectivity and catalytic efficiency of glycosylations.
Collapse
Affiliation(s)
- Biao Yu
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
54
|
Abstract
Previously, we communicated 3,3-difluoroxindole (HOFox)-mediated glycosylations wherein 3,3-difluoro-3H-indol-2-yl (OFox) imidates were found to be key intermediates. Both the in situ synthesis from the corresponding glycosyl bromides and activation of the OFox imidates could be conducted in a regenerative fashion. Herein, we extend this study to the synthesis of various glycosidic linkages using different sugar series. The main outcome of this study relates to enhanced yields and/or reduced reaction times of glycosylations. The effect of HOFox-mediated reactions is particularly pronounced in case of unreactive glycosyl donors and/or glycosyl acceptors. A multistep regenerative synthesis of oligosaccharides is also reported.
Collapse
Affiliation(s)
- Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Scott A. Geringer
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
55
|
Li W, Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem Soc Rev 2018; 47:7954-7984. [DOI: 10.1039/c8cs00209f] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(i)- and gold(iii)-catalyzed glycosylation reactions and their application in the synthesis of natural glycoconjugates are reviewed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
56
|
Pasari S, Manmode S, Walke G, Hotha S. A Versatile Synthesis of Pentacosafuranoside Subunit Reminiscent of Mycobacterial Arabinogalactan Employing One Strategic Glycosidation Protocol. Chemistry 2017; 24:1128-1139. [DOI: 10.1002/chem.201704009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Sandip Pasari
- Department of Chemistry; Indian Institute of Science Education and Research; Pune 411 008 MH India
| | - Sujit Manmode
- Department of Chemistry; Indian Institute of Science Education and Research; Pune 411 008 MH India
| | - Gulab Walke
- Department of Chemistry; Indian Institute of Science Education and Research; Pune 411 008 MH India
| | - Srinivas Hotha
- Department of Chemistry; Indian Institute of Science Education and Research; Pune 411 008 MH India
| |
Collapse
|
57
|
Panova MV, Podvalnyy NM, Okun EL, Abronina PI, Chizhov AO, Kononov LO. Arabinofuranose 1,2,5-orthobenzoate as a single precursor of linear α(1 → 5)-linked oligoarabinofuranosides. Carbohydr Res 2017; 456:35-44. [PMID: 29272780 DOI: 10.1016/j.carres.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023]
Abstract
Selectively protected mono-, di- and trisaccharide thioglycoside building blocks with unprotected primary hydroxy group at the non-reducing end, available in only one step from 3-O-benzoyl β-d-arabinofuranose 1,2,5-orthobenzoate, were used in the synthesis of linear α(1 → 5)-linked oligoarabinofuranosides up to octasaccharide. The obtained oligosaccharides contain 4-(2-chloroethoxy)phenyl (CEP) or 4-(2-azidoethoxy)phenyl (AEP) pre-spacer aglycons that allow preparation of neoglycoconjugates.
Collapse
Affiliation(s)
- Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation; The Higher Chemical College of the Russian Academy of Sciences, Miusskaya Pl. 9, 125047 Moscow, Russian Federation
| | - Nikita M Podvalnyy
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Eugene L Okun
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
58
|
Wang HY, Simmons CJ, Blaszczyk SA, Balzer PG, Luo R, Duan X, Tang W. Isoquinoline-1-Carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angew Chem Int Ed Engl 2017; 56:15698-15702. [DOI: 10.1002/anie.201708920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/15/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Hao-Yuan Wang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Christopher J. Simmons
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Stephanie A. Blaszczyk
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Paul G. Balzer
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Renshi Luo
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Xiyan Duan
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Weiping Tang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
59
|
Wang HY, Simmons CJ, Blaszczyk SA, Balzer PG, Luo R, Duan X, Tang W. Isoquinoline-1-Carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hao-Yuan Wang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Christopher J. Simmons
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Stephanie A. Blaszczyk
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Paul G. Balzer
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Renshi Luo
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Xiyan Duan
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Weiping Tang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
60
|
Neralkar M, Mishra B, Hotha S. Nucleofuge Generating Glycosidations by the Remote Activation of Hydroxybenzotriazolyl Glycosides. J Org Chem 2017; 82:11494-11504. [DOI: 10.1021/acs.joc.7b02027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mahesh Neralkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411 008 MH, India
| | - Bijoyananda Mishra
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411 008 MH, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, 411 008 MH, India
| |
Collapse
|
61
|
Palo-Nieto C, Sau A, Galan MC. Gold(I)-Catalyzed Direct Stereoselective Synthesis of Deoxyglycosides from Glycals. J Am Chem Soc 2017; 139:14041-14044. [PMID: 28934850 PMCID: PMC5951607 DOI: 10.1021/jacs.7b08898] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Au(I) in combination
with AgOTf enables the unprecedented direct
and α-stereoselective catalytic synthesis of deoxyglycosides
from glycals. Mechanistic investigations suggest that the reaction
proceeds via Au(I)-catalyzed hydrofunctionalization of the enol ether
glycoside. The room temperature reaction is high yielding and amenable
to a wide range of glycal donors and OH nucleophiles.
Collapse
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
62
|
Mishra B, Manmode S, Panda RRA, Hotha S. Expedient Synthesis of a Linear Nonadecaarabinofuranoside of the Mycobacterium tuberculosis
Cellular Envelope. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road 411008 Pune India
| | - Sujit Manmode
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road 411008 Pune India
| | - Ravi Raja Adhikari Panda
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road 411008 Pune India
| | - Srinivas Hotha
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road 411008 Pune India
| |
Collapse
|
63
|
Islam M, Shinde GP, Hotha S. Expedient synthesis of the heneicosasaccharyl mannose capped arabinomannan of the Mycobacterium tuberculosis cellular envelope by glycosyl carbonate donors. Chem Sci 2017; 8:2033-2038. [PMID: 28451321 PMCID: PMC5398307 DOI: 10.1039/c6sc04866h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
The global incidence of tuberculosis is increasing at an alarming rate, and Mycobacterium tuberculosis (Mtb) is the causative agent for tuberculosis, a disease with high mortality. Lipoarabinomannan (LAM) is one of the major components of the Mtb cellular envelope and is an attractive scaffold for developing anti-tubercular drugs, vaccines and diagnostics. Herein, a highly convergent strategy is developed to synthesize heneicosasaccharyl arabinomannan for the first time. The arabinomannan synthesized in this endeavour has several 1,2-trans or α-Araf linkages and three 1,2-cis or β-Araf linkages end capped with 1,2-trans or α-Manp linkages. All the key glycosidations were performed with alkynyl carbonate glycosyl donors under [Au]/[Ag] catalysis conditions, which gave excellent yields and stereoselectivity even for the reactions between complex and branched oligosaccharides. The resultant allyl oligosaccharide was globally deprotected to obtain the heneicosasaccharyl arabinomannan as a propyl glycoside. In summary, heneicosasaccharyl mannose capped arabinomannan synthesis was achieved in 56 steps with 0.016% overall yield.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Chemistry , Indian Institute of Science Education and Research , Pune - 411 008 , India .
| | - Ganesh P Shinde
- Department of Chemistry , Indian Institute of Science Education and Research , Pune - 411 008 , India .
| | - Srinivas Hotha
- Department of Chemistry , Indian Institute of Science Education and Research , Pune - 411 008 , India .
| |
Collapse
|
64
|
Vangala M, Shinde GP. p-Nitrophenyl carbonate promoted ring-opening reactions of DBU and DBN affording lactam carbamates. Beilstein J Org Chem 2016; 12:2086-2092. [PMID: 27829914 PMCID: PMC5082618 DOI: 10.3762/bjoc.12.197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023] Open
Abstract
The amidine bases DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) and DBN (1,5-diazabicyclo[4.3.0]non-5-ene) display nucleophilic behaviour towards highly electrophilic p-nitrophenyl carbonate derivatives with ring opening of the bicyclic ring to form corresponding substituted ε-caprolactam and γ-lactam derived carbamates. This simple method presents a unified strategy to synthesize structurally diverse ε-caprolactam and γ-lactam compounds with a large substrate scope.
Collapse
Affiliation(s)
- Madhuri Vangala
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| | - Ganesh P Shinde
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|